
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 7: Software Engineering
Section Structured Programming

This extract includes the book’s front matter
and part of chapter 7.

Copyright ©2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This section analyzes the theory of structured programming and its
mechanistic fallacies, and shows that it is a pseudoscience.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 7: Software Engineering

Structured Programming Structured Programming
Structured programming occupies a special place in the history of software
mechanism. Introduced in the 1970s, it was the first of the great software
theories, and the first one to be described as a revolution in programming
principles. It was also the first attempt to solve the so-called software crisis, and
it is significant that the solution was seen, even then, not in encouraging
programmers to improve their skills, but in finding a way to eliminate the need
for skills.

structured programming 501chapter 7

Thus, this was the first time that programming expertise was redefined to
mean expertise in the use of substitutes for expertise – methods, aids, or
devices supplied by a software elite. This interpretation of expertise was so
well received that it became the chief characteristic of all the theories that
followed.

Another common characteristic, already evident in structured program-
ming, is the enthusiasm accompanying each new theory – an enthusiasm that
betrays the naivety of both the academics and the practitioners. Well-known
concepts – the hierarchical structure, the principles of reductionism and
atomism – are rediscovered again and again, and hailed as great advances, as
the beginning of a science of programming. No one seems to notice that, not
only are these concepts the same as in the previous software delusions, but they
are the same as in every mechanistic delusion of the last three centuries.

Structured programming was the chief preoccupation of practitioners
and academics in the 1970s and 1980s. And, despite the occasional denial,
it continues to dominate our programming practices. The reason this is
not apparent is our preoccupation with more recent theories, more recent
revolutions. But, even though one theory or another is in vogue at a given time,
the principles of structured programming continue to be obeyed as faithfully
as they were in the 1970s. The GOTO superstition, for example, is as widespread
today as it was then.

Finally, it is important to study structured programming because it was
this theory that established the software bureaucracy, and the culture of
programming incompetence and irresponsibility. The period before its intro-
duction was the last opportunity our society had to found a true programming
profession. For, once the bureaucrats assumed control of corporate program-
ming, what ensued was inevitable. It was the same academics and gurus who
invented the following theories, and the same programmers and managers
who accepted them, again and again. The perpetual cycle of promises and
disappointments – the cycle repeated to this day with each new methodology,
programming aid, or development environment – started with structured
programming. Since the same individuals who are naive enough to accept one
theory are called upon, when the theory fails, to assess the merits of the next
one, it is not surprising that the programming profession has become a closed,
stagnating culture. Once we accepted the idea that it is not programming
expertise that matters but familiarity with the latest substitutes for expertise, it
was inevitable that precisely those individuals incapable of expertise become
the model of the software professional.

502 structured programming chapter 7

The Theory

The Theory
1 1
To appreciate the promise of structured programming, we must take a moment
to review the programming difficulties that prompted it. Recall, first, what is
the essence of software. The operations that make up a program are organized
in logical constructs – mostly conditions and iterations – which reflect the
relations between the processes and events we want to represent in software. A
typical software module, therefore, is not just a series of consecutive operations,
but a combination of blocks of operations that are executed or bypassed, or are
executed repeatedly, depending on various run-time conditions. Within
each block, we can have, in addition to the consecutive operations, further
conditions and iterations. In other words, these constructs can be nested: a
module can have several levels of conditions within conditions or iterations,
and iterations within conditions or iterations. Blocks can be as small as one
operation, or statement, but usually include several. And if we also remember
that certain operations serve to invoke other modules at run time, then, clearly,
applications of any size can be created in this manner.É

The conditional construct consists of a condition (which involves, usually,
values that change while the application is running) and two blocks; with this
construct, the programmer specifies that the first block be executed when the
condition is evaluated as True, and the second block when evaluated as False.
(In practice, one of the two blocks may be empty.) The iterative construct
consists of a condition (which involves usually values that change from one
iteration to the next) and the block that is to be executed repeatedly; with this
construct, the programmer specifies that the repetition continue only as long
as the condition is evaluated as True. (Iterative software constructs are known
as loops.) Conditions and iterations are flow-control operations, so called
because they control the program’s flow of execution; that is, the sequence in
which the other kinds of operations (calculations, assigning values to variables,
displaying data, accessing files, etc.) are executed by the computer.

Modifying the flow of execution entails “jumping” across blocks of opera-
tions: jumping forward, in order to prevent the execution of an unwanted

É Some definitions: Block denotes here any group of consecutive, related operations (not
just the formal units by this name in block-structured languages). Operation denotes the
simplest functional unit, which depends on the programming language (one operation in a
high-level language is usually equivalent to several, simpler operations in a low-level
language). Statement denotes the smallest executable unit in high-level languages. Since
structured programming and the other theories discussed here are concerned mainly with
high-level languages, “statement” and “operation” refer to the same software entities.

the theory 503chapter 7

block, or jumping backward, in order to return to the beginning of a block
that must be repeated. These jumps are necessary because the sequence of
operations that make up a program constitutes, essentially, a one-dimensional
medium. Physically (in the program’s listing, or when the program resides in
the computer’s memory), all possible operations must be included, and they
can appear in only one sequence. At run time, though, the operations must be
executed selectively, and in one sequence or another, depending on how the
various conditions are evaluated. In other words, the dynamic sequence may
be very different from the static one. The only way to execute the operations
differently from their static sequence is by instructing the computer at various
points to jump to a certain operation, forward or backward, instead of continu-
ing with the next one. For example, although the two blocks in a conditional
construct appear consecutively (both in the listing and in memory), only one
must be executed; thus, the first one must be bypassed when the second
one is to be executed, and the second one must be bypassed when the first one
is to be executed.

It is the programmer’s task to design the intricate network of jumps that,
when the application is running, will cause the various operations to be
executed, skipped, or repeated, as required. To help programmers (and the
designers of compilers) create efficient machine code, computers have a rich
set of low-level flow-control features: conditional and unconditional jump
instructions, loop instructions, repeat instructions, index registers, and so
forth. These features are directly available in low-level, assembly languages, and
their great diversity reflects the important role that flow-control operations
play in programming. In high-level languages, the low-level flow-control
features are usually available only as part of complex, built-in operations. For
example, a statement that compares two character strings in the high-level
language will use, when translated by the compiler into machine code, index
registers and loop instructions.

The jump operation itself is provided in high-level languages by the GOTO

statement (often spelled as one word, GOTO); for example, GOTO L2 tells
the computer to jump to the statement following the label L2, instead of
continuing with the next statement. While it is impossible to attain in high-
level languages the same versatility and efficiency as in assembly languages,
the GOTO statement, in conjunction with conditional statements and other
features, allows us to create all the flow-control constructs we need in those
applications normally developed in high-level languages.

Programmers, it was discovered from the very beginning, cannot easily
visualize the flow of execution; and, needless to say, without a complete
understanding of the flow of execution it is all but impossible to design an
application correctly. What we note is software defects, or “bugs”: certain

504 structured programming chapter 7

operations are not executed when they should be, or are executed when they
shouldn’t be.

Serious applications invariably give rise to intricate combinations of flow-
control constructs, simply because those affairs we want to represent in
software consist of complex combinations of processes and events. It is the
interaction of flow-control constructs – the need to keep track of combinations
of constructs – that poses the greatest challenge, rather than merely the large
number of constructs. Even beginners can deal successfully with separate
constructs; but nested, interacting constructs challenge the skills of even
the most experienced programmers. The problem, of course, is strictly a
human one: the limited capacity of our mind to deal with combinations of
relations, nestings, and alternatives. The computer, for its part, will execute
an involved program as effortlessly as it does a simple one. Like other skills,
though, it is possible to improve our ability to deal with structures of flow-
control constructs. But this can only be accomplished through practice: by
programming and maintaining increasingly complex applications over many
years.

The flow-control constructs, then, are one of the major sources of program-
ming errors. The very quality that makes software so useful – what allows us to
represent in our applications the diversity and complexity of our affairs – is
necessarily also a source of programming difficulties. For, we must anticipate
all possible combinations, and describe them accurately and unambiguously.
Experienced programmers, who have implemented many applications in
the past, know how to create flow-control constructs that are consistent,
economical, streamlined, and easy to understand. Inexperienced programmers,
on the other hand, create messy, unnecessarily complicated constructs, and
end up with software that is inefficient and hard to understand.

Business applications must be modified continuously to keep up with
the changing needs of their users. This work is known as maintenance,
and it is at this stage, rather than in the initial development, that the worst
consequences of bad programming emerge. For, even if otherwise successful,
badly written applications are almost impossible to keep up to date. This is true
because applications are usually maintained by different programmers over the
years, and, if badly written, it is extremely difficult for a programmer to
understand software developed and modified by others. (It was discovered, in
fact, that programmers have difficulty understanding even their own software
later, if badly written.)

