SOFTWARE ano MIND

Andprei Sorin

EXTRACT

Chapter 4: Language and Software
Sections Wittgenstein and Software, Software Structures

This extract includes the book’s front matter
and part of chapter 4.

Copyright ©2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives
International License 4.0.

These sections examine Ludwig Wittgenstein’s non-mechanistic
philosophy of language and its application to software.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND
MIND

The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements

Excerpts from the works of Karl Popper: reprinted by permission of the University of
Klagenfurt/Karl Popper Library.

Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by
Secker & Warburg, reprinted by permission of The Random House Group Ltd.

Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,
reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei
Software and mind : the mechanistic myth and its consequences / Andrei Sorin.

Includes index.

ISBN 978-0-9869389-0-0
1. Computers and civilization. 2. Computer software — Social aspects.
3. Computer software — Philosophy. 1. Title.

QA76.9.C66567 2013 303.48'34 C2012-906666-4

Don't you see that the whole aim of Newspeak is to narrow
the range of thought?... Has it ever occurred to you ... that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty;” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author - an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Introduction

Chapter 1

Chapter 2

Preface xiii

Belief and Software 1
Modern Myths 2
The Mechanistic Myth 8
The Software Myth 26
Anthropology and Software 42
Software Magic 42
Software Power 57

Mechanism and Mechanistic Delusions
The Mechanistic Philosophy 68
Reductionism and Atomism 73

Simple Structures 9o

Complex Structures 96

Abstraction and Reification 111
Scientism 125

The Mind 140
Mind Mechanism 141
Models of Mind 145

ix

68

X CONTENTS

Tacit Knowledge 155
Creativity 170
Replacing Minds with Software 188

Chapter3 Pseudoscience 200
The Problem of Pseudoscience 201
Popper’s Principles of Demarcation 206
The New Pseudosciences 231
The Mechanistic Roots 231
Behaviourism 233
Structuralism 240
Universal Grammar 249
Consequences 271
Academic Corruption 271
The Traditional Theories 275
The Software Theories 284

Chapter 4 Language and Software 296
The Common Fallacies 297
The Search for the Perfect Language 304
Wittgenstein and Software 326
Software Structures 345

Chapter5 Language as Weapon 366
Mechanistic Communication 366
The Practice of Deceit 369
The Slogan “Technology” 383
Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406
A New Form of Domination 407
The Risks of Software Dependence 407
The Prevention of Expertise 411
The Lure of Software Expedients 419
Software Charlatanism 434
The Delusion of High Levels 434
The Delusion of Methodologies 456
The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478
Introduction 478
The Fallacy of Software Engineering 480
Software Engineering as Pseudoscience 494

CONTENTS

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611
Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655
The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804
The End of Responsibility 804
Software Irresponsibility 804
Determinism versus Responsibility 809
Totalitarian Democracy 829
The Totalitarian Elites 829
Talmon’s Model of Totalitarianism 834
Orwell's Model of Totalitarianism 844
Software Totalitarianism 852

Index 863

xi

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

Xiv PREFACE

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation — despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409-411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines - from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

PREFACE XV

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

XVi PREFACE

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he;” “his;,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

326 WITTGENSTEIN AND SOFTWARE CHAPTER 4

Wittgenstein and Software

1

Ludwig Wittgenstein is regarded by many as the most influential philosopher
of the twentieth century. Although he made contributions in many areas,
notably in the philosophy of mathematics and the philosophy of psychology,
his chief concern was language; namely, how ordinary sentences describe the
world and express ideas.

Wittgenstein is famous for having created two different systems of thought,
one in his youth and the other later in life, both of which greatly influenced the
views of contemporary philosophers. His later ideas represent in large part a
criticism and rejection of the earlier ones, and it is this change that makes
Wittgenstein’s philosophy so important today. For the change is, quite simply,
a repudiation of the mechanistic doctrine.

His early theory — a model of language that provides an exact, one-to-one
correspondence to reality — is generally considered the most rigorous system
of this kind ever invented. Then, in his later philosophy, he shows not only that
his earlier ideas were wrong, but also that no such system can exist. Thus, while
in his early work he is attempting to find an exact linguistic representation of
the world, in his later work he is trying to prove the impossibility of such a
representation. Wittgenstein’s later views, we will see presently, match the
concept of complex structures and my claim that complex structures cannot
be reduced to simple ones. What he is saying, in essence, is that he was
wrong when he believed that complex phenomena can be represented with
simple structures; that they can only be represented as systems of interacting
structures; and that these systems cannot be described exactly, as can the
simple structures.

Thus, unlike those philosophers who continue to believe in mechanism
despite their failure to discover a useful theory, Wittgenstein created what
everyone accepted as a great mechanistic theory, and then saw it as his task to
doubt it, and ultimately to abandon it.! Russell and the logical positivists, in
particular, liked only his earlier theory; they rejected his later views, and
persisted in the futile search for an exact linguistic representation of the world.

Wittgenstein’s repudiation of mechanism has been known and studied since
the 1930s, and his popularity has been increasing ever since. His ideas are

1 Recall what we learned in “Popper’s Principles of Demarcation” in chapter 3: serious
thinkers doubt their theory and attempt to refute it, so they search for falsifications;
pseudoscientists believe they must defend their theory, so they search for confirmations.
Thus, Wittgenstein’s shift demonstrates the value of Popper’s principles.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 327

quoted and discussed in many contexts, and have engendered an enormous
body of secondary literature by interpreters and commentators. At the same
time, we note that mechanistic theories of mind, of intelligence, of knowledge,
of language, continue to flourish. Most scientists, thus, continue to represent
complex human phenomena with simple structures; so they claim, in effect,
that it is Wittgenstein’s early concepts that are valid and his later concepts that
are wrong. These scientists do not explicitly reject his non-mechanistic ideas;
they simply ignore the issues he addresses in his later work, and which, if
properly interpreted, clearly show the futility of searching for a mechanistic
theory of mind.

In chapter 3 we saw that Popper’s principles of demarcation are greatly
respected, while their practical applications are largely disregarded (see
pp. 228-230). The academics manage to accept and to disregard these princi-
ples at the same time by misinterpreting them: they ignore their value as a
criterion of demarcation, and treat them instead as just another topic in the
philosophy of science.

Similarly, the academics cannot reject Wittgenstein’s later theory, but they
cannot accept it either, because accepting it would be tantamount to admitting
that their own work is merely a pursuit of mechanistic fantasies. So they
resolve the dilemma by misinterpreting Wittgenstein’s ideas: by perceiving
them as a topic fit for philosophical debate, instead of recognizing their
practical applications. Norman Malcolm observes that even philosophers
fail to appreciate the significance of Wittgenstein’s non-mechanistic ideas:
“The dominant currents in today’s academic philosophy have been scarcely
touched [by Wittgenstein’s later work, which] has been read but its message
not digested. As has been aptly said, it has been assimilated without being
understood.”2

And what about our programming theories and practices? If they too grow
out of the belief that the function of language is to map reality through one-to-
one correspondence, then Wittgenstein’s shift from his early to his later theory
may well be the most important topic in the philosophy of software. But this
shift — arguably the most celebrated event in twentieth-century philosophy, and
a challenge to all mechanistic concepts of mind - is completely ignored in the
world of programming. Even a casual study of our programming theories
reveals that they all reflect Wittgenstein’s early theory, which claimed that there
is an exact correspondence between language and the world. They ignore the
evidence he brought later to show the impossibility of such a correspondence.

2 Norman Malcolm, Nothing is Hidden: Wittgensteins Criticism of his Early Thought
(Oxford: Blackwell, 1986), p. ix.

328 WITTGENSTEIN AND SOFTWARE CHAPTER 4

2

Wittgenstein presented his early theory in the small book Tractatus Logico-
Philosophicus, published in 1921. Like Russell’s theory of language, his theory is
known as logical atomism; but, while the two theories are generally similar,
they differ in many details. Wittgenstein started with Russell’s ideas, but Russell
often acknowledged that his own theory was influenced by Wittgenstein’s
work.

Superficially, Wittgenstein’s theory makes the same assertions as the theories
we have already discussed; namely, that there is a one-to-one correspondence
between language and reality, and that both have a hierarchical structure. What
sets his theory apart is the fact that his is the only complete system - simple,
clear, and almost free of fallacies. Wittgenstein accomplished this feat by
keeping his arguments abstract, and by excluding from his system certain types
of knowledge: he insisted that it is not the task of logical analysis to search for
explanations in such matters as feelings, morals, or beliefs. From all the
universal language systems, Wittgenstein’s is the only one that can be said to
actually work. But this was achieved simply by restricting it to a small portion
of reality. As he himself realized later, practically all phenomena, and the
sentences representing them, must be excluded from his neat system if we want
it to work.

The hierarchy that makes up Wittgenstein’s system has four levels, and
hence four kinds of elements: the top level is the world, which is made up of
facts; facts are made up of atomic facts, and atomic facts are made up of objects.
This hierarchy is perfectly mirrored in the hierarchy of language, which also
has four levels and four kinds of elements: language, at the top level, is made
up of propositions; propositions are made up of elementary (or atomic)
propositions, and elementary propositions are made up of names. Each level
and each element in one hierarchy stands in a one-to-one correspondence to
the matching level and element in the other hierarchy. Thus, the totality of the
world is represented by the totality of language, each fact is represented by a
proposition, each atomic fact by an elementary proposition, and each object by
a name. This system is illustrated in figure 4-1.3

Wittgenstein is careful not to define or interpret the meaning of these
elements — what the objects, names, facts, and propositions actually are in the
world and in language - thus leaving the system as an entirely abstract idea. He

3 The diagram is adapted from K. T. Fann, Wittgenstein’s Conception of Philosophy
(Oxford: Blackwell, 1969), p. 20.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 329

maintains that such definitions and interpretations are outside the scope of
language, that it is impossible to convey them with precision, and that we must
try to understand the system as best we can from his description. We need only
recall the failure of the other language systems, which did attempt to define
with precision the elements of their hierarchies, to appreciate Wittgenstein’s
reluctance to discuss them. We are free to interpret “names” as words and
“propositions” as sentences; but we must bear in mind that, if we insist on such
interpretations, the system will cease to be an abstract idea and will no longer
work. Objects, names, facts, and propositions must remain, therefore, technical
terms, and their use in this system must not be confused with their traditional
meaning.

language
’ proposition, propositionn‘

- S \ t
elementary elementary :
proposition, °~ ° ° ° ° ° proposition,, !
’ name, e e e e e e e name,, A T :
1 A | |
| | | [
: : i i
object; object, [!

[J \l/
- . |
atomic ~ atomic |
. fact, fact,,) :
\Z

l fact, e e fact,)
world
Figure 4-1

What Wittgenstein does explain is the relations between the various levels
and elements. Objects are the most basic constituents of the world, and the
names that correspond to them in language are the most basic constituents of
language. In practice we may be unable to determine whether a particular
entity is indeed an object or is a higher-level element, but this is unimportant.
The theory simply assumes that objects exist, that the world consists ultimately
of entities which are not divisible into simpler ones. And it is to these entities
that the names correspond. For each object in the world there exists a name,
and only one name, in language.

An atomic fact is a certain configuration of objects, and an elementary
proposition is a matching configuration of names. Wittgenstein calls the
relation between an atomic fact and its corresponding elementary proposition
“picturing” By this he means what we called mirroring, or mapping: a one-to-

330 WITTGENSTEIN AND SOFTWARE CHAPTER 4

one correspondence akin to the correspondence between a map and the
territory, or between a musical score and the sounds. Elementary propositions
describe all possible states of affairs in the world, those that actually exist as
well as those that we can only imagine. Thus, an elementary proposition can
be either true or false: it is true if the atomic fact it represents exists in reality,
and false if the atomic fact does not exist. An important issue, stressed by
Wittgenstein, is the independence of elementary propositions: the truth or
falsity of one elementary proposition does not depend on the truth or falsity of
others. Corresponding to this, the existence or non-existence of one atomic
fact is independent of other atomic facts.

At the next level, Wittgenstein’s propositions are truth functions of elemen-
tary propositions. Truth functions - a familiar concept in logic and digital
electronics — perform logical operations such as AND, OR, and NOT on one, two,
or more logical operands. The operands, as well as the result of the operation,
can have one of two values (called truth values): False and True, or a low and
high state, or 0 and 1. The operation of truth functions can be illustrated by
means of truth tables - tables that show the result of the operation for any
combination of truth values of the operands. The columns in the table denote
the operands and the result, and additional columns are often included for the
result of intermediate operations. The rows in the table show all possible
combinations of operand values; thus, since each operand can be either False
or True, there will be two rows for one operand, four for two operands, eight
for three operands, and so on. The truth table in figure 4-2, for example, shows
a truth function with three operands#

a b C aORb (@aORDb)AND ¢
F F F F F
F F T F F
F T F T F
F T T T T
T F F T F
T F T T T
T T F T F
T T T T T
Figure 4-2

4 The result of AND is True when both operands are True, and False otherwise; the result
of OR is True when either operand is True, and False otherwise; NOT takes only one operand,
and negates its value: True to False, False to True. Wittgenstein was not the first to employ
truth tables, but it was his pragmatic use of them, and the popularity of his book, that
established this concept in modern logic.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 331

In Wittgenstein’s system, the operands are the elementary propositions, so
the truth or falsity of a proposition is completely determined by the truth or
falsity of its constituent elementary propositions. In other words, depending on
the truth function that defines a particular proposition, certain combinations
of truth values for its elementary propositions will yield a true proposition,
while the other combinations will yield a false one. (The truth table that defines
a given proposition may involve a large number of operands, and therefore a
huge number of rows. Remember, though, that the system is only an abstract
concept.)

But propositions in language correspond to facts in the world. We already
saw that the atomic facts that make up facts are in a one-to-one correspond-
ence to the elementary propositions that make up propositions, so the truth or
falsity of elementary propositions mirror the existence or non-existence of the
atomic facts. Consequently, the truth function that determines the truth or
falsity of a proposition also determines the existence or non-existence of the
corresponding fact: whether a fact exists or not in the world depends entirely
on the truth function and on the existence or non-existence of the atomic facts
that make it up.

The world is as it is, and the function of language is to describe it. All
possible facts, and all possible propositions, no matter how complex, can be
expressed as truth functions of atomic facts and elementary propositions,
respectively. This system, therefore, represents both the world and the lan-
guage that mirrors it. It represents even facts that do not exist in the world:
these are the combinations of atomic facts for which the truth functions yield
False. Facts that do not exist are mirrored in language by combinations of
elementary propositions for which the same truth functions yield False: false
assertions (“snow is black,” “the sun moves round the earth”), fictional stories,
and the like.

All these propositions, says Wittgenstein, true or false, are meaningful
propositions. They must be distinguished from those propositions that cannot
be expressed as truth functions (because their truth or falsity does not depend
exclusively on the truth or falsity of some elementary propositions). For
example, no truth function can describe the situation where the same combi-
nation of truth values for the elementary propositions yields, unpredictably,
sometimes True and sometimes False. And they must also be distinguished
from those propositions that simply say nothing; for example, a proposition
that is always True, regardless of the truth values of its elementary propositions
(a tautology), or one that is always False (a contradiction). Such propositions,
says Wittgenstein, are meaningless, because they do not mirror facts that either
exist or do not exist in the world.

Meaningless propositions, it turns out, form a large part of our discourse:

332 WITTGENSTEIN AND SOFTWARE CHAPTER 4

philosophy, religion, ethics, metaphysics, and much of everyday language
consist chiefly of such meaningless propositions. Even logic and mathematics
consist of meaningless propositions, because they do not represent facts, but
are self-contained deductive systems: they are purposely designed so that, if
one follows their rules, one always expresses the truth. Thus, purely deductive
systems assert nothing about the world. Only the propositions of empirical
science can be said to be meaningful, to mirror facts. Wittgenstein does not
deny the value of the other propositions; he merely says that they do not reflect
facts from the real world. To say that they are meaningless overstates the case,
but this uncompromising position - this arrogance — was an important aspect
of his early philosophy.

9
o

Although only an abstract concept (unlike the language systems we examined
earlier), Wittgenstein’s theory was received with enthusiasm. Everyone was
fascinated by its simplicity and by its apparent power to explain the world, and
it was generally seen as a real improvement over the others.

But Wittgenstein’s system is no improvement. Like the others, it is an
attempt to determine by strictly mechanical means, through a logical analysis
of linguistic elements and without taking into account the context in which
they are used, whether or not the facts they represent exist in the world. It
seems to be an improvement because it restricts the universe of meaningful
propositions to a small fraction of those used in ordinary discourse. Thus,
his neat system appears to work because Wittgenstein permits into it only
those aspects of the world that are neat, while branding everything else as
meaningless.

In the end, very little is left that is not considered meaningless. In fact, even
the propositions of empirical science must be excluded, because they can rarely
be reduced to the system’s terminal elements — to names pointing to simple,
irreducible objects. (In other words, the system is incompatible with the
fundamental tenet of empirical science - the requirement that propositions be
accepted only if they can be verified through direct observation.) Thus,
similarly to the ideas of logical positivism (see p. 322), Wittgenstein’s view of
meaningfulness is in effect a criterion of demarcation based on verifiability.
Popper, who held that a criterion of demarcation must be based on falsifiability
(see “Popper’s Principles of Demarcation” in chapter 3), pointed out this
weakness shortly after the Tractatus was published.

5 Karl R. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, s5th ed.
(London: Routledge, 1989), pp. 39-40.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 333

It should be obvious why Wittgenstein’s early theory can help us to understand
the origin of our software delusions. If we accept his system as the best
expression of the mechanistic language delusion - the belief that language
mirrors the world through one-to-one correspondence, and that both can be
represented with hierarchical structures — we recognize our software delusions
as an embodiment of Wittgenstein’s theory.

The programming theories claim that the world can be mirrored perfectly
in software if we design our applications as hierarchical structures of software
elements: operations, blocks of operations, larger blocks, modules. To use
Wittgensteinian terminology, these elements are software propositions that
correspond to specific facts in the world, each proposition consisting of a
combination of lower-level propositions. In a perfect application, the software
propositions at each level are independent of one another; and the truth or
falsity of each one (that is, whether or not it mirrors actual facts) is completely
determined by its lower-level, constituent propositions. Each software element
is, in effect, a truth function of its constituent elements. (Most software
applications, however, need more than the two levels that Wittgenstein allows
for propositions in his system.)

These theories fail because they try to represent with neat structures, facts
that are not independent and are not made up of elementary facts in the precise
way expected by the software propositions. Just as Wittgenstein’s theory
accepts only a small fraction of the totality of propositions, and brands the rest
as meaningless, the programming theories accept only a small fraction of the
totality of software propositions: those corresponding to facts that can be
represented with neat structures of lower-level facts. Most situations in the
real world, however, are not neatly structured. Most situations can only be
mirrored with software propositions that are, in the Wittgensteinian sense,
meaningless: propositions that cannot be expressed as exact functions of
independent lower-level propositions.

Unfortunately, we cannot write off these situations as Wittgenstein does in
his system. For, if we did, there would be practically no situations left for which
software applications are possible. Thus, what is wrong with the programming
theories is not that they let us create bad applications, but on the contrary,
that they restrict us to logically perfect applications: to simple hierarchical
structures of software propositions. And, just as is the case with the meaningful
propositions in Wittgenstein’s system, we can represent with logically perfect
applications only a small fraction of the facts that make up the world.

334 WITTGENSTEIN AND SOFTWARE CHAPTER 4

3

Let us examine next how Wittgenstein changed his views, and what his new
philosophy of language means to us. After writing the Tractatus, Wittgenstein
felt that he had no further contribution to make to philosophy, and for nearly
ten years he pursued other interests. Although his theory was becoming
increasingly popular and influential, he himself was becoming increasingly
dissatisfied with it. By the time he returned to philosophy he had new ideas,
and he continued to develop them for the rest of his life. He wrote only
one book expounding his later philosophy: the posthumously published
Philosophical Investigations. Several other books, though, consisting largely of
transcripts of his notes and lectures, have been published since then. As in
the Tractatus, his ideas are interconnected and cover many fields, but we
are interested here only in his central concern: how language represents
knowledge, thought, and reality.