Without a good understanding of the application, it is impossible to modify
it reliably. And, as in the initial development, the flow-control constructs
were found to be especially troublesome: the more nestings, jumps, and
alternatives there are, the harder it is for a programmer to visualize, from its

the theory 505chapter 7

listing, the variety of run-time situations that the application was meant to
handle. The deficiencies caused by incorrect modifications are similar to
those caused by incorrect programming in the initial development. For a
live application, however, the repercussions are far more serious. So, to
avoid jeopardizing their applications, businesses everywhere started to limit
maintenance to the most urgent requirements, and the practice of developing
new applications as a substitute for keeping the existing ones up to date
became widespread. The ultimate consequences of bad programming, thus,
are the perpetual inadequacy of applications and the cost of replacing them
over and over.

�

These, then, were the difficulties that motivated the search for better pro-
gramming practices. As we saw earlier, these difficulties were due to the
incompetence of the application programmers. But the software theorists were
convinced that the solution lay, not in encouraging programmers to improve
their skills, but in discovering methods whereby programmers could create
better applications while remaining incompetent. And, once this notion
was accepted, it was not hard to invent such a method. It was obvious that
inexperienced programmers were creating bad flow-control constructs, and
just as obvious that this was one of the reasons for programming inefficiency,
software defects, and maintenance problems. So it was decided to prevent
programmers from creating their own flow-control constructs. Bad program-
mers can create good applications, the theorists declared, simply by restricting
themselves to the existing flow-control constructs. This restriction is the
essence of structured programming.

Most high-level languages of that time already included statements for
the basic flow-control constructs, so all that was needed to implement the
principles of structured programming was a change in programming style.
Specifically, programmers were asked to use one particular statement for
conditions, and one for iterations. What these statements do is eliminate the
need for explicit jumps in the flow of execution, so the resulting constructs –
which became known as the standard constructs – are a little simpler than
those created by a programmer with GOTO statements. The jumps are still there,
but they are now implicit: for the conditional construct that selects one of two
blocks and bypasses the other, we only specify the condition and the two
blocks, and the compiler generates automatically the bypassing jumps; and for
a loop, the compiler generates automatically the jump back to the beginning of
the repeated block.

Since we must use jumps when we create our own flow-control constructs,

506 structured programming chapter 7

what this means is that, if we restrict ourselves to the standard constructs, we
will never again need explicit jumps. Or, expressing this in reverse, simply by
avoiding the GOTO statement we avoid the temptation to create our own flow-
control constructs, and hence inferior applications. GOTO, it was proclaimed, is
what causes bad programming, so it must be avoided.

Now, good programmers use the standard constructs when suitable, but do
not hesitate to modify them, or to create their own, when specialized con-
structs are more effective. These constructs improve the program, therefore, not
complicate it. Everyone could see that it is possible to use GOTO intelligently,
that only when used by incompetents does it lead to bad programming. The
assumption that programmers cannot improve remained unchanged, however.
So the idea of eliminating the need for expertise continued to be seen as an
important principle, as the only solution to the software crisis.

The main appeal of structured programming, thus, is that it appears to
eliminate those programming situations that demand skills and experience.
This, it was hoped, would reduce application development to a routine activity,
to the kind of work that can be performed by almost anyone.

�

Substitutes for expertise are always delusions, and structured programming
was no exception. First, it addressed only one aspect of application develop-
ment – the design of flow-control constructs. Bad programmers, though, do
everything badly, so even if structured programming could improve this one
aspect of their work, other difficulties would remain. Second, structured
programming does not really eliminate the need for expertise even in this
one area. It was very naive to believe that, if it is possible in principle to
program using only the standard constructs, it is also possible to develop real
applications in this fashion. This idea may look good with the small, artificial
examples presented in textbooks, but is impractical for serious business
applications.

So, since programmers still have to supplement the standard constructs
with specialized ones, they need the same knowledge and experience as before.
And if they do, instead, restrict themselves to the standard constructs, as the
theory demands, they end up complicating other aspects of the application.
The aspects of an application are the various structures that make it up, and the
difficulty of programming is due to the need to deal with many of these
structures at the same time. Structured programming succeeds perhaps in
simplifying the flow-control structure, but only by making the other structures
more involved. And, in any case, programmers still need the capacity to deal
with interacting structures. We will study these fallacies in detail later.

the theory 507chapter 7

2

2
So far we have examined the informal arguments – the praise of standard flow-
control constructs and the advice to avoid GOTO. These arguments must be
distinguished from the formal theory of structured programming, which
emerged about 1970. The reason we are discussing both types of arguments is
that the formal theory never managed to displace the informal one. In other
words, even though it was promoted by its advocates as an exact, mathematical
theory, structured programming was in reality just an assortment of methods
– some sensible and others silly – for improving programming practices. We
will separate its formal arguments from the informal ones in order to study it,
but we must not forget that the two always appeared together.

The informal tone of the early period is clearly seen in E. W. Dijkstra’s
notorious paper, “Go To Statement Considered Harmful.”Ê Generally acknowl-
edged as the official inauguration of the structured programming era, this
paper is regarded by many as the most famous piece of writing in the history
of programming. Yet this is just a brief essay. It is so brief and informal, in fact,
that it was published in the form of a letter to the editor, rather than a regular
article.

Dijkstra claims to have “discovered why the use of the GOTO statement has
such disastrous effects,”Ë but his explanation is nothing more than a reminder
of how useful it is to be able to keep track of the program’s dynamic behaviour.
When carelessly used, he observes, GOTO makes it hard to relate the flow of
execution to the nested conditions, iterations, and subroutine calls that make
up the program’s listing: “The unbridled use of the GOTO statement has an
immediate consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress.”Ì

This is true, of course, but Dijkstra doesn’t consider at all the alternative: a
disciplined, intelligent programming style, through which we could benefit
from the power of GOTO. Instead of studying the use of GOTO under this
alternative, he simply asserts that “the quality of programmers is a decreasing

Ê E. W. Dijkstra, “Go To Statement Considered Harmful,” in Milestones in Software
Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society
Press, ©1990 IEEE) – paper originally published in Communications of the ACM 11, no. 3
(1968): 147–148. An equally informal paper from this period is Harlan D. Mills, “The Case
Against GO TO Statements in PL/I,” in Harlan D. Mills, Software Productivity (New York:
Dorset House, 1988) – paper originally published in 1969.

Ë Dijkstra, “Go To Statement,” p. 9.
Ì Ibid. The term “unbridled” is used by Dijkstra to describe the free use of jumps (as

opposed to using jumps only as part of some standard constructs).

508 structured programming chapter 7

function of the density of GOTO statements in the programs they produce,”Í and
concludes that “the GOTO statement should be abolished from all ‘higher level’
programming languages.”Î His reasoning seems to be as follows: since using
GOTO carelessly is harmful, and since good programmers apparently use GOTO

less frequently than do bad programmers, then simply by prohibiting everyone
from using GOTO we will attain the same results as we would if we turned the
bad programmers into good ones.

The logical answer to the careless use of GOTO by bad programmers is not
to abolish GOTO, but to encourage those programmers to improve their skills.
Yet this possibility is not even mentioned. In the end, in the absence of any real
demonstration as to why GOTO is harmful, we must be satisfied with the
statement that “it is too much an invitation to make a mess of one’s program.”Ï
What is noteworthy in this paper, therefore, is not just the informal tone, but
also the senseless arguments against GOTO.

These were the claims in the late 1960s. Then, the tone changed, and the
claims became more ambitious. The software theorists discovered a little
paper,Ð written several years earlier and concerned with the logical transforma-
tion of flow diagrams, and chose to interpret it as the mathematical proof of
their ideas. (We will examine this “proof ” later.) Adapted for programming,
the ideas presented in this paper became known as the structure theorem.

Convinced now that structured programming had a solid mathematical
foundation, the theorists started to promote it as the beginning of a new
science – the science of programming. Structured programming was no longer
seen merely as a body of suggestions for improving programming practices; it
was the only correct way to program. And practitioners who did not obey
its principles were branded as old-fashioned artisans. After all, rejecting
structured programming was now tantamount to rejecting science.

It is this theory – the formal theory of structured programming – that
is important, for it is this theory that was promoted as a programming
revolution, was refuted in practice, and was then rescued by being turned into
a pseudoscience. We could perhaps ignore the informal claims, but it is only by
studying the formal theory that we can appreciate why the idea of structured
programming was a fraud. For, it was its alleged mathematical foundation that
made it respectable. It was thanks to its mathematical promises that it was so
widely accepted – precisely those promises that had to be abandoned in order
to make it practical.

Thus, a striking characteristic of structured programming is that, even after

Í Ibid. Î Ibid. Ï Ibid.
Ð Corrado Böhm and Giuseppe Jacopini, “Flow Diagrams, Turing Machines and

Languages with Only Two Formation Rules,” in Milestones, eds. Oman and Lewis – paper
originally published in Communications of the ACM 9, no. 5 (1966): 366–371.

the theory 509chapter 7

becoming an exact, mechanistic theory, it continued to be defended with
informal arguments. Its mathematical aspects imparted to it a scientific
image, but could not, in fact, support it. So, while advertised as a scientific
theory, structured programming was usually presented in the form of a
programming methodology, and its benefits could be demonstrated only
for simple, carefully selected examples. Moreover, its principles – the GOTO
prohibition, in particular – became the subject of endless debates and changes,
even among the academics who had invented them.Ñ

When a mechanistic theory works, all we need in order to promote it is a
mathematical proof. All we need, in other words, is a formal argument; we
don’t have to resort to persuasion, debates, justifications, case studies, or
testimonials. It is only when a theory fails, and its defenders refuse to accept its
failure, that we see both formal and informal arguments used side by side (see
the discussion in chapter 1, pp. 76–77).