Wittgenstein admits now that, if we want to understand how language
mirrors reality, we cannot restrict ourselves to neat linguistic structures and
formal logic. We cannot assume that only those propositions which can be
expressed with truth functions are meaningful. All normal uses of language
have a meaning, simply because they fulfil certain social functions. So, instead
of ignoring those propositions that cannot be reduced to neat structures of
linguistic entities, we should conclude that they cannot be so reduced because
the reality they mirror cannot be reduced to neat structures of facts: “The more
narrowly we examine actual language, the sharper becomes the conflict
between it and our requirement [i.e., our wish]. (For the crystalline purity of
logic was, of course, not a result of investigation: it was a requirement [i.e., a
wish].)”6

Wittgenstein notes that complex entities are complex in more than one way;
that is, there are several ways to break down a complex entity into simpler
parts. It is impossible, therefore, to define a precise, unique relationship
between the parts and the complex whole.” If the complex entities are facts, or
propositions that mirror these facts, there is always more than one way to
represent these facts and propositions as a function of simpler facts and
propositions. So if we want to depict these entities with a hierarchical structure,
we will find several hierarchies through which a particular complex entity is
related to simpler ones.

6 Ludwig Wittgenstein, Philosophical Investigations, 3rd ed. (Englewood Cliffs, NJ:
Prentice Hall, 1973), §107. 71bid., §47.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 335

A chessboard, for example, is a complex entity: we can view it as a config-
uration of sixty-four squares, but we can also view it as eight rows of squares,
or as eight columns, or as various arrangements of pairs of squares, or as
combinations of squares and colours.? Clearly, there are many ways to describe
a chessboard as a structure of simpler elements, and all these structures exist
at the same time.

A more difficult example is the notion of a game.? Each of the various
activities we call games has a number of distinguishing characteristics, but
there is no one characteristic that is common to all of them. There are ball
games, board games, card games, and so on; some are competitive, but others
are mere amusements; some call for several players, while others are solitary;
some require skill, and others luck. This means that there is no set of principles
that would permit us to determine, simply by following some identification
rules, whether a given activity is or is not a game. But, in fact, even without
such principles, we have no difficulty identifying certain activities as games.
So it seems that games have a number of similarities, for otherwise we would
be unable to distinguish them as a specific type of activity. And yet, despite
these similarities, we cannot represent them through a neat classification of
activities.

Just like the word “game,” says Wittgenstein, the meaning of most words and
sentences is imprecise; it depends largely on the context in which we use them.
The meaning of linguistic entities is imprecise because the reality they mirror
is an imprecise structure of facts. No methods or rules can be found to relate
all the meanings of words and sentences, in all conceivable contexts; so we
must think of them simply as families of meanings. Thus, Wittgenstein coined
the phrase “family resemblance” to describe the complex relationship between
facts, or between the linguistic entities that correspond to facts: “And the result
of this examination is: we see a complicated network of similarities overlapping
and criss-crossing.... I can think of no better expression to characterize these
similarities than ‘family resemblances’; for the various resemblances between
members of a family: build, features, colour of eyes, gait, temperament, etc. etc.
overlap and criss-cross in the same way.’10

No methods or rules can describe all the resemblances between the mem-
bers of a family. Their family relationship can be accurately represented, of
course, with the hierarchical structure known as the family tree. But this
relationship reflects only one of their attributes. If we classified in a hierarchical
structure the relationship that reflects another attribute (height, or eye colour,
or a particular facial feature), that hierarchy will not necessarily match the
family tree. Each attribute gives rise to a different classification. Thus, the

8 Ibid. 9 Ibid., §66. 10Tbid., §$66-67.

336 WITTGENSTEIN AND SOFTWARE CHAPTER 4

resemblance of family members is the result of several hierarchies that exist at
the same time - hierarchies that overlap and intersect.

Similarly, if we classified the activities we call games on the basis of one
particular attribute (number of players, level of skill, use of a ball, etc.), we
would end up with a different hierarchy for each attribute. It is impossible to
create a hierarchy with game as the top element, the individual games as
terminal elements, and their categories as intermediate elements — not if we
want to capture in this hierarchy all their attributes. Instead, there are many
such hierarchies, a different one perhaps for each attribute. All have the same
top element and the same terminal elements, but different intermediate
elements. And all exist at the same time.

This, incidentally, is true of all classifications. We classify plants and
animals, for example, into a hierarchy of classes, orders, families, genera, and
species on the basis of some of their attributes, while ignoring the others. It
is impossible to capture all their attributes in one hierarchy. The current
hierarchy is useful to biologists, but we could easily create different ones, on
the basis of other attributes. Since the plants and animals are the same, all these
hierarchies exist at the same time.

We must take a moment here to clarify this point. When I say that one
hierarchy cannot capture all the attributes of entities like games, what I mean
is that a correct hierarchy cannot do so. For, one can always draw a tree diagram
in the following manner: assuming for simplicity only three attributes and only
two or three values for each attribute, we divide games into, say, ball games,
board games, and card games; then, we divide each one of these elements into
games of skill and games of luck, thus creating six elements at the next lower
level; finally, we divide each one of these six elements into competitive and
amusing, for a total of twelve categories. This structure is shown in figure 4-3.

Clearly, if we limit games to these three attributes, any game will be a
terminal element in this structure, since it must fit within one of the twelve
categories: ball games that require skill and are competitive, ball games that
require skill and are amusing, etc. The intermediate elements are the categories
that make up the various levels; and the attributes are represented by the
branches that connect one category to the lower-level ones.!!

1 Note that it is irrelevant for the present argument whether we treat the use of a ball, a
board, and cards as three values of one attribute (on the assumption that no game requires
more than one of them), or as three separate attributes (each one having two values, yes
and no); only the intermediate levels and elements of the classification would differ. This is
true in general, and I will not repeat it in the following discussion. We can always reduce a
classification to attributes that have only two values (use or not, possess or not, affect or not,
etc.), simply by adding levels and categories. Thus, since logically there is no difference
between multivalued and two-valued attributes, I will use both types in examples.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 337

This structure, however, although a tree diagram, is not a true hierarchy.
It captures all three attributes, but it does so by repeating some of them;
competitive, for instance, must appear in six places in the diagram. While such
a classification may have its uses, it does not reflect reality: it does not represent
correctly the actual categories and attributes. We don’t hold in the mind, for
example, six different notions of competitiveness — one for ball games that
require skill, another for ball games that require luck, and so forth. We always
know in the same way whether a game is competitive or amusing; we don't have
to analyze its other attributes first. To put this in general terms, we don’t
perceive the attributes of games as one within another.

™ lame
competitive — =" _game
. game
amusing ——_ == game
™ ame
competitive — =" _game
. game
amusing —)< game
™ ame
competitive — =" _game
. game
amusing —)< game
Cgames> board
" game
competitive— =" game
. game
amusing —)< game
™ ame
competitive — =" _game
. game
amusing —)< game
™ ame
competitive — =" _game
. game
amusing —)< game

skill

A

ball

luck

A

skill

A

luck

A

skill

A

cards

luck

A

Figure 4-3

There is another way to look at this problem. The order in which we showed
the three attributes was arbitrary. We can create another tree diagram by
dividing games first into competitive and amusing, then each one of these two
elements into games of skill and games of luck, and then the resulting four
elements into ball games, board games, and card games, as in figure 4-4; and
we end up with the same twelve elements as before. If this structure reflected
reality, rather than the first one, we would indeed have only one way to perceive

338 WITTGENSTEIN AND SOFTWARE CHAPTER 4

competitive and amusing games; but now we would be using four different
methods to decide whether a game is a card game: one for competitive games
that require skill, another for competitive games that require luck, and so forth.
Again, this is silly: we always know in the same way whether a game is a card
game. And, even if we were willing to admit that this is how we distinguish
games, why should we prefer one way of arranging the attributes rather than
the other? Since this situation is absurd, we must conclude that this is not how
we perceive games, so this type of structure does not reflect correctly our
knowledge of games and their attributes. A correct hierarchy must include each
attribute only once, and no such hierarchy exists.

ame

ball—<)< ga[n.e

. ame
skill board — =<2
lame

cards— D="_ame

lame

ball—<)< ga[n.e

ame

luck board —(=" an¢
lame

cards— =" _ame

ball—<)< ga[n.e

. lame
skill board —(=" _ams
ame

cards— D="_ame

lame

ball—<)< ga[n.e

lame

luck board —(=" am¢
lame

cards— D="_ame

competitive

amusing

Figure 4-4

Thus, it seems that we can distinguish games in our mind on the basis of
several attributes simultaneously, but we cannot represent this phenomenon
with a simple hierarchical structure. The only way to represent it is as several
structures, one for each attribute, while remembering that our mind does not,
in fact, perceive these structures separately (see figure 4-5). The top element
(the concept of games) and the terminal elements (the individual games) are
the same in all three structures, and they are also the same as in the previous
structures.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 339
i game
competitive - =" game
. game
amusing—<)< game
. ame
.C5k|”—©< game
luck—)< 8§[nle

I game
ba (<= qame

ame

Cgames > board —(=== fame
ame

cards—— =="_ame

Figure 4-5

Intuitively, we can easily see why it is impossible to depict all the attributes
in one hierarchy. If the attributes are independent - if the possession of a
certain attribute by a game is independent of its possession of other attributes
— then any attempt to depict all the attributes in one hierarchy is bound to
distort reality, because it must show some attributes as subordinate to others.

I used the concept of hierarchical classifications in the foregoing analysis
because it is especially suitable for studying Wittgensteins problem of family
resemblance. This concept was introduced in chapter 1, along with the concept
of complex structures (see pp. 98-102). But I want to stress that this analysis is
new - it is not how Wittgenstein, or the many philosophers who interpreted his
work, studied the problem. They did little more than describe it. The problem,
again, is to understand how our mind discovers that several entities are related
through their attributes even though no one attribute has the same value for
all entities, and to understand also why it is impossible to represent this
apparently simple phenomenon mechanistically. The concept of hierarchical
classifications can be seen, therefore, as a model for studying Wittgenstein’s
problem. And, while still informal, this model provides a more accurate
depiction than the discussions found in philosophy texts. (We will make good
use of this concept later, for both language and software structures.)

So, Wittgenstein concludes, we must give up the idea of reducing facts, and the
linguistic entities that mirror these facts, to perfect hierarchical structures: “We
see that what we call ‘sentence’ and ‘language’ has not the formal unity that I

340 WITTGENSTEIN AND SOFTWARE CHAPTER 4

imagined, but is the family of structures more or less related to one another”12
Wittgenstein coined the phrase “language games” to describe the relationships
that turn linguistic entities — sentences, expressions, even individual words -
into families of entities. Language games replace in his new theory what was in
his earlier system the neat hierarchy of propositions, and serve to mirror in
language the “games” that exist in the world: the complex structures of facts
that replace in the new theory the neat hierarchy of facts of the earlier system.

All activities performed by people in a society are, in the final analysis, akin
to games: they form structures that are indefinite and overlapping, rather
than formal and independent. The linguistic structures are an inseparable
part of these activities, so they too are indefinite and overlapping. Thus,
we cannot state with precision what is a meaningful proposition, simply
because we cannot find any characteristics that are common to all meaningful
propositions. The concept of language can only be defined informally, as a
collection of interrelated linguistic structures: “Instead of producing something
common to all that we call language, I am saying that these phenomena have
no one thing in common which makes us use the same word for all - but that
they are related to one another in many different ways. And it is because of this
relationship, or these relationships, that we call them all ‘language.”13

Like the propositions of the earlier system, the totality of possible language
games forms the structure we recognize as language. Also like the propositions,
language games do it by creating complex elements from simpler ones, and
thus higher levels of abstraction from lower ones. But this is no longer a simple
hierarchical structure. The relations that generate the elements at one level
from those at the lower level cannot be defined with precision, as could the
truth functions of the earlier system. Because the elements are related through
several structures simultaneously, the only way to describe this relationship is
informally, as “family resemblance”

Wittgenstein’s “family resemblance” is, obviously, the type of phenomenon
that requires the model of a complex structure. Recall our discussion of
complex structures in chapter 1 (pp. 96-102). We saw that any entity has a
number of attributes, each one relating it to other entities which have that
attribute. Any entity, therefore, is an element in a different structure for each
one of its attributes. But all these structures exist at the same time; so they
interact, because they share these elements.

The family tree is a perfect hierarchy, but this structure alone does not
determine all the resemblances. We could classify the members of a family
according to other attributes, and each classification would be a different
structure. These structures exist at the same time and share their terminal

12 Wittgenstein, Philosophical Investigations, $108. 13 Tbid., §65.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 341

elements (the people themselves), so they interact. The phenomenon of family
resemblance is a complex structure, and cannot be described precisely and
completely as a function of the people.

We note the same situation in the relations between games - the phenome-
non that inspired the phrase “language games.” A game is related to other
games through all its attributes, and each attribute gives rise to a different
structure. The games are the terminal elements shared by these structures, and
this phenomenon - the existence of activities perceived as games — is a complex
structure. It is impossible to describe the concept of games, precisely and
completely, as a function of the individual games.

The incorrect hierarchies in figures 4-3 and 4-4 reflect, then, the futility of
attempting to reduce a complex structure to simple ones. Also, since simple
structures are logically equivalent to deterministic systems, the impossibility of
depicting several attributes in one structure demonstrates the indeterministic
nature of these phenomena.

What Wittgenstein’s new theory does, essentially, is mirror in language a
greater portion of reality than did his earlier theory. Propositions mirror facts,
and Wittgenstein acknowledges now that there exist facts which cannot be
expressed with precision as a function of simpler facts. The only way to mirror
them in language is by permitting those propositions which the earlier theory
branded as meaningless; that is, those propositions which cannot be expressed
as a logical function of simpler linguistic elements. Such propositions are not
meaningless, Wittgenstein says now. Language is a social device, and its
function is to assist us in our everyday activities. A proposition must be
deemed meaningful, therefore, simply if it helps us to perform an act, or if it
describes an aspect of human life. The imprecise language we use in everyday
discourse is a reflection of the imprecise nature of our life, so we must accept
it as meaningful. The meaning of a word or sentence must be determined by
its use, not through formal logic.

The price we pay for mirroring in language a greater portion of reality is
having to give up the preciseness of the earlier theory: we must be content
with the imprecise concept of language games. To use our own terminology,
the complexity of the world cannot be represented accurately enough with
mechanistic models, so we need non-mechanistic ones, which must remain
informal.

It is significant that Wittgenstein did not attempt to improve his earlier
theory by expanding it: he did not attempt to make the theory match more
facts by adding rules, or levels, or types of elements. When he realized

342 WITTGENSTEIN AND SOFTWARE CHAPTER 4

that a mechanistic theory cannot work, he did not hesitate to abandon the
mechanistic dogma. This attitude stands in sharp contrast to the attitude
of the other thinkers who start with mechanistic theories. Scientists who
search for mechanistic theories of language, mind, and society, or software
experts who invent mechanistic programming theories, continue to defend
mechanism even when they see their theories falsified. They resort then to the
pseudoscientific practice of expanding their theories: they add more and more
features to make the theories cope with those conditions that would otherwise
falsify them (see pp. 223—224).

Wittgenstein recognized the dishonesty and futility of these attempts,
and this is why his work is so important today. He started with the same
mechanistic delusions and created a great mechanistic theory; but unlike the
other thinkers, he realized that the methods of the exact sciences cannot
explain language and the mind, and settled for a less ambitious, and less formal,
theory - a non-mechanistic one. If “explanation” means exact methods and
theories, he frequently asserts, then the phenomenon of language cannot be
explained, but only described: “We must do away with all explanation, and
description alone must take its place”4

S. S. Hilmy,"s after studying Wittgenstein’s unpublished manuscripts and
notes, concludes that his later philosophy is essentially a rejection of the
prevailing notion that the “scientific way of thinking” - namely, reductionism
and atomism - is as important in the study of human minds as it is in physics.
Wittgenstein’s philosophy, thus, is a struggle against the scientistic current of
his time - a current in which he himself had been caught earlier, and which,
despite his legacy, the passage of more than half a century, and the failure of
countless mechanistic theories of mind, is just as strong today.

4

What can we learn from Wittgenstein’s later philosophy that can help us in our
software pursuits? We already saw that mechanistic programming theories are
in the domain of software what Wittgenstein’s early theory is in the domain of
language. The early theory claims that language mirrors reality, that both can
be represented with perfect hierarchical structures, and that there is a one-to-
one correspondence between propositions and facts — between the levels and
elements that make up language and those that make up the world. Similarly,

14 1bid., §109.
15 8. Stephen Hilmy, The Later Wittgenstein: The Emergence of a New Philosophical
Method (Oxford: Blackwell, 1987), esp. ch. 6.

CHAPTER 4 WITTGENSTEIN AND SOFTWARE 343

the programming theories claim that software applications mirror reality
through neat hierarchical structures of software entities (operations, blocks of
operations, modules), which correspond on a one-to-one basis to the facts that
make up our affairs.

When the programming theories insist that applications be designed as neat
structures of entities within entities, they do so because of our belief that the
world can be represented with neat structures of things within things - the
same belief that engenders mechanistic language theories. Since it is the same
world that we want to mirror in language and in software, it is not surprising
that we end up with similar language and software theories.

In his later theory, Wittgenstein shows us that the world cannot be repre-
sented with formal hierarchical structures; that facts are related to other facts
in many different ways at the same time; and that these complex relationships
can only be expressed informally - as families, or systems, of facts. Then he
shows us that, since language mirrors the world, we find similar relationships
in language. This is why everyday discourse consists of informal language
games and families of linguistic entities, rather than formal structures of
propositions.

But if it is the same world that we try to mirror in our software applications,
why do we expect simple software structures to succeed where simple linguistic
structures fail? Our programming theories can be no more formal, no more
exact, than our language theories. Following Wittgenstein, we could call our
software applications — the structures of operations and modules - software
games; and we must accept the fact that these applications cannot be the neat
hierarchical structures we wish them to be.

The fundamental principle of software mechanism is that the entities which
make up an application constitute only one logical structure. We are told that
applications must be designed as perfect hierarchical structures, so we draw
block diagrams and flowcharts that depict operations within operations,
modules within modules. Having done this, we are convinced that the software
modules themselves are as independent from one another as the blocks which
represent them on paper. We are convinced, in other words, that the modules
are related to one another only through the lines connecting the blocks in the
diagram. We conclude, then, that the main difficulty in programming an
application is the process of analysis: the discovery of the particular hierarchi-
cal structure which corresponds to the structure of facts that make up the
requirements. For, once we establish this one-to-one correspondence between
software and reality — once we discover the software entity that corresponds to
each entity in our affairs, from the most general to the simplest - it is relatively
easy to translate the resulting structure into a programming language.

This principle, stated in one form or another, forms the foundation of all

344 WITTGENSTEIN AND SOFTWARE CHAPTER 4

programming theories. But the principle is invalid, because it is impossible to
reduce reality to a hierarchical structures of facts, and perforce impossible to
reduce software applications to a hierarchical structures of software entities.
The principle is invalid because facts form, not one, but many hierarchical
structures. Software entities, therefore, if they are to reflect the facts, must also
be related through many structures at the same time.

We saw that real entities (objects, processes, events, concepts — facts, in
Wittgensteinian terminology) have a large number of attributes, and are
elements in a different structure through each attribute. The corresponding
software entities, too, have a large number of attributes (using files and
variables, calling subroutines, being affected by business rules, etc.), and are
elements in a different structure through each attribute. Thus, the block
diagram we believe to depict the application’s logic is merely one of these
structures. No matter how strictly we design the application as independent
entities (as a neat structure of operations within operations, modules within
modules), these entities will also be related through other structures, besides
the structure we see in the diagram. All these structures exist at the same time
and share their elements - those software entities thought to be independent.
An application, therefore, is a complex structure, just like the reality it mirrors,
and no diagram can capture all the relations between the software entities.