It is impossible to discuss structured programming without stressing this
distinction between the formal and the informal concepts. For, by pointing to
the informal concepts, its advocates can claim to this day that structured
programming was successful. And, in a sense, this is true. It is in the nature of
informal concepts to be vague and subject to interpretation. Thus, since some
of the informal principles are sensible and others silly, one can always praise the
former and describe them as “structured programming.” The useful principles,
as a matter of fact, were known and appreciated by experienced programmers
even before being discovered by the academics; and they continue to be
appreciated, despite the failure of structured programming. But we must not
confuse the small subset of useful principles with the real, mathematical theory
of structured programming – the theory that was promoted by the scientists as
a revolution.

It is because of their mathematical claims that we accepted structured
programming, and the other software theories. Deprived of their formal
foundation, these theories are merely collections of programming tips. So the
effort to cover up their failure amounts to a fraud: we are being persuaded to
depend on the software elites when in reality, since the formal theories are
worthless, the elites have nothing to offer us.

Ñ Here are two sources for the formal theory: Harlan D. Mills, “Mathematical Founda-
tions for Structured Programming,” in Harlan D. Mills, Software Productivity (New York:
Dorset House, 1988) – paper originally published in 1972; Suad Alagić and Michael A. Arbib,
The Design of Well-Structured and Correct Programs (New York: Springer-Verlag, 1978). And
here are two sources for the informal theory: Harlan D. Mills, “How to Write Correct
Programs and Know It,” in Mills, Software Productivity – paper originally published in 1975;
Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975).

510 structured programming chapter 7

3

3
The formal theory of structured programming prescribes that software appli-
cations, when viewed from the perspective of their flow of execution, be treated
as simple hierarchical structures. Applications are to be implemented using
only three flow-control constructs: sequential operations, conditions, and
iterations. And it is not just the basic elements that must be restricted to these
constructs, but the elements at all levels of abstraction. This is accomplished by
nesting constructs: the complete constructs of one level serve as elements in the
constructs of the next higher level, and so on. Thus, although the elements keep
growing as we move to higher levels, the constructs remain unchanged.

The sequential construct is shown in figure 7-1 (the arrowheads in flow
diagrams indicate the flow of execution). It consists of one operation, S1. At the
lowest level, the operation is a single statement: assigning a value to a variable,
performing a calculation, reading a record from a file, and so on.

The conditional construct, IF, is shown in figure 7-2. This construct consists
of a condition, C1, and two operations, S1 and S2: if the condition is evaluated
as True, S1 is executed; if evaluated as False, S2 is executed. In most high-level
languages, the IF statement implements this construct: IF C1 is True, THEN
perform S1, ELSE perform S2. Either S1 or S2 may be empty (these variants are
also shown in figure 7-2). In a program, when S2 is empty the entire ELSE part
is usually omitted.

Figure 7-1

S1

Figure 7-2

C1

True

False

S1

S2

C1

True

False

S1

C1

True

False

S2

the theory 511chapter 7

The iterative construct, WHILE, is shown in figure 7-3. This construct consists
of a condition, C1, and one operation, S1: if the condition is evaluated as True,
S1 is executed and the process is repeated; if evaluated as False, the iterations
end. In many high-level languages, the WHILE statement implements this
construct: WHILE C1 is True, perform S1.

To build larger pieces of software, any number of constructs can be con-
nected consecutively: sequential, conditional, and iterative constructs can be
combined in any order by connecting the exit of one construct to the entry of
the next one. This method of combining constructs is trivial, however. It is only
through nesting that we can create the countless combinations of operations,
conditions, and iterations required in a serious application.

All three constructs share an important feature: they have one entry and one
exit. When viewed from outside, therefore, and disregarding their internal
details, the three constructs are identical. It is this feature that makes nesting
possible. To nest constructs, we start with one of the three constructs and
replace the operation, S1 or S2 (or both), with a conditional or iterative
construct, or with two consecutive sequential constructs; we then similarly
replace S1 or S2 in the new constructs, and so on. Thus, the original construct
forms the top level of the structure, and each replacement creates an additional,
lower level.

This nesting method is known as top-down design, and is an important
principle in structured programming. To design a new application, we start by
depicting the entire project as one sequential construct; going down to the next
level of detail, we may note that the application consists in the repetition of a
certain operation, so we replace the original operation with an iterative
construct; at the next level, we may note that what is repeated is one of two
different operations, so we replace the operation in the iterative construct with
a conditional construct; then we may note that the operations in this construct
are themselves conditions or iterations, so we replace them with further
constructs; and so on. (At each step, if the operation cannot be replaced directly
with a construct, we replace it first with two simpler, consecutive operations;

Figure 7-3

C1

True

False

S1

512 structured programming chapter 7

then, if necessary, we repeat this for those two operations, and so on.) We
continue this process until we reach some low-level constructs, where the
operations are so simple that we can replace them directly with the statements
of a programming language. If we follow this method, the theorists say, we are
bound to end up with a perfect application.

The flow diagram in figure 7-4 illustrates this concept. This diagram
includes four conditional, three iterative, and two sequential constructs, nested
in various ways. Although the format of these constructs is identical to the
simple format shown in the previous diagrams, this is obscured by the fact that
some of the operations are themselves constructs, rather than simple boxes like
S1. The dashed boxes depict these constructs, and serve at the same time
to indicate pictorially the levels of nesting. (The innermost boxes represent
the lowest level, and it is only in these boxes that the constructs’ format is
immediately recognizable.) Note also the additional arrowheads, drawn to
indicate the entry and exit of each dashed box. The arrowheads emphasize

Figure 7-4

C1

T

F

C2

T

F

C3

T

F

S1

S2

S3

C4

T

F

C5

T

F

S5

S4 C6

T

F

C7

T

F

S6

the theory 513chapter 7

that, regardless of their nesting level, the constructs continue to have only
one entry and one exit.

Each dashed box encloses a complete construct – a construct that acts as a
single operation in the higher-level construct to which it belongs. When
viewed as part of the higher-level construct, then, a dashed box acts just like
the box depicting a sequential construct. In other words, the internal details of
a given construct, including the lower levels of nesting that make it up, are
irrelevant when we study only the constructs at higher levels. (So we could
ignore, as it were, the diagram shown inside the dashed box, and replace the
entire box with one sequential construct.) An important benefit of this nesting
concept is that any construct can be replaced with a functionally equivalent
construct, both during development and during maintenance, without affect-
ing the rest of the application. A programmer, thus, can develop or modify a
particular construct while knowing nothing about the constructs at higher and
lower levels. All he needs to know is the entry and exit characteristics of the
constructs at the next lower level.

�

This is all that practitioners need to learn about the theory of structured
programming. Programs developed strictly as nested constructs, and their
flow diagrams, are structured programs and diagrams. And, the theorists
assure us, it has been proved through mathematical logic that any software
application can be built in this fashion.

Structured programs can be as large as we want, and can have any number
of levels of nesting. It is recommended, nevertheless, for practical reasons,
to divide large programs into modules of no more than about a hundred
lines, and to have no more than about five levels of nesting in a module. In
complicated programs, we can always reduce the number of nesting levels by
creating a separate module for the constructs below a given level, and then
replacing that whole portion with a statement that invokes the module.
Logically, there is no difference between the two alternatives, and smaller
modules are easier to understand and to maintain. (From the perspective of the
flow of execution, descending the nesting levels formed by the local constructs
is the same as invoking a module and then descending the levels of constructs
in that module.) Invoking a module is a single operation, so it can be part
of any construct; constructs in the invoked module can then invoke other
modules in their turn, and so on. Large applications, thus, are generally built
by adding levels of modules rather levels of constructs. A module may be
invoked from several constructs, of course, if the same operations are required
in several places; the module then also functions as subroutine.

514 structured programming chapter 7

Regarding the GOTO issue, it is obvious now why GOTO statements are
unnecessary: quite simply, structured programs require no explicit jumps
(since all the necessary jumps are implicit, within the standard constructs). The
purpose of structured programming is to create structures of nested constructs,
so the absence of GOTO is merely a consequence. This is an important point,
and in sharp contrast to the original, informal claim – the claim that GOTO must
be avoided because it tempts us to create messy programs. Now we have the
proof that GOTO is unnecessary in high-level languages (in fact, in any language
that provides the three standard constructs). We have the proof, therefore, that
any application can be created without using GOTO statements. GOTO is not bad
in itself, but because it indicates that the program is unstructured. Structured
programs do not need GOTOs.

To conclude, structured programming is concerned with the flow of exe-
cution, and claims that the solution to our programming difficulties lies in
designing applications as structures of nested modules, and the modules
as structures of nested flow-control constructs. We recognize this as the
mechanistic claim that any phenomenon can be represented as a structure of
things within things. Structured programming, thus, claims that the flow of
execution can be extracted from the rest of the application; that it can be
reduced to a simple hierarchical structure, the flow-control structure; and that,
for all practical purposes, this one structure is the application. The logic of
nesting and standard constructs is continuous, from the simplest statements to
the largest modules. It is this neatness that makes the notion of structured
programming so enticing. All we need to know, it seems, is how to create
structures of things within things. We are promised, in effect, that by applying
a simple method over and over, level after level, we will be able to create perfect
applications of any size and complexity.

The Promise

The Promise

No discussion of the structured programming theory is complete without a
review of its promotion and its reception. For, the enthusiasm it generated is as
interesting as are its technical aspects.

Harlan Mills, one of the best-known software theorists, compares program-
ming to playing a simple game like tic-tac-toe. The two are similar in that we
can account, at each step, for all possible alternatives, and hence discover exact
theories. The only difference is that programming gives rise to a greater
number of alternatives. Thus, just as a good game theory allows us to play
perfect tic-tac-toe, a good programming theory will allow us to write perfect

the promise 515chapter 7

programs: “Computer programming is a combinatorial activity, like tic-tac-
toe. . . . It does not require perfect resolution in measurement and control; it
only requires correct choices out of finite sets of possibilities at every step. The
difference between tic-tac-toe and computer programming is complexity. The
purpose of structured programming is to control complexity through theory
and discipline. And with complexity under better control it now appears that
people can write substantial computer programs correctly. . . . Children, in
learning to play tic-tac-toe, soon develop a little theory. . . . In programming,
theory and discipline are critical as well at an adult’s level of intellectual activity.
Structured programming is such a theory, providing a systematic way of coping
with complexity in program design and development. It makes possible a
discipline for program design and construction on a level of precision not
previously possible.”É

Structured programming is a fantasy, of course – a mechanistic delusion. As
we know, it is impossible to reduce software applications, which are complex
phenomena, to simple hierarchical structures; so it is impossible to represent
them with exact, mathematical models. Everyone could see that even ordinary
requirements cannot be reduced to a neat structure of standard constructs,
but it was believed that all we have to do for those requirements is apply
certain transformations. No one tried to understand the significance of these
transformations, or why we need them at all. And when in many situations
the transformations turned out to be totally impractical, still no one suspected
the theory. These situations were blatant falsifications of the theory; but
instead of studying them, the experts chose to interpret the difficulty of
creating structured applications as the difficulty of adjusting to the new,
disciplined style of programming. No one wondered why, if it has been proved
mathematically that any application can be written in a structured fashion, and
if everyone is trying to implement this idea, we cannot find a single application
that follows strictly the principles of structured programming.

Thus, even though it never worked with serious applications, structured
programming was both promoted and received – for twenty years – with the
enthusiasm it would have deserved had it been entirely successful.

�

É Harlan D. Mills, “Mathematical Foundations for Structured Programming,” in Harlan
D. Mills, Software Productivity (New York: Dorset House, 1988), pp. 117–118 – paper originally
published in 1972. As I have already pointed out (see p. 488), what the software theorists call
complexity (i.e., the large number of alternatives) is not the real complexity of software (i.e.,
what makes software applications complex structures, systems of interacting structures). It
is impossible to develop applications simply by accounting for the various alternatives, as
Mills proposes, because we cannot identify all the alternatives.

516 structured programming chapter 7

To appreciate the reaction to the idea of structured programming, we must
ignore all we know about complex structures, and imagine ourselves as
part of the mechanistic world of programming. Let us think of software
applications, thus, as mechanistic phenomena; that is, as phenomena which
can be represented with simple hierarchical structures. The idea of structured
programming is then indeed the answer to our programming difficulties,
in the same way that designing physical systems as hierarchical structures of
subassemblies is the answer to our manufacturing and construction difficulties.

One promise, we saw, is to reduce programming, from an activity demand-
ing expertise, to the performance of relatively easy and predictable acts: “It is
possible for professional programmers, with sufficient care and concentration,
to consistently write correct programs by applying the mathematical principles
of structured programming.”Ê The theorists, thus, are degrading the notion of
professionalism and expertise to mean the skills needed to apply a prescribed
method. (I will return to this point in a moment.)

So, to program an application we need to know now only one thing: how
to reduce a given problem, expressed as a single operation, to two or three
simpler problems; specifically, to two consecutive operations, or a conditional
construct (two operations and a condition), or an iterative construct (one
operation and a condition). What we do at each level, then, is replace a
particular software element with two or three simpler ones. Developing an
application consists in repeating this reduction over and over, thereby creating
simpler and simpler elements, on lower and lower levels of abstraction. And
the skill of programming consists in knowing how to perform the reduction
while being certain that, at each level, the new elements are logically equivalent
to the original one. But this skill is much easier to acquire than the traditional
programming skill, because it is the same types of constructs and reductions
that we employ at all levels; besides, each reduction is a small logical step.

Eventually, we reach elements that are simple enough to translate directly
into the statements of a programming language. So we must also know how to
perform the translation; but this skill is even easier than the reductions – so
easy, in fact, that it can be acquired by almost anyone in a few weeks. (This
work is often called coding, to distinguish it from programming.)

The key to creating correct applications, then, is the restriction to the
standard constructs and the assurance that, at each level, the new elements are
logically equivalent to the original one. These conditions are related, since, if
we restrict ourselves to these constructs, we can actually prove the equivalence
mathematically. Ultimately, structured programming is a matter of discipline:

Ê Richard C. Linger, Harlan D. Mills, and Bernard I. Witt, Structured Programming:
Theory and Practice (Reading, MA: Addison-Wesley, 1979), p. 3.

the promise 517chapter 7

we must follow this method rigorously, even in situations where a different
method is simpler or more efficient. Only if we observe this principle can we
be certain that, when the application is finally translated into a programming
language, it will be logically equivalent to the original specifications.

This is an important point, as it was discovered that experienced program-
mers have difficulty adjusting to the discipline of structured programming.
Thus, they tend to ignore the aforementioned principle, and enhance their
applications with constructs of their own design. They see the restriction to the
standard constructs as a handicap, as a dogmatic principle that prevents them
from applying their hard-earned talents.

What these programmers fail to see, the theorists explain, is that it is
precisely this restriction that allows us to represent software elements mathe-
matically, and hence prove their equivalence from one level to the next. It is
precisely because we have so little freedom in our reductions that we can be
certain of their correctness. (In fact, the standard constructs are so simple
that the correctness of the reductions can usually be confirmed through
careful inspection; only in critical situations do we need to resort to a formal,
mathematical proof.)

So what appears as a drawback to those accustomed to the old-fashioned,
personal style of programming is actually the strength of structured pro-
gramming. Even experienced programmers could benefit from the new
programming discipline, if only they learned to resist their creative impulse.
But, more importantly, inexperienced programmers will now be able to create
good applications, simply by applying the principles of top-down design and
standard constructs: “Now the new reality is that ordinary programmers, with
ordinary care, can learn to write programs which are error free from their
inception. . . . The basis for this new precision in programming is neither
human infallibility, nor being more careful, nor trying harder. The basis is
understanding programs as mathematical objects that are subject to logic and
reason, and rules for orderly combination.”Ë

I stated previously that the software theorists are degrading the notions of
expertise and professionalism, from their traditional meaning – the utmost
that human beings can accomplish – to the trivial knowledge needed to follow
methods. This attitude is betrayed by the claim that structured programming
will benefit all programmers, regardless of skill level. Note the first sentence in
the passage just quoted, and compare it with the following sentence: “Now the
new reality is that professional programmers, with professional care, can learn
to consistently write programs that are error-free from their inception.”Ì

Ë Ibid., p. 2.
Ì Harlan D. Mills, “How to Write Correct Programs and Know It,” in Mills, Software

Productivity, p. 194 – paper originally published in 1975.

518 structured programming chapter 7

The two sentences (evidently written by the same author during the same
period) are practically identical, but the former says “ordinary” and the latter
“professional.” For this theorist, then, the ideas of professional programmer,
ordinary programmer, and perhaps even novice programmer, are interchange-
able. And indeed, there is no difference between an expert and a novice if we
reduce programming to the act of following some simple methods.

This attitude is an inevitable consequence of the mechanistic dogma. On
the one hand, the software mechanists praise qualities like expertise and
professionalism; on the other hand, they promote mechanistic principles and
methods. Their mechanistic beliefs prevent them from recognizing that the
two views contradict each other. If the benefits of structured programming
derive from reducing programming to methods requiring little experience –
methods that can be followed by “ordinary” programmers – it is precisely
because these methods require only mechanistic knowledge. Expertise, on the
contrary, is understood as the highest level that human minds can attain. It
entails complex knowledge, the kind of knowledge we reach after many
years of learning and practice. Following the methods of structured program-
ming, therefore, cannot possibly mean expertise and professionalism in their
traditional sense. It is in order to apply these terms to mechanistic knowledge
– in order to resolve the contradiction – that the theorists are degrading their
meaning.