That structure we perceive to be the application’s logic - let us call it the
main structure — is perhaps the most obvious, and may well represent some
of the most important operations or relations. But just because the other
structures are less evident, and we choose to ignore them, it doesn’t mean that
they do not affect the application’s performance. If the structures represent
various aspects of the application, if their purpose is to implement certain
relations that exist between the application’s elements in addition to the
relations established by the main structure, then the interactions simply reflect
the simultaneous occurrence of these relations. To put this differently, the
complex structure that is the application cannot be approximated with one
structure — not even the main structure — because the links between the
individual structures are too strong to be ignored.

Note how similar this phenomenon is to the phenomenon of language.
Nothing stops us from inventing theories based on one of the structures that
make up sentences: their syntactic structure, like Chomsky, or their logical
structure, like Russell and Carnap. But this will not provide an explanation of
language. These theories fail because language consists of many structures, not
one, and it is their totality that determines the meaning of sentences. Moreover,
it is not only linguistic structures that play a part in this phenomenon. The
structures formed by the other knowledge present in the mind, and those
formed by the context in which the sentences are used, are also important. And

CHAPTER 4 SOFTWARE STRUCTURES 345

the same is true of software: the performance of an application is determined,
not only by the syntactic structure formed by its elements, or by the logical
structure that is the sequence of their execution, but by all the structures
through which they are related.

Wittgenstein discusses many situations where reality cannot be reduced to
one simple structure, but his two famous examples — games and families, which
we examined previously - already demonstrate the similarity of language and
software. Thus, there is no one hierarchical structure with the concept of games
as the top element and the individual games as the terminal elements - not if
we want to classify games according to all their attributes. Instead, we find
many structures with these top and terminal elements. Nothing stops us from
considering one of them, perhaps the one dividing games into competitive and
amusing, as the only important structure; but this will not explain completely
the concept of games.

Similarly, there is no one hierarchical structure with a particular software
application as the top element and some elementary operations as the terminal
elements — not if we want to describe the application completely. There are
many such structures, each one reflecting a different aspect of the application.
Nothing stops us from interpreting the application’s block diagram or flowchart
as its definition, or logic; but if we do, we should not be surprised if it does not
explain its performance completely. (The structures that make up software
applications are the subject of the next section.)

Software Structures
1

To understand how the software entities that make up an application can form
several hierarchical structures at the same time, think of them as similar to
linguistic entities, since both are reflections of entities that exist in the world.
A software entity can be a module, a block of statements, and even one
statement. And, insofar as they reflect real processes or events, the software
entities possess, just like the real entities, not one but several attributes; so they
must belong to a different structure through each one of these attributes. The
attributes of a software entity are such things as the files, variables, and
subroutines it uses. Anything that can affect more than one software entity is an
attribute, because it relates these entities logically, thereby creating a structure.!

1 As is the case throughout this book, the terms “entity” and “element” refer to the same
things but from different perspectives, and are often interchangeable. See p. 97, note 1.

346 SOFTWARE STRUCTURES CHAPTER 4

I want to discuss now some common principles we employ in our applica-
tions, and which I will call simply software principles. What I want to show is
that it is these principles that endow software entities with attributes, and serve,
therefore, to relate them.

A software principle, then, is a method, a technique, or a procedure used in
the art of programming. An example is the sharing of data by several elements
of the application; this principle is implemented by means of database fields
and memory variables. Another example is the sharing of operations; this
principle is typically implemented by means of subroutines. A principle
frequently misunderstood is the sequence in which the application’s elements
are executed by the computer; this principle is implemented through features
found, implicitly or explicitly, in each element. The user interface, and the
retrieval of data through reports and queries, are also examples of principles.
Lastly, the methods we use to represent our affairs in software constitute, in
effect, principles. The principles we will study in this section are: practices,
databases, and subroutines. (We will further study software principles later in
the book, particularly in chapter 7, when discussing various software theories.)

I will refer to the individual instances of software principles as software
processes: each case of shared data or shared operations, each business practice,
each report or query or user interface, is a process. And each process endows
the application’s elements with a unique attribute, thereby creating a unique
structure — a unique way to relate these elements. Ultimately, these structures
reflect the various aspects of the application: each aspect corresponds to a
process, and each process gives rise to an attribute, and hence a structure. An
application may comprise thousands of such structures.

2

Let us start with those processes that reflect the various practices implemented
in the application - the countless rules, methods, and precepts that are
embodied in the application’s logic. Practices can be divided into two broad
categories: those related to the activities we want to translate into software, and
those related to the methods we employ in this translation. Let us call the first
category business practices, and the second one software practices. Business
practices include such processes as the way we invoice a customer, the way we
deal with surplus inventory, and the way we calculate vacation pay. And
software practices include such processes as reporting, inquiry, file mainte-
nance, and data entry.

Practices necessarily affect software elements from different parts of the
application. They create, therefore, various relations between these elements —

CHAPTER 4 SOFTWARE STRUCTURES 347

relations that do not parallel the relations created by the main structure. If,
for example, we depict with a hierarchical diagram one of the practices
implemented in the application, the diagram will not be a distinct section of
the main diagram, although the practice is part of the application’s logic.
The implementation of practices, thus, creates additional structures in the
application - structures that share their elements with the main structure.

As an example of practices, consider the case of back orders. One way a
distributor can handle back orders is as follows: when the quantity ordered by
a customer exceeds the quantity on hand, the order is placed on hold, the
customer is informed, special messages and forms are generated, and so on; the
order is revived later, when the necessary quantity becomes available. Another
way to handle back orders, however, is by allowing the quantity on hand to go
negative: the order is processed normally, thus reducing the quantity on hand
below zero; steps are taken to ensure the product in question is ordered from
the supplier before the order’s due date; when the product is received, the
quantity on hand is restored to zero or to a positive value.

It is obvious that the implementation of a back-order process will not only
affect many elements of the application, but will affect them in different ways
depending on the back-order method chosen. And it is just as obvious that
the relations between these elements, as seen from the perspective of the
back-order process alone, may not be the same as the relations created by
the application’s main structure. The main structure will probably reflect
such aspects of reality as the functions selected by users from a menu, the
responsibilities of the different departments, or the daily operating procedures.
Thus, while the software elements that make up the application must reflect
the main structure, some of these elements must also reflect the particular
back-order process chosen: variables and fields may or may not have negative
values, back-order data is or is not printed, purchase orders are or are not
issued daily, and so on.

This sharing of elements, moreover, will not be restricted to the high levels
of the structure, but will affect elements at all levels, from entire modules down
to individual operations. The back-order process, in other words, cannot be
implemented as an independent piece of software connected to the rest of the
application simply through some input and output links. If we represent the
application with a block diagram that depicts the main structure, we will not
find the back-order process as one particular block in the diagram; rather, it is
part of many blocks, and it connects therefore these blocks through a structure
that is different from the one depicted by the diagram.

To understand why a process is in fact a structure, think of the applica-
tion from the perspective of this process alone, while ignoring all its other
functions. Seen from this perspective, the application can be depicted as a

348 SOFTWARE STRUCTURES CHAPTER 4

hierarchical structure that divides the application’s elements into two catego-
ries, those affected and those unaffected by the process. The former may then
be classified into further categories, on lower and lower levels, according to
the way the process affects them, while the latter may be classified into
categories reflecting the reasons why they are unaffected. Finally, the lowest-
level elements will be the individual statements that make up the application.
But these elements are also the elements used by the main structure, so the
application can be said to consist of either structure, or of both structures at
the same time.

The back-order process is only an example, of course, only one of the
hundreds of practices that make up a serious application. Each one of these
processes, and each one of the other types of processes (databases, subroutines,
user interface, and so on), forms a different structure; but all exist at the same
time, and all use the same software elements. An application is, in effect, these
processes; it consists of countless structures, all interacting, and the main
structure is merely one of them. The idea that an application can be depicted
as a perfect hierarchical structure of independent elements is, therefore,
nonsensical. Note that this situation is inevitable: a serious application must
include many processes, and a process must affect different parts of the
application. The very purpose of processes is to relate - in specific ways, on the
basis of certain rules or requirements — various parts of our affairs, and hence
various parts of the software application that mirrors these affairs.

An application, thus, is a system of interacting structures, not the simple
structure we see in diagrams. The other structures are hidden, although we
could describe them too with neat diagrams if we wanted. We would need a
different diagram, though, for each structure, and the main difficulty - the
task of dealing with many structures together — would remain. Because the
structures share the application’s elements, we must take into account many
structures, and also many interactions, at the same time. And it is only our
minds - our knowledge and experience - that can do this, because only minds
can process complex structures.

It is interesting to compare this system of structures with the system of
structures created by language. Think of a story describing a number of people,
their life and physical environment, their knowledge and activities, their
desires and fears. We may consider the main structure of the story to be the
linguistic structure - the hierarchy of words, sentences, paragraphs, etc. In
addition, we can view each sentence as a hierarchy of grammatical entities —
words, phrases, clauses. And if we take into account the meaning of the words,

CHAPTER 4 SOFTWARE STRUCTURES 349

we can discern many other structures. Their meaning reveals such entities as
persons, objects, and events, all of which have a number of attributes. These
entities are related in the story, so for each attribute there exists a structure that
relates the story’s entities in a particular way, reflecting the relations between
the real entities. The low-level elements (say, words or sentences) are the same
in all structures, but the higher-level elements are usually different. We can
discover from the story such structures as the feelings that people have toward
one another, or their family relationships, or the disposition of objects in a
room, or the sequence of events; and these structures do not parallel the
linguistic structure. So the story is a system of interacting structures, although
only the linguistic one is manifest.

The fact that we can understand the story proves that the author successfully
conveyed to us the relations between persons, objects, and events, permitting
us to discover those structures; for, without those structures, all we would
notice is the linguistic relations.

Each structure in the story is, simply, one particular way of viewing it, one
of its aspects. If we view the story from one narrow perspective, if we interpret,
relate, and classify its low-level elements to reflect one aspect while ignoring all
others, we end up with one of these structures. But, clearly, all structures
exist at the same time. In the case of language, then, we have no difficulty
understanding why, to have a meaningful story, its elements must be part of
several structures simultaneously. No one (apart from misguided linguists)
would claim that the only thing that defines a story is its linguistic structure,
or its grammatical structure.