�

If the first promise of structured programming is to eliminate the need for
programming expertise, the second one is to simplify the development of large
applications by breaking them down into small parts. Each reduction from a
given element to simpler ones is in effect a separate task, since it can be
performed independently of the other reductions. Then, for a particular
reduction, we can treat the lower-level reductions as either the same task or as
separate, smaller tasks. In this fashion, we can break down the original task –
that is, the application – into tasks that are as small as we want. Although the
smallest task can be as small as one construct, we rarely need to go that far. For
most applications, the smallest tasks are the individual modules; and it is
recommended that modules be no larger than one printed page, so that we can
conveniently study them.

When each module is a separate task, different programmers can work on
different modules of the same application without having to communicate
with one another. This has several benefits: if a large application must be
finished faster, we can simply employ more programmers; we can replace a
programmer at any time without affecting the rest of the project; and later,

the promise 519chapter 7

during maintenance, a new programmer only needs to understand the logic of
individual modules.

With the old style of programming, the complexity of applications, and
hence the difficulty of developing and maintaining them, seems to grow
exponentially with their size. The time and cost required to develop a new
application, or to modify an existing one, can be unpredictable; adding pro-
grammers to a project rarely helps; large projects often become unmanageable
and must be abandoned. With structured programming, on the other hand,
the complexity and the difficulty do not grow with the application’s size. No
matter how large, an application is no more difficult to develop than is its
largest module. The only difference we should see between large and small
applications is that large ones take longer, or involve more programmers; but
the time and cost are now predictable. What structured programming does, in
the final analysis, is replace the challenge of developing a large system of
interrelated entities, with the easier challenge of developing many small,
separate entities.

�

The greatest promise of structured programming, however, and the most
fantastic, is the promise of error-free applications; specifically, the claim that
structured programming obviates almost entirely the need to test software,
since applications will usually run perfectly the first time: “By practicing
principles of structured programming and its mathematics you should be able
to write correct programs and convince yourself and others that they are
correct. Your programs should ordinarily compile and execute properly the
first time you try them, and from then on.”Í

Top-down programming, we saw, entails the repeated reduction of elements
to simpler ones that are logically equivalent. So, if we perform each reduction
correctly, then no matter how many reductions are required, we can be
certain that the resulting application will be logically equivalent to the original
specifications. (The application may still be faulty, of course, if the specifica-
tions are faulty; structured programming guarantees only that the application
will behave exactly as defined in the specifications.)

Fantastic though it is, this claim is logical – if we assume that applications
are simple hierarchical structures. Here is how the claim is defended: Since
the equivalence of elements in the flow-control structure can be proved
mathematically at each level in the top-down process, and since the statements
in the resulting application correspond on a one-to-one basis to the lowest-

Í Ibid.

520 structured programming chapter 7

level elements, the application must be correct. In other words, what we create
in the end by means of a programming language is in effect the same structure
that we created earlier by means of a diagram, and which we could prove to be
correct.

We should still test our applications, because we are not infallible; but
testing will be a simple, routine task. The only type of errors we should expect
to find are those caused by programming slips. And, thanks to the discipline
we will observe during development, these errors are bound to be minor bugs,
as opposed to the major deficiencies we discover now in our applications
(faulty logic, problems necessitating redesign or reprogramming, mysterious
bugs for which no one can find the source, defects that give rise to other defects
when corrected, and so on). Thus, not only will the errors be few, but they will
be trivial: easy to find and easy to correct. This is how Mills puts it: “As
technical foundations are developed for programming, its character will
undergo radical changes. . . . We contend here that such a radical change is
possible now, that in structured programming the techniques and tools are at
hand to permit an entirely new level of precision in programming.”Î

The inevitable conclusion is that, if we adhere to the principles of structured
programming, we will write program after program without a single error. This
conclusion prompts Mills to make one of those ludicrous predictions that
mechanists are notorious for; namely, that programming can become such a
precise activity that we will commit just a handful of errors in a lifetime: “The
professional programmer of tomorrow will remember, more or less vividly,
every error in his career.”Ï

It is important to note that these were serious claims, confidently made
by the world’s greatest software theorists. And, since the theorists never
recognized the fallacy of structured programming, since to this day they fail
to understand why its mathematical aspects are irrelevant, they are still
claiming in effect that it permits us to create directly error-free applications.
By implication, then, they are claiming that all software deficiencies and
failures since the 1970s, and all the testing we have done, could have been
avoided: they were due to our reluctance to observe the principles of structured
programming.

�

The final promise of structured programming is to eliminate programming
altogether; that is, to automate the creation of software applications. This was
not one of the original ideas, but emerged a few years later with the notion of

Î Mills, “Mathematical Foundations,” p. 117. Ï Mills, “Correct Programs,” p. 194.

the promise 521chapter 7

CASE – software devices that replace the work of programmers. (This promise
is perfectly captured in the title of a book written by two well-known experts:
Structured Techniques: The Basis for CASE.Ð)

As with the other claims, if we accept the idea that applications are simple
hierarchical structures, the claim of automatic software generation is perfectly
logical. Structured programming breaks down the development process into
small and simple tasks, most of which can be performed mechanically; and if
they can be performed mechanically, they can be replaced with software
devices. For example, the translation of the final, low-level constructs into
the statements of a programming language can easily be automated. Most
reductions, too, are individually simple enough to be automated. The software
entities in CASE systems will likely be different from the traditional ones, but
the basic principle – depicting an application as a hierarchical structure of
constructs within constructs – will be the same.

Application development, thus, will soon require no programmers. An
analyst or manager will specify the requirements by interacting with a sophisti-
cated development system, and the computer will do the rest: “There is a major
revolution happening in software and system design. . . . The revolution is
the replacement of manual design and coding with automated design and
coding.”Ñ So, while everyone was waiting for the benefits promised by the
structured programming revolution, the software theorists were already hailing
the next revolution – which suffered from the same fallacies.

�

This, then, is how structured programming was promoted by the software
elites. And it is not hard to see how, in a mechanistic culture like ours, such a
theory can become fashionable. The enthusiasm of the academics was shared
by most managers, who, knowing little about programming, saw in this idea a
solution to the lack of competent programmers; and it was also shared by most
programmers, who could now, simply by avoiding GOTO, call themselves
software engineers. Only the few programmers who were already developing
and maintaining applications successfully could recognize the absurdity of
structured programming; but their expertise was ridiculed and interpreted as
old-fashioned craftsmanship.

The media too joined in the general hysteria, and helped to propagate the
structured programming fallacies by repeating uncritically the claims and

Ð James Martin and Carma McClure, Structured Techniques: The Basis for CASE, rev. ed.
(Englewood Cliffs, NJ: Prentice Hall, 1988). CASE stands for Computer-Aided Software
Engineering. Ñ Ibid., p. 757.

522 structured programming chapter 7

promises. Datamation, for instance, a respected data-processing journal of
that period, devoted its December 1973 issue to structured programming,
proclaiming it a revolution. The introductory article starts with these words:
“Structured programming is a major intellectual invention, one that will
come to be ranked with the subroutine concept or even the stored program
concept.”ÉÈ

The Contradictions

The Contradictions
1 1
Now that we have seen the enthusiasm generated by the idea of structured
programming, let us study the contradictions – contradictions which, although
well known at the time, did nothing to temper the enthusiasm.

Structured programs, we saw, are pieces of software whose flow of execution
can be represented as a structure of standard flow-control constructs. Because
these constructs have only one entry and exit, a structured piece of software
is a structure of hierarchically nested constructs. The structure can be a
part of a module, an entire module, and even the entire application. The
flow diagram in figure 7-4 (p. 513) was an example of a structured piece of
software.

Our affairs, however, can rarely be represented as neat structures of nested
entities, because they consist of interacting processes and events. So, if our
software applications are to mirror our affairs accurately, they must form
systems of interacting structures. What this means is that, when designing an
application, we will encounter situations that cannot be represented with
structured flow diagrams.

The theory of structured programming acknowledges this problem, but tells
us that the answer is to change the way we view our affairs. The discipline
that is the hallmark of structured programming must start with the way we
formulate our requirements, and if we cannot depict these requirements with
structured diagrams, the reason may be that we are not disciplined in the way
we run our affairs. The design of a software application, then, is also a good
opportunity to improve the logic of our activities. Much of this improvement
will be achieved, in fact, simply by following the top-down method, since this
method encourages us to view our activities as levels of abstraction, and hence
as nested entities.

ÉÈ Daniel D. McCracken, “Revolution in Programming: An Overview,” Datamation 19,
no. 12 (1973): 50–52.

the contradictions 523chapter 7

So far, there is not much to criticize. The benefits of depicting the flow of
execution with a simple hierarchical structure are so great that it is indeed a
good idea, whenever possible, to design our applications in this manner. But
the advocates of structured programming do not stop here. They insist that
every situation be reduced to a structured diagram, no matter how difficult the
changes or how unnatural the results. In other words, even if the use of
standard constructs is more complicated than the way we normally perform a
certain activity, we must resist the temptation to implement the simpler logic
of that activity.

And this is not all. The theorists also recognize that, no matter how strictly
we follow the top-down design method, some situations will remain that
cannot be represented as structured diagrams. (It is possible to prove, in fact,
that whole classes of diagrams, including some very common and very simple
cases, cannot be reduced to the three standard constructs.) Still, the theorists
say, even these situations must be turned into structured software, by applying
certain transformations. The transformations complicate the application, it is
agreed, but complicated software is preferable to unstructured software.

The ultimate purpose of these transformations is to create new relations
between software elements as a replacement for the relations formed by explicit
jumps, which are prohibited under structured programming. (We will study
this idea in greater detail later.) And there are two ways to create the new
relations: by sharing operations and by sharing data. I will illustrate the two
types of transformations with two examples.

Figure 7-5 shows the flow diagram of a requirement that, although very
simple, cannot be reduced to standard flow-control constructs. This is a
variation of the standard conditional construct: the condition C1 and the
operations S1 and S2 form the standard part, but there is an additional
operation, S3. This operation is always executed after S1, but is executed after
S2 only if C2 is evaluated as True. The requirement, in other words, is that an

Figure 7-5

C1

True

False

S1

S2 C2

True

False

S3

524 structured programming chapter 7

operation which is part of one branch of a conditional construct be also
executed, sometimes, as part of the other branch. And if we study the diagram,
we can easily verify that it is unstructured: it is not a structure of nested
standard constructs. Standard constructs have only one entry and exit, and
here we cannot draw a dashed box with one entry and exit (as we did in
figure 7-4) around any part of the diagram larger than a sequential construct.

Note that this is not only a simple requirement, but also a very common one.
The theory of structured programming is contradicted, therefore, not by an
unusual or complicated situation, but by a trivial requirement. There are
probably thousands of situations in our affairs where such requirements must
become part of an application.

The problem, thus, is not implementing the requirement, but implementing
it under the restrictions of structured programming. The requirement is
readily understood by anyone, and is easily implemented in any programming
language by specifying directly the particular combination of operations,
conditions, and jumps depicted in the diagram; in other words, by creating our
own, non-standard flow-control construct. To implement this requirement,
then, we must employ explicit jumps – GOTO statements. We need the explicit
jumps in order to create our own construct, and we need our own construct
because the requirement cannot be expressed as a nested structure of standard
constructs.

But explicit jumps are forbidden under structured programming. So, instead
of creating our own construct, we must modify the flow diagram as shown in
figure 7-6. If you compare this diagram with the original one, you can see that
the transformation consists in duplicating the operation S3. As a result, instead
of being related through an explicit jump, some elements are related now

Figure 7-6

C1

True

False

S1

S2 C2

True

False

S3

S3

the contradictions 525chapter 7

through a shared operation. The two diagrams are functionally equivalent, but
the new one is properly structured (note the dashed boxes depicting the
standard constructs and the nesting levels). In practice, when S3 is just one or
two statements it is usually duplicated in its entirety; when larger, it is turned
into a subroutine (i.e., a separate module) and what is duplicated is only the
call to the subroutine.

Figure 7-7 is the flow diagram of another requirement that cannot be
reduced to standard constructs. This is a variation of the standard iterative
construct: the condition C1 and the operation S1 form the standard part, but
the loop is also controlled by a second condition, C2. The requirement is to
terminate the loop when either C1 or C2 is evaluated as False; in other words,
to test for termination both before and after each iteration. But the diagram
that represents this requirement is unstructured: it is not a structure of nested
standard constructs. As was the case with the diagram in figure 7-5, we can find
no portion (larger than the sequential construct) around which we could draw
a dashed box with only one entry and exit.

This is another one of those requirements that are common, simple, and
easily implemented by creating our own flow-control construct. One way is
to start with the standard iterative construct and modify it by adding the
condition C2 and a GOTO statement (to jump out of the loop); another way is
to design the whole loop with explicit jumps.

To implement the requirement under structured programming, however,
we must modify the diagram as shown in figure 7-8. This modification
illustrates the second type of transformation: creating new relations between
elements by sharing data, rather than sharing operations. Although function-
ally equivalent to the original one, the new diagram is a structure of nested
standard constructs. Instead of controlling directly the loop, C2 controls
now the value of x (a small piece of storage, even one bit), which serves as
switch, or indicator: x is cleared before entering the loop, and is set when C2

Figure 7-7

C1

True

False

S1 C2

True

False

526 structured programming chapter 7

yields False. The loop’s main condition is now a combination of the original
condition and the current value of x: the iterations are continued only as long
as both conditions, C1 and x=0, are evaluated as True.É

É The symbol ← inside the blocks denotes the assignment operation. When using
variables as switches, only two values (such as 0 and 1) are needed.

It must be noted that only the transformation based on shared data is, in
fact, necessary. Structured programming permits any transformations, but the
one based on shared operations is not strictly needed; it is merely the simpler
alternative in the case of diagrams like that shown in figure 7-5. In principle,
we can resort to memory variables to reduce any diagram to a structured
format.

These examples demonstrate some basic situations, but we can think of any
number of other, similar requirements (to say nothing of more complicated
ones) that are easier to implement directly, with non-standard flow-control
constructs, than through transformations: a loop nested in a conditional
construct and the need to jump from inside the loop to outside the conditional
construct; two or more levels of nested conditions and an operation common
to more than two elements in this construct; two or more levels of nested
iterations and the need to terminate the outermost loop from inside the
innermost one; and so on.

Note that the issue is not whether constructs based on transformations are
or are not better than constructs based on explicit jumps. Duplicating pieces of
software, or using variables as switches, may well be the best alternative in one
situation, while creating specialized flow-control constructs may be preferable
in another. Ultimately, it is the programmer’s task to implement the most
effective flow-control structure for a given requirement. The real issue, thus, is

Figure 7-8

x ← 0 C1 and x=0

True

False

S1 C2

True

False

x ← 1

the contradictions 527chapter 7

the validity of the claim that a restriction to standard constructs simplifies
development, guarantees error-free applications, and so forth. This claim, we
will see, is a delusion.

2

2
Let us review the concept of software structures and attributes (see “Software
Structures” in chapter 4). Software applications are complex structures, systems
of interacting structures. The elements of these structures are the various
entities that make up the application: statements, blocks of statements, larger
blocks, modules. The attributes of software entities are those characteristics
that can be possessed by more than one entity: accessing a particular file, using
a particular memory variable, calling a particular subroutine, being affected
by a particular business rule, and so forth. Attributes, therefore, relate the
application’s elements logically: each attribute creates a different set of relations
between the application’s elements, thereby giving rise to a different structure.
There is a structure for each attribute present in the application – a structure
reflecting the manner in which the elements are affected by that attribute. We
can also describe these structures as the various aspects of the application.

Although an application may have thousands of attributes, any one element
has only a few, so each structure involves only some of the application’s
elements. We saw, though, that it is useful to treat all the application’s elements
as elements of every structure; specifically, to consider for each element all
the attributes, those that affect it as well as those that do not, because not
possessing an attribute can be as significant as possessing it. This is clearly
revealed when depicting each attribute with a separate, classification-style
diagram: first, we divide the application’s elements into those affected and
those unaffected by the attribute; then, we divide the former according to
the ways they are affected, and the latter according to the reasons they are
unaffected.

But even when restricting our structures to those elements that actually
possess the attribute, we find that, because they possess several attributes, most
elements belong in several structures at the same time. And this sharing of
elements causes the structures to interact. Thus, a software element can be part
of business practices, use memory variables, access files, and call subroutines.
Software elements must have several attributes because their function is to
represent real entities. Since our affairs comprise entities that are shared by
various processes and events, the multiplicity of attributes, and the consequent
interaction of structures, is not surprising: it is precisely this interaction that
allows software to mirror our affairs. So it is quite silly to attempt to reduce

528 structured programming chapter 7

applications to independent structures, as do structured programming and the
other mechanistic theories, and at the same time to hope that these applications
will represent our affairs accurately.

Although there is no limit to the number of attributes in an application,
there are only a few types of attributes (or what I called software principles).
Thus, we may need a large number of attributes to implement all the rules and
methods reflected in the application, but all these attributes can be combined
under the type business practices. Similarly, the use of subroutines in general,
as well as the repetition of individual operations, can be combined under the
type shared operations. And accessing files, as well as using memory variables,
can be combined under the type shared data.

An important type are the flow-control attributes – those attributes that
establish the sequence in which the computer executes the application’s
elements. An element’s flow-control attributes determine when that element is
to be executed, relative to the other elements. Each flow-control attribute, thus,
groups several elements logically, and relates the group as a whole to the rest
of the application. The totality of flow-control attributes determines the
performance of the application under all possible run-time conditions.