So why do we expect a software system to be completely defined by its main
structure? In software applications, as in stories, the elements are always
connected through diverse relations - relations that are not part of the main
structure and cannot be predicted from it. This is not an accident, nor a sign
of bad programming or writing, but the very nature of these systems. It is
precisely this quality that makes those symbols, when processed by a human
mind, a meaningful story or software application rather than a collection of
independent structures.

3

Let us examine next the software principle known as database, which also gives
rise to complex relations between software entities. Databases are the means
through which software applications use data, especially the large amounts of
data stored in external devices like disks. Data records are read, written,
modified, and deleted in many places in the application. And an application

350 SOFTWARE STRUCTURES CHAPTER 4

may use hundreds of files, and millions of records, connected through intricate
relations and accessed through thousands of operations.2

The purpose of databases is to relate the various data entities in ways that
mirror the relations connecting the real entities — those entities that make
up our affairs. Database theories encourage us to describe with elaborate
definitions and diagrams the data structures; that is, the relations formed by
files, records, and fields. And this is a fairly easy task, because most of these
relations can indeed be designed (individually, at least) as simple hierarchical
structures. But the theories ignore the relations created at the same time by the
database operations. These operations access the database from different
elements of the application, and therefore relate these elements logically

As is the case with the other types of processes, the effect of database
operations can be represented with hierarchical structures. To discover one of
these structures, all we need to do is view the application from the perspective
of one particular field, record, or file; that is, classify the application’s elements
according to the operations performed with that field, record, or file, while
ignoring their other functions. In most applications we can find a large number
of such structures, all using the same elements, and thus interacting with one
another and with the structures representing the other processes.

It is impossible for database operations nof to create structures that relate
diverse elements. The very essence of the database principle is to connect and
relate various parts of the application by means of data that is stored in files and
indexes. We seldom access a set of related files in only one place in the
application: we modify fields in one place and read them elsewhere; we add
records in one place and delete them elsewhere; we interpret the same records
on the basis of one index in one place and of another index elsewhere.

For example, if the program stores a certain value in a database field in one
place and makes decisions based on that value in other places, all these places
will necessarily be linked logically. They form a structure that, very likely, does
not parallel the main structure, nor one of the structures formed by the other

2 The term “database” refers to any set of logically related files, not just those managed
formally through a database system. And consequently, the term “database operations”
includes not just the high-level operations of a database system, but also the traditional file
operations. These terms are discussed in greater detail in chapter 7 (see pp. 672-673).

3 Although individually the file relationships are simple hierarchical structures, a file is
usually related to several other files, through the same fields or through different fields; and
these relationships can seldom be depicted as one within another. The totality of file
relationships in the database, therefore, is not one structure but a system of interacting
structures. This fact is obvious (for instance, if we tried to depict with one hierarchy all the
file relationships in a complex application, we would find it an impossible task), so I will not
dwell on it. I will only discuss here the structures generated by the database operations,
which are less obvious.

CHAPTER 4 SOFTWARE STRUCTURES 351

processes. For, could this particular relation be expressed through another
structure, we wouldn’t need that database field to begin with. We need a
number of structures precisely because we need to relate the various parts of
the application in several ways at the same time. The data stored in the
database, together with the operations that access it, provides the means to
implement some of these relations. And, just as is the case with the other
processes, the structures formed by database operations are seldom manifest;
we only see them if we separate in our imagination each structure - each set of
related elements - from the other structures that make up the application.

Note also that databases merely create on a large scale the kind of relations
that memory variables — any piece of storage, in fact — create on a smaller
scale. Each variable we use in the application gives rise to a structure — the
structure formed by the set of elements that modify or read that variable. And
these structures interact, because most elements use more than one variable.
Moreover, each element is part of other processes too (part of a business
practice, for instance), so the structures created by memory variables also
interact with the other types of structures.

Thus, let us call shared data the broader software principle; namely, all
processes based on the fact that the same piece of storage - a database field as
well as a memory variable — can be accessed from different elements in the
application.

4

Let us study, lastly, the software principle known as subroutine. A subroutine is
a piece of software that is used (or “called”) in several places in the application.
Subroutines are software modules, but their ability to perform the same
operations in different contexts endows them with additional qualities. (The
software entities known as subprograms, functions, procedures, and objects
are all, in effect, subroutines.)

We already saw how the practices implemented in the application, as well
as the operations performed with databases and memory variables, create
multiple, simultaneous structures. But it is with subroutines that the delusion
of the main structure is most evident, because subroutines serve both as
elements of the main structure and as means of relating other elements. The
software theorists acknowledge one function, but not the other, so they fail to
appreciate the complex role that subroutines play in the application.

The programming theories praise the concept of modularity and the notion
of structured, top-down design. Since a module can call other modules,
and those can call others yet, and so on, it is possible to create very large

352 SOFTWARE STRUCTURES CHAPTER 4

hierarchical structures of modules. Thus, the theories say, applications of any
size and complexity can be developed by breaking them down into smaller and
smaller modules, until reaching modules simple enough to program directly.
The application’s main structure will then be a hierarchical block diagram
where the blocks are the modules, and the branches are the relations between
the calling and the called modules. This diagram will represent accurately the
application’s performance.

We already know why the theories are wrong: the modules are related, not
only through the main structure, but also through the structures formed by
practices and shared data. And when some of the modules are subroutines,
there are even more structures. If a module is used in several places, those
places will be linked logically — because they will perform, by way of the shared
module, the same operations. It is quite silly to start by deliberately designing
two software elements in such a way that they can share a subroutine, and to
end by claiming that they are independent; and yet this is exactly what the
theories ask us to do. The very fact that a set of operations is useful for both
elements demonstrates the existence of a strong logical link between these
elements.

So, while separating the application into independent elements, subroutines
connect into logical units other parts of the application. Each subroutine,
together with its calls, forms a hierarchical structure - a structure that involves
some of the application’s elements but is different from the main structure, or
from the structures formed by the other subroutines, or by the other types of
processes. We can picture this structure by viewing the application from the
perspective of that subroutine alone, while ignoring its other functions. The
structure would represent, for example, the elements that call the subroutine,
classifying them according to the ways in which the subroutine affects them.

Only if every module in the application is used once, can we say that the sole
relations between modules are those depicted by the main structure. When this
is true (and if the modules are not related through any other processes), the
software theories may well work. But this trivial case can occur only in
textbook examples. In real applications most modules are used more than
once. As we divide the application into smaller and smaller parts, we are
increasingly likely to encounter situations where the same operations are
required in different places - situations, that is, where modules become
subroutines. This, of course, is why subroutines are so common, why they
are such an important programming expedient. The theories are right to
encourage modularity; their mistake is to ignore the structures created by the
subroutines.

CHAPTER 4 SOFTWARE STRUCTURES 353

Subroutines are a special case of a broader software principle - a principle that
includes all the means of performing a given operation in different places in the
application. Consider, for instance, the operation of incrementing a counter, or
the operation of comparing two variables, or the operation of adding a value
to a total. (It doesn’t have to be the same counter, or variables, or total; what is
shared is the idea, or method, of incrementing counters, of comparing variables,
of updating totals.) We don’t think of these operations as subroutines, but they
play, by means of individual statements, the same role that subroutines play by
means of modules: they perform the same operation in different contexts.
Thus, we can implement these operations as subroutines if we want, but this is
rarely beneficial. (Some do become subroutines, in fact, when translated by the
compiler into a lower-level language.) Whether physically repeated, though, or
implemented as subroutines and called where needed, we have no difficulty
understanding that what we have is one operation performed in several places.
So, in our mind, we are already connecting the application’s elements into
various logical structures, a different structure for each operation.

We must also include in this broader principle those subroutines that are
implemented outside the application; for example, those found in subroutine
libraries. Let us call them external subroutines, to distinguish them from
those belonging to the application. The external subroutines are themselves
modules, of course, so they may be quite large, and may invoke other modules
in their turn. But all we see in the application is their name, so from the
perspective of the application they are like the simple operations we discussed
previously. Also like those operations, an external subroutine will relate the
calling elements logically if called more than once, giving rise to a structure.
(Their similarity to simple operations becomes even clearer when we recall
that functions available only through external subroutines in one language
may well be available through built-in operations in another, specialized
language.)

Let us call shared operations, therefore, the broader software principle;
namely, all processes based on the fact that the same set of operations can be
performed by different elements in the application.

The fallacy that all software theories suffer from is the notion that software
modules are independent elements: it is assumed that their internal operations
are strictly local, and that they are related to other modules only through their
input and output. Their internal operations are indeed hidden from the other

354 SOFTWARE STRUCTURES CHAPTER 4

modules, but only if judged from a certain perspective (from the perspective
of the flow of execution, for instance). Even a module that is invoked only once
is rarely independent — because it is usually related to other modules, not just
through its input and output, but also through the various processes of which
it is part (business practices, for instance).

But the belief in module independence is especially naive for modules that
are shared, because, in addition to the relations caused by various processes,
their very sharing gives rise to a set of relations. The structure created by calling
a subroutine in different places is a reflection of a requirement, of a logical link
between these places — a link that must exist if the application is to do what we
want it to do. This link is the very reason we use a piece of software that can be
invoked in several places. We need to relate these places logically; for, if we
didn’t, we would be using only modules that are invoked once. (And it is
merely a matter of interpretation whether the subroutine itself is independent
and the elements that call it are not, because related logically through it, or
the subroutine too is part of the structure and hence related logically to
these elements.) Ultimately, we need the principle of shared modules for the
same reason we need the other software principles: to relate the application’s
elements in many different ways at the same time.

Note that it is not by being one physical entity that a subroutine relates the
elements that call it. What matters is the logical link, so even if we made copies
of the subroutine — each call referring then to a different physical entity - the
logical link, and hence the structure, would remain. (This is what happens, in
essence, when we repeat individual operations — those small pieces of software
we decide not to turn into subroutines.)

5

Recall Wittgenstein’s example of games. We concluded that games cannot be
correctly represented with one hierarchical structure, because it is impossible
to capture in one classification all the attributes that games can possess.
Instead, we need several structures, one for each attribute, and it is only this
system of structures that completely represents the concept of games. In other
words, there are many structures with the concept of games as the top element
and the individual games as the terminal elements; and all these structures
exist at the same time. We saw that the only way to account for all the attributes
in one structure is by repeating some of the attributes at the intermediate levels.
But this is no longer a correct hierarchy; moreover, it does not reflect the way
we actually perceive games and their attributes. In a correct hierarchy each
attribute appears only once.