The flow-control attributes are necessary because computers, being sequen-
tial machines, normally execute operations in the sequence in which they
appear in memory. But, while the operations that make up the application are
stored in memory in one particular order (the static sequence), they must be
executed in a different order (the dynamic sequence), and also in a different
order on different occasions. In a loop, for instance, the repeated block appears
only once, but the computer must be instructed to return to its beginning over
and over; similarly, in a conditional construct we specify two blocks, and
the computer must be instructed to execute one and bypass the other. Any
element in the application, in fact, may have to instruct the computer to jump
to another operation, forward or backward, instead of executing the one
immediately following it. Thus, since it is the elements themselves that control
the flow of execution, the flow-control features are attributes of these elements.

The flow-control attributes can also be described as the various means
through which programming languages allow us to implement the jumps
required in the flow of execution; that is, the exceptions to the sequential
execution. The most versatile operation is the explicit jump – the GOTO

statement, in most languages. Each GOTO gives rise to a flow-control attribute,
which relates logically several elements: the one from which, and the one to
which, the jump occurs, plus any others affected by the jump (those bypassed,
for instance).

Most jumps in high-level languages, however, are implicit. The construct
known as block (a series of consecutive operations, all executed or all bypassed)

the contradictions 529chapter 7

defines in effect a jump. Other implicit jumps include exception handling
(jumping automatically to a predefined location when a certain run-time
error occurs), the conditional construct (jumping over a statement or block),
and the iterative construct (jumping back to the beginning of the loop).
Additional types of jumps are often provided by language-specific statements
and constructs. All jumps, though, whether explicit or implicit, serve in
the end the same purpose: they create unique flow-control attributes. With
each jump, two or more elements are related logically – as viewed from the
perspective of the flow of execution – and this relationship is what we note as
a particular flow-control attribute.

As is the case with the other types of attributes, an element can have more
than one flow-control attribute. For example, the execution of a certain
element may need to be followed by the execution of different elements on
different occasions, depending on run-time conditions. Also like the other
types of attributes, each flow-control attribute gives rise to a structure – a flow-
control structure in this case. Although a flow-control structure usually affects
a small number of elements, here too it is useful to treat all the application’s
elements as elements of each structure. For, it may be just as important for the
application’s execution that an element is not affected by that particular flow-
control attribute, as it is that the element is affected. Take, for instance, the case
of design faults: the sequence of execution is just as wrong if two elements are
not connected by a jump when they should be, as it is if two elements are
connected by a jump when they shouldn’t be.

3

3
Having established the nature of software applications, and of software struc-
tures and attributes, we are in a position to understand the delusions of
structured programming. I will start with a brief discussion; then, in the
following subsections, we will study these delusions in detail.

To begin with, the theorists are only concerned with the flow-control
structures of the application. These structures are believed to provide a
complete representation of the running application, so their correctness is
believed to guarantee the correctness of the application. The theorists fail to see
that, no matter how important are the flow-control structures, the other
structures too influence the application’s performance. Once they commit this
fallacy, the next step follows logically: they insist that the application be
designed in such a way that all flow-control structures are combined into one;
and this we can accomplish by restricting each element to one flow-control
attribute.

530 structured programming chapter 7

Clearly, if each element is related to the rest of the application – from the
perspective of the flow of execution – in only one way, the entire application
can be designed as one hierarchical structure. This, ultimately, a mechanistic
representation of the entire application, is the goal of structured programming.
For, once we reduce applications to a mechanistic model, we can design and
validate them with the tools of mathematics.

We recognize in this idea the mechanistic fallacy of reification: the theorists
assume that one simple structure can provide an accurate representation of the
complex phenomenon that is a software application. They extract first one type
of structures – the flow-control structures; then, they go even further and
attempt to reduce all structures of this type to one structure.

The structure we are left with – the structure believed to represent the
application – is the nesting scheme. The neat nesting of constructs and
modules we see in the flow diagram constitutes a simple hierarchical structure.
Remember that both the nesting and the hierarchy are expected to represent
the execution of the application’s elements, not their static arrangement. The
sequence of execution defined through the nesting scheme is as follows:
the computer will execute the elements found at a given level of nesting in the
order in which they appear; but if one of these elements has others nested
within it, they will be executed before continuing at the current level; this rule
is applied then to each of the nested elements, and so on. If the nesting scheme
is seen as a hierarchical structure, it should be obvious that, by repeating this
process recursively, every element in the structure is bound to be executed,
executed only once, and executed at a particular time relative to the others.

So the nesting concept is simply a convention: a way to define a precise,
unambiguous sequence of execution. By means of a nesting scheme, the
programmer specifies the sequence in which he wants the computer to execute
the application’s elements at run time. The nesting convention is, in effect, an
implicit flow-control attribute – an attribute possessed by every element in the
application. And when this attribute is the only flow-control attribute, the
nesting scheme is the only flow-control structure.

Recall the condition that each element have only one entry and exit. This,
clearly, is the same as demanding that each element be connected to the rest
of the application in only one way, or that each element possess only one
flow-control attribute. The hierarchical structure is the answer, since in a
hierarchical nesting scheme each element is necessarily connected to the
others in only one way. Thus, the principle of nesting, and the restrictions to
one entry and exit, one flow-control attribute, and one hierarchical structure,
are all related.

It is easy to see that the software nesting scheme is the counterpart of the
physical hierarchical structure: the mechanistic concept of things within things

the contradictions 531chapter 7

that is so useful in manufacturing and construction, and which the software
theorists are trying to emulate. The aim of structured programming is to make
the flow of execution a perfect structure, a structure of software things within
things. Just as the nesting scheme of a physical structure determines the
position of each part and subassembly relative to the others, so the nesting
scheme of a software application determines when each element is executed
relative to the others. While one structure describes space relationships, the
other describes time relationships; but both are strict hierarchies.

We can also express this analogy as follows. Physical systems can be studied
with the tools of mathematics because their dynamic structure usually mirrors
the static one. The sequence of operations of a machine, for instance, closely
corresponds to the hierarchical diagram of parts and subassemblies that
defines the machine. In software systems, on the other hand, the dynamic
structure is very different from the static one: the flow of execution of an
application does not correspond closely enough to the flow diagram (the static
nesting of constructs and modules).

By forcing the flow of execution to follow the nesting scheme, the advocates
of structured programming hope to make the dynamic structure of the
application mirror the static one, just as it does in physical systems. It is the
discrepancy between the dynamic structure and the static one that makes
programming more difficult and less successful than engineering. We know
that hierarchical systems can be represented mathematically. Thus, if we
ensure that the flow diagram is a hierarchical nesting scheme, the flow of
execution will mirror a hierarchical system, and the mathematical model that
represents the diagram will represent at the same time the running application.

This idea – the dream of structured programming from the beginning – is
clearly stated in Dijkstra’s notorious paper: “Our powers to visualize processes
evolving in time are relatively poorly developed. For that reason we should
do . . . our utmost to shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between the program
(spread out in text space) and the process (spread out in time) as trivial as
possible.”Ê

And here is the same idea expressed by other academics twenty years later:
“Programs are essentially dynamic beings that exhibit a flow of control, while
the program listing is a static piece of text. To ease understanding, the problem
is to bring the two into harmony – to have the static text closely reflect the

Ê E. W. Dijkstra, “Go To Statement Considered Harmful,” in Milestones in Software
Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society
Press, ©1990 IEEE), p. 9 – paper originally published in Communications of the ACM 11,
no. 3 (1968): 147–148.

532 structured programming chapter 7

dynamic execution.”Ë “The goal of structured programming is to write a
program such that its dynamic structure is the same as its static structure. In
other words, the program should be written in a manner such that during
execution its control flow is linearized and follows the linear organization of
the program text.”Ì

This wish betrays the naivety of the software theorists: they actually believed
that the enormously complex structure that is the flow of execution of an
application can mirror the simple diagram that is its static representation.
And the persistence of this belief demonstrates the corruptive effect of the
mechanistic dogma. There were thousands of opportunities, during those
twenty years, for the theorists to observe the complexity of software. Their
mechanistic obsession, however, prevented them from recognizing these
situations as falsifications of the idea of structured programming.

�

Now, a running application could, in principle, be a strict nesting scheme – a
system of elements whose sequence of execution reflects their position in
a hierarchical structure. This is what structured programming appears to
promote, but it should be obvious that no serious application can be created in
this manner. For, in such an application there would be no way to modify the
flow of execution: every element would consist of nothing but one operation
or several consecutive operations, would always have to be executed, always
executed once, and always in the sequence established by the nesting scheme.
The application, in other words, would always do the same thing. This is what
we should expect, of course, if we want the execution of a software application
– that is, its representation in time – to resemble the nesting scheme of a
physical structure. After all, a physical structure like an appliance is always the
same thing: its parts and subassemblies always exist, and are always arranged
in the same way.

The theorists recognize that software is more versatile than mechanical
devices, and that we need more than a nesting scheme if we want to create
serious applications. So, while praising the benefits of a single flow-control
structure, they give us the means to relate the application’s elements in
additional ways: the conditional and iterative constructs. The purpose of these
constructs is to override the nesting scheme: they endow the application’s

Ë Doug Bell, Ian Morrey, and John Pugh, Software Engineering: A Programming Approach
(Hemel Hempstead, UK: Prentice Hall, 1987), p. 17.