CHAPTER 4 SOFTWARE STRUCTURES 355

It is relatively easy to see this problem in hierarchies that depict classifica-
tions and categories, but we encounter it in any complex phenomenon. Recall
the case of stories. We concluded that a story is a system of interacting
structures, where each structure is one particular way of relating the low-level
linguistic elements that constitute the story. Each structure, then, depicts one
aspect of the story, one attribute. So, if the story is the top element and
some small linguistic parts (say, sentences) are the terminal elements, the
only correct structures are those that depict its attributes separately. These
structures are imaginary, however. Since the top element and the terminal
elements are the same in all of them, they cannot exist as separate structures in
reality. Thus, to understand the story we must combine them in the mind, and
the result is a complex phenomenon: we cannot depict the combination with a
simple hierarchical structure. This problem is similar to the problem of
depicting in one structure the attributes of games.

For example, referring to one person or another, and referring to one event
or another, are attributes of the linguistic elements that make up the story.
Consider a trivial story involving only two persons, PI and P2, and two events,
E1I and E2. Figure 4-6 shows the four structures that represent these attributes;
and, for simplicity, each attribute has only two values, Y and N: a given element
either is or is not affected by it. Each structure, then, divides the story’s
sentences into two categories (with no intermediate levels of detail): those that
refer to, and those that do not refer to, PI; those that refer to, and those that do
not refer to, E1; and so on. While each combination of two categories includes
all the sentences in the story, and is therefore the same for all attributes, the
sentences in the individual categories may be different.

sentence
E1=Y—<)< sentence
sentence
E1=N—()< sentence

sentence
P1=Y—<)< sentence
sentence
P1=N—()< sentence

sentence
E2=Y —<)< sentence
sentence
E2=N—()< sentence

sentence
P2=Y —<)< sentence
sentence
P2=N—()< sentence

Figure 4-6

Since each sentence possesses all four attributes, these structures interact;
so the story is the system comprising all of them. When we read the story, we
easily picture such situations as a person involved in two different events,
a person involved in neither event, or two persons involved in the same

356 SOFTWARE STRUCTURES CHAPTER 4

event. Thus, we can hold in the mind the structures of persons and events
simultaneously (because minds can process complex structures), but we
cannot represent this phenomenon with one structure.

To combine the four attributes in one structure, we must depict them as one
within another. For example, we can start with P1, include (that is, repeat) in
each of its two branches the two branches of P2, and then similarly include EI
within P2, and E2 within E1. But this is an incorrect hierarchy. Attributes of
entities are independent concepts: when an entity possesses several attributes,
it possesses them in the same way, not as one within another. The need to
repeat attributes, and also the fact that we can combine them in any order we
like, indicate that this structure does not reflect reality: we depict all but the
first attribute as subordinate to others, while in reality they are independent.

This structure is shown in figure 4-7 (to reduce its size, half of the lower-
level elements were omitted). There are sixteen categories of sentences: starting
from the top, those that refer to both persons and both events, those that
refer to both persons and only to E1, those that refer to both persons and only
to E2, and so on, down to those that refer to neither person and neither
event. The diagram clearly demonstrates the need to depict the attributes as
one within another — the cause of their repetition. It also demonstrates the
multitude of possible combinations: instead of ordering the levels of categories
as P1-P2-E1-E2, we could order them as P2-P1-E2-E1, or as E1-P1-E2-P2, etc.
While the top element and the terminal elements would be the same, the
intermediate levels would differ. So, when attempting to combine attributes,

sentence
E2=Y <)< sentence
sentence
E2=N—()< sentence
sentence
E2=Y <)< sentence
sentence
E2=N—()< sentence

E1=Y
p2=Y
P1=Y E1=N
P2=N—
P2=Y—C

P1=N E1=Y

sentence
E2=Y —©< sentence
sentence
E2=N —©< sentence
sentence
E2=Y <)< sentence
sentence
E2=N—()< sentence

P2=N

g
f 8 84

Figure 4-7

CHAPTER 4 SOFTWARE STRUCTURES 357

we end up with several structures depicting the same story. And the absurdity
of this situation indicates that these structures do not reflect the actual
relationships. In reality, when reading the story, there is only one way to
understand the relationships between persons and events.

To appreciate this problem, it may also help to contrast the complex
phenomena of games and stories with those situations that can be adequately
represented with simple structures. A physical structure like the transmission
of a car can be described completely and accurately with a hierarchical
structure where the individual components are the terminal elements, and the
various subassemblies form the levels of abstraction. If, however, we consider
such attributes as the colour of the components, or their weight, or the date
they were made, or the age of the workers who handle them, we will find
that each attribute relates them in a different way. We can view the same
transmission, therefore, as a system of many different structures, one structure
for each attribute: the top element and the terminal elements are the same in
all structures, but the intermediate elements and levels differ. (Levels can be
used, for example, to represent increasingly fine details: in the structure
depicting the manufacturing date, they may be the year, month, and day; in the
structure depicting the colour, they may be light and dark, and various shades;
and so on.)

What distinguishes this system of structures from the system that makes up
a story is the fact that the structure which concerns us the most - the one
depicting the interconnection of components and subassemblies - is very
weakly linked to the structures formed by the other attributes. In other words,
the other attributes have little or no bearing on our main structure. So, even
though the assembly of a transmission gives rise to a complex phenomenon,
just like a story or the concept of games, in practice we can ignore the
interactions between the main structure and the others. As a result, the
hierarchical diagram of components and subassemblies provides an excellent
approximation of the whole phenomenon.

Note that if we become interested in other details too - if, for instance, we
require a study of that assembly plant, the business of transmission manufac-
turing, the workers and their life — the phenomenon will change. In the new
phenomenon, attributes like a part’s manufacturing date or a worker’s age are
as important as the attributes that affect the operation of the transmission. And
consequently, the structures they generate and their interactions can no
longer be ignored. Thus, the neat tree diagram depicting the components and
subassemblies will no longer provide an adequate approximation of the whole
phenomenon.

358 SOFTWARE STRUCTURES CHAPTER 4

6

Contrary to the accepted programming theories, software applications are
more akin to games and stories than to physical structures like car transmis-
sions. Thus, software applications cannot be correctly represented with only
one hierarchical structure. The software entities that make up an application -
entities as small as individual operations and as large as entire modules - are
affected by various processes; in particular, they call subroutines, use memory
variables and database fields, and are part of practices. Since a process usually
affects several entities, it serves also to relate them. It endows the entities,
therefore, with an attribute, and the attribute creates a hierarchical structure in
the application. So there are as many structures as there are processes. We see
these structures when we study the application from the perspective of one
subroutine, or one memory variable, or one database field, or one practice.

Thus, there is no hierarchy where the entity application is the top element,
and the individual statements or operations are the terminal elements - not if
we want to depict all the attributes possessed by these elements. Instead,
there are many such structures, all using these elements. And it is only this
system of simultaneous, interacting structures that completely represents the
application.

As in the case of games and stories, the only way to represent all the
attributes with one structure is by repeating some of them throughout the
intermediate levels; and this will not be a correct hierarchy. For instance, if
the calling of a particular subroutine is one attribute, then in order to include it
in the same structure as another attribute we must repeat it at the intermediate
levels. The structure will look like a hierarchy, but we know that this was
achieved by showing several times what is in fact one attribute. It is impossible
to indicate which elements call the subroutine and which ones do not, without
this repetition (impossible, that is, if the structure is to include also the other
processes implemented in the application - the other subroutines, the business
practices, and so forth). The only way to show the subroutine only once is with
its own, separate structure. But the terminal elements in this structure are
software elements used also by the other processes, so this structure cannot
exist on its own, separately from the others.

We encounter the same problem, of course, for any other process. For any
one attribute, the only way to prevent its repetition is by creating its own
structure. Only by showing the application’s elements from the perspective of
one process and ignoring their other functions can we have a diagram where
the attribute appears only once. If we want to represent all processes with

CHAPTER 4 SOFTWARE STRUCTURES 359

one structure, then all attributes but one must be repeated, and shown as
subordinate to others, in order to account for the combinations of attributes.
But the attributes are not related in this manner in the actual application,
so this structure does not represent it correctly. When a software element
possesses several attributes, they are all possessed in the same way, not as one
within another.

This problem is illustrated in figure 4-8. As with the structures of games and
stories we studied previously, in order to emphasize the problem I am showing
a trivial, purely hypothetical situation. The only purpose of this example is to
demonstrate that even simple applications give rise to complex structures.

statement

F1=Y —)< statement

S1=Y 4©< statement
F1=N—)< statement

statement

F1=Y —)< statement

S1=N 4©< statement
F1=N —©< statement

statement

F1=Y —©< statement

S1=Y 4©< statement
F1=N —©< statement

statement

F1=Y —©< statement

S1=N C i statement
F1=N —©< statement

Figure 4-8

P1=Y

software
application

There are only three processes, and hence three attributes: P1 is a particular
practice implemented in the application, SI is the calling of a particular
subroutine, and FI is the use of a particular database field. Moreover, each
attribute has only two values, Y and N: a given software element either is or is
not affected by a process. In other words, in this simple application there is only
one way to be part of that practice (which is unrealistic, of course, even for a
simple application), one way to call that subroutine (there are no parameters
or returned values, for instance), and one way to use that field (its value
can only be read, for instance). The terminal elements of this structure are
some small software parts (say, statements). So there are eight categories of
statements: those that are part of the practice, call the subroutine, and use the
field; those that are part of the practice, call the subroutine, and do not use
the field; those that are part of the practice, do not call the subroutine, and
use the field; and so on.

360 SOFTWARE STRUCTURES CHAPTER 4

The diagram clearly shows why two of the attributes, SI and F1, must
be repeated: if we start with P1, the structure can be said to represent the
application from the perspective of PI; then, the only way to include the other
attributes is by depicting each one within the categories created by the previous
attributes. And it is just as clear that we could draw the diagram by showing
the attributes in a different order: we could start with F1, for example, and
follow with PI and SI; FI would no longer be repeated, but PI and SI would.
The fact that some attributes must be repeated, and that the same application
can be represented with different structures, indicates that these structures do
not reflect reality.

Figure 4-9 shows the structures that represent the three attributes separately.
Like the separate structures of games in figure 4-5 (p. 339), or those of stories
in figure 4-6 (p. 355), these are correct hierarchies. But, like the others, these
structures are imaginary: since the top element and the terminal elements are
the same in all three, they cannot actually exist separately. Each statement
possesses the three attributes, so the structures interact. It is their combination,
a complex structure, that constitutes the application. And we can create
applications for the same reason we can understand stories or the concept of
games: because our mind can process complex structures.

statement
pP1=Y —©< statement

software v
application statement
P1=N —©< statement
statement
sS1=yY —©< statement

software v
application statement
S1=N —©< statement

statement
F1=y —©< statement

software v
application statement
F1=N —©< statement

Figure 4-9

Note that there are no intermediate levels in these structures; that is, no
intermediate categories of statements. This is due to the assumption that the
attributes have only two values, Y and N. In a real application, most attributes
generate a structure with several levels of detail: categories within categories,
reflecting the many ways in which a process affects or does not affect a
statement. But even with the additional levels, these structures remain correct
hierarchies if they continue to represent individual attributes. It is only the

CHAPTER 4 SOFTWARE STRUCTURES 361

attempt to combine all the attributes in one structure that leads to incorrect
hierarchies.

It is obvious that any application can be represented with a classification-
style diagram like the one in figure 4-8. And, while a real application may have
thousands of attributes and elements, the problem would be the same: since all
attributes but one must be repeated, the diagram would not reflect reality. Only
a system of structures like those in figure 4-9 represents the application
correctly. Thus, by showing that one structure is inadequate, classification-
style diagrams remind us that applications consist of interacting structures; so
they help us to understand the nature of software. We don’t have to actually
draw the diagrams, of course; we only need to know that such diagrams exist.

In contrast, diagrams like flowcharts represent only one aspect of the
application; for example, the flow of execution, or the logic of a particular
business practice. By emphasizing one structure and obscuring the others,
these diagrams lead to the delusion that applications can be reduced to one
structure, the main structure; the other structures, we think, can be ignored,
or eliminated, or handled separately. With classification-style diagrams it is
more difficult to make this mistake, because in these diagrams all structures
look alike: since we can draw the diagram with the attributes in any order, it is
obvious that all structures are important.

The delusion of the main structure is demonstrated by the naive theory known
as structured programming. This theory holds that programs can be designed
as a strict hierarchical structure of software elements, and gives us methods
whereby, supposedly, any piece of software can be reduced to one structure. But
the theory looks only at the flow-control structures, ignoring the other types
of structures formed by the same elements. Moreover, the recommended
transformations do not eliminate the additional flow-control structures, but
merely replace them with structures based on shared data or shared operations.
The purpose of the new structures, therefore, is to relate the program’s elements
in various ways; in other words, to restore, by different means, the links
originally provided by the additional flow-control structures.

What the transformations do, then, is replace the original complex struc-
ture, which has many flow-control structures plus many structures of other
types, with a different complex structure, which has one flow-control structure
plus even more structures of other types. If we study only the flow-control type,
the program does indeed look now like a neat hierarchy of software entities. If,
however, we also take into account the other types, we find that it consists of
many interacting structures, just as before.

362 SOFTWARE STRUCTURES CHAPTER 4

Because in the program’s flowchart the flow-control structures are obvious
while the others are not, the advocates of structured programming believe
that the program was reduced to one structure. The fallacy, thus, lies in the
belief that transformations which reduce the flow-control structures to one
structure reduce the program itself to one structure. (Actually, the fallacy of
structured programming is even greater: as we will see in chapter 7, the flow-
control structure itself remains a system of interacting structures; besides, the
transformations are rarely practical.)

7

We wish to represent our software applications with neat tree diagrams,
and we wish to have software entities that are independent of one another.
We appreciate the benefits of these two principles, but we fail to recognize
their impossibility in practice. These principles are related, since both are
necessary in order to implement simple hierarchical structures. We apply them
successfully in our manufacturing and construction activities, where we create
large hierarchical structures of independent physical entities; and we try to
create software applications by applying these principles to software entities.

Software, however, like language, is different. The physical structures we
design and build are our invention, so we deliberately restrict ourselves to
simple hierarchical structures in order to ensure their success. With software
and language, on the other hand, we want to mirror facts, processes, and events
that already exist in the world, and which can only be represented with complex
structures. If we restricted ourselves to simple hierarchical structures, we
would be able to represent in software and in language only the simplest
phenomena, or we would have to tolerate poor approximations of the complex
phenomena. Simple structures are inadequate if we want to represent the world
as it actually is, if we want to mirror reality.

Software entities, we saw, are independent only when viewed as elements of
one structure; for instance, the application’s main structure, or a particular
process. And this independence is illusory, because they are, at the same time,
elements in other structures. We can treat them as independent entities, and as
elements of a simple structure, only if we ignore the roles they play in the other
structures, and the interactions that these multiple roles give rise to. But then
our applications would no longer mirror reality.

I want to emphasize again that the complex structures we generate with our
software applications are inevitable. The interactions that occur between
software elements are not necessarily a sign of bad programming; we must
expect them even in well-designed applications. The software mechanists tell

CHAPTER 4 SOFTWARE STRUCTURES 363

us that we need their theories and programming aids in order to reduce these
interactions, but now we understand why these theories and aids are useless: if
we accept them and restrict our applications to isolated structures of software
entities, the applications will not reflect correctly our affairs.

The complex relations that arise in our applications are, thus, an important
quality of software. Their existence demonstrates that, like language, software
can have interacting structures, and can mirror the world accurately. Instead of
trying to avoid these relations, then, we must increase our programming
expertise so that we can successfully deal with them. We must create software
structures that share their elements, because this is the only way to mirror, in
software, phenomena which themselves consist of structures that share their
elements.

In conclusion, the versatility of software is due to the ability to relate the
elements of an application in various ways by using the same files, variables,
operations, and subroutines in different elements. We need this ability in order
to implement processes, and we need processes in order to represent the world.
It is the programmer’s task to create, for each process, the structure that relates
the application’s elements in the manner required by that process. And he must
do this with many processes at the same time, because this is how the actual
facts are related in the world. The very purpose of practices, and of shared data
and operations, is to mirror in software those aspects of our affairs that already
form different structures with the same elements in the real world. So we must
not be upset, but pleased, when we end up with interacting structures in
software.

If software involves complex structures, software development requires
human minds. How, then, can programming theories and aids help us? Being
mechanistic systems, they can only represent isolated software structures. So,
just to consider them, we must commit the fallacy of reification: we must
separate the countless processes that make up an application. The main
structure, the practices embodied in the application, the database, are held to
represent independent logical structures - structures that can be studied and
programmed separately. The reason we are asked to reify these structures is
that, within each structure, the theories and aids can offer us the means to start
from higher levels of abstraction. Thus, we are also tempted to commit the
fallacy of abstraction. Less programming and lower programming skills are
needed when starting from higher levels; and this, ultimately, is seen as the
chief benefit of programming tools, database systems, and development
environments. But when committing the two fallacies, we lose most of the
interactions; so our applications will not represent the world accurately.

364 SOFTWARE STRUCTURES CHAPTER 4

To recognize the absurdity of programming theories and aids, all we need to
do is imagine a similar situation for language. The equivalent of the software
industry, and the theories and devices that act as substitutes for programming
expertise, would be a language industry. Instead of learning how to use
language to acquire and to express knowledge, we would learn how to use
various systems provided by language companies as substitutes for linguistic
competence. And instead of simply communicating through language, we
would spend most of our time and resources assimilating an endless series
of linguistic innovations — new languages, theories, methodologies, and
devices. The equivalent of software development tools and aids would be
linguistic tools and aids that promise higher levels of abstraction. These
devices would extract individual structures from the complex phenomenon of
language - the syntax of a sentence, the logic of an argument, the aspects of a
story — addressing each one in isolation. Within each structure, the devices may
even do what they promise; but this would not help us to use language, because
language structures interact, and we need the ability to deal with all of them
simultaneously.

The only thing that language companies could offer us, then, is a way to
start from higher levels of abstraction within each structure. We would
have to use a set of ready-made sentences and ideas, for example, instead of
creating our own, starting with words. This would perhaps expedite the
generation of individual structures, but at the cost of reducing the number of
alternatives for the concepts we represent with language. The interactions
between language structures occur not only at the level of sentences and ideas,
but also at the low level of words: it is the meaning of individual words that
usually determines the attributes of linguistic elements - attributes which
ultimately cause the interactions. If we could no longer express ourselves
starting with words, many interactions would become impossible - not only
between language structures, but also between the language structures and
various knowledge structures.

What this means in practice is that many ideas, or stories, or kinds of knowl-
edge, or forms of discourse, would also become impossible. The consequence
of linguistic reification and abstraction, thus, is not just an impoverishment in
language structures and in the kind of concepts that can be represented with
language. Because these concepts are linked with all human knowledge, our
entire existence would be impoverished. Many knowledge structures we hold
in our minds - our thoughts, feelings, beliefs, and expectations, which interact
with the linguistic structures — would be restricted to a small number of
alternatives.

CHAPTER 4 SOFTWARE STRUCTURES 365

And so it is with programming. When we start from higher levels of
abstraction, and when we separate the various aspects of an application, we end
up with impoverished software; that is, software which represents only a
fraction of the possible alternatives. We can mirror our affairs in software,
but only if we start from low levels. We cannot if we rely on mechanistic
programming theories and on ready-made pieces of software.

What is worse, as software is acquiring a social role similar to that of
language, an impoverishment in the alternatives that we represent with
software will affect us just as it would for language: many knowledge structures
we hold in our minds - structures that appear unrelated to software but
interact, in fact, with the software structures — will be impoverished at the same
time. This threat is what we will examine in the next two chapters.

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 4: Language and Software
	Wittgenstein and Software
	1
	2
	3
	4

	Software Structures
	1
	2
	3
	4
	5
	6
	7