Ì Pankaj Jalote, An Integrated Approach to Software Engineering (New York: Springer-
Verlag, 1991), p. 236.

the contradictions 533chapter 7

elements with additional flow-control attributes, thereby creating flow-control
structures that are additional to the nesting scheme. Consequently, the appli-
cation is no longer a strict nesting scheme of sequential constructs. It is a
nesting scheme plus other structures – a system of flow-control structures.
The two constructs, thus, serve to restore the multiplicity of structures and the
complexity that had been eliminated when the theorists tried to reduce the
application to one structure.

Because the application is still a nesting scheme of constructs with only one
entry and exit, the theorists believe that the nesting scheme alone continues
to represent the running application. The additional flow-control structures
are not reflected in the nesting scheme, so it is easy to ignore them. But,
even though they are not as obvious as the nesting scheme, these structures
contribute to the complexity of the application – as do the structures created
by shared data or operations, and by business or software practices, also
ignored by the theorists because they are not obvious.

Finally, the hierarchical nesting scheme with its sequential constructs, and
the enhancement provided by the two additional constructs, appear to form a
basic set of software operations – basic in that they are the only operations
needed, in principle, to implement any application. As a result, the theorists
confuse these three types of constructs with the set of operations that forms the
definition of a hierarchical structure (the operations that combine the elements
of one level to create the next one). This leads to the belief that, by restricting
ourselves to these constructs, we will realize the original dream: a flow of
execution that mirrors the static nesting scheme, and is therefore a simple
structure. This also explains why we are asked to convert those flow-control
structures that cannot be implemented with these constructs, into other types
of structures. But if the true purpose of the conditional and iterative constructs
is to create additional flow-control structures, this conversion is futile, because
the flow of execution is no longer a simple structure in any case.

�

There are so many fallacies in the theory of structured programming that we
must separate it into several stages if we are to study it properly, and to learn
from its delusions. These are not chronological stages, though, since they all
occurred at about the same time. They are best described as stages in a process
of degradation. We can identify four stages, and I will refer to them simply as
the first, second, third, and fourth delusions. Bear in mind, however, that these
delusions are interrelated, so the distinction may not always be clear-cut.

The first delusion is the belief that one structure alone – a flow-control
structure – can accurately represent the performance of the application.

534 structured programming chapter 7

The second delusion is the belief that the standard constructs constitute a
basic set of operations, whereas their true role is to restore the multiplicity of
flow-control structures lost in the first delusion.

The third delusion is the belief that, if it is possible in principle to restrict
applications to the standard flow-control constructs, we can develop actual
applications in this manner. We are to modify our requirements by applying
certain transformations, and this effort is believed to be worthwhile because
the restriction to standard constructs should reduce the application to one
structure. What the transformations do, though, is convert the relations due to
flow-control attributes into relations due to other types of attributes, thereby
adding to the other types of structures.

The fourth delusion is the notion of inconvenience: if we find the transfor-
mations inconvenient, or impractical, we don’t have to actually implement
them; the application will have a single flow-control structure merely because
the transformations can be implemented in principle. The transformations are
important, but only when convenient. This belief led to the reinstatement of
many non-standard flow-control constructs, while the theorists continued to
claim that the flow of execution was being reduced to a simple structure.

Common to all four delusions, thus, is the continuing belief in a mathemati-
cal representation of software applications, error-free programming, and the
rest, when in fact these qualities had been lost from the start. Even before the
detailed analysis, therefore, we can make this observation: When the software
experts were promoting structured programming in the 1970s, when they
were presenting it as a new science and a revolution in programming, all
four delusions had already occurred. Thus, there never existed a useful,
serious, scientific theory of structured programming – not even for a day.
The movement known as structured programming, propagandized by the
software elites and embraced by the software bureaucrats, was a fraud from the
very beginning.

The analysis of these delusions also reveals the pseudoscientific nature of
structured programming. The theory is falsified again and again, and the
experts respond by expanding it. They restore, under different names and in
complicated ways, the traditional programming concepts; so they restore
precisely those concepts which they had previously rejected, and which
must indeed be rejected, because they contradict the principles of structured
programming.

The four delusions are, in the end, various stages in the struggle to rescue
the theory from refutation by making it cope with those situations that falsify
it. Structured programming could be promoted as a practical idea only after
most of the original principles had been abandoned, and the complexity of
applications again accepted; in other words, at the precise moment when it had

the contradictions 535chapter 7

lost the very qualities it was being promoted for. What was left – and what was
called structured programming – was not a scientific theory, nor even a
methodology, but merely an informal, and largely worthless, collection of
programming tips.

The First Delusion

The First Delusion

The first delusion is the delusion of the main structure: the belief that one
structure alone can represent the application, since the other structures
are unimportant, or can be studied separately. In the case of structured
programming, the main structure is the nesting scheme: the hierarchical
structure of constructs and modules. The static nesting scheme is believed
to define completely and precisely the flow of execution, and hence the
application’s dynamic performance (see pp. 530–532).

If the goal of structured programming is to represent applications mathe-
matically, the theorists are right when attempting to reduce them to a simple
structure. As we know, mechanistic systems, as well as mathematical models,
are logically equivalent to simple structures. Thus, it is true that only an
application that was reduced to a simple structure can have a mathematical
model. The fallacy, rather, is in the belief that applications can be reduced to a
simple structure.

Like all mechanists, the software theorists do not take this possibility as
hypothesis but as fact. Naturally, then, they perceive the flow-control structure
(the sequence in which the computer executes the application’s elements) as
the structure that determines the application’s performance. So, they conclude,
we must make this structure a strict hierarchy of software entities. And this we
can do by making the nesting scheme (which is simply the implementation of
the flow-control structure by means of a programming language) a strict
hierarchy.

But the flow-control structure is not an independent structure. Its elements
are the software entities that make up the application, so they also function as
elements in other structures: in the various processes implemented in the
application. Every business practice that affects more than one element,
every subroutine used by more than one element, every memory variable
or database field accessed in more than one element, connects these elements
logically, creating relations that are different from the relations defined by the
flow of execution. This, obviously, is their purpose. It is precisely because
one structure is insufficient that we must relate the application’s elements
in additional ways. Just like the flow-control structure, each one of these

536 structured programming chapter 7

structures could be designed, if we wanted, as a perfect hierarchy. But, while
the individual structures can be represented mathematically, the application as
a whole cannot. Because they share their elements, the structures interact, and
this makes the application a non-mechanistic phenomenon (see p. 528).

No matter how important is the flow-control structure, the other structures
too affect the application’s performance. Thus, even with a correct flow-control
structure, the application will malfunction if a subroutine or variable is
misused, or if a business practice is wrongly implemented; in other words, if
one of the other structures does not match the requirements.

So, if the other structures affect the application’s performance as strongly
as does the flow-control structure, if we must ensure that every structure
is perfect, how can the theorists claim that a mathematical representation
of the flow of execution will guarantee the application’s correctness? They
are undoubtedly aware that the other structures create additional relations
between the same elements, but their mechanistic obsession prevents them
from appreciating the significance of these simultaneous relationships.

The theory of structured programming, thus, is refuted by the existence of
the other structures. Even if we managed to represent mathematically the flow-
control structure of an entire application, this achievement would be worthless,
because the application’s elements are related at the same time in additional
ways. Like all attempts to reduce a complex phenomenon to a simple structure,
a mathematical model of the flow-control structure would provide a poor
approximation of the running application. What we would note in practice is
that the model could not account for all the alternatives that the application is
displaying. (Here we are discussing only the complexity created by the other
types of structures. As we will see under the second delusion, the flow-control
structure itself consists of interacting structures.)

All we can say in defence of software mechanism is that each aspect of
the application – the flow of execution as well as the various processes – is
indeed more easily designed and programmed if we view it as a hierarchical
structure. But this well-known quality of the hierarchical concept can hardly
form the basis of a formal theory of programming. Only rarely are strict
hierarchies the most effective implementation of a requirement, and this is why
programming languages permit us to override, when necessary, the neat
hierarchical relations. Besides, only rarely is a mathematical representation of
even one of these structures, and even a portion of a structure, practical, or
useful. And a mathematical representation of the entire application is a fantasy.

Note how similar this delusion is to the linguistic delusions we studied in
previous chapters – the attempts to reduce linguistic communication to a
mechanistic model. In language, it is usually the syntax or the logic of a
sentence that is believed to be the main structure. And the mechanistic theories

the first delusion 537chapter 7

of language are failing for the same reason the mechanistic software theories
are failing: the existence of other structures.

It would have been too much, perhaps, to expect the software theorists to
recognize the similarity of software and language, and to learn from the
failure of the linguistic theories. But even without this wisdom, it should
have been obvious that software entities are related in many ways at the
same time; that the flow-control structure is not independent; and that, as a
result, applications cannot be represented mathematically. Thus, the theory of
structured programming was refuted at this point, and should have been
abandoned. Instead, its advocates decided to “improve” it – which they did
by reinstating the old concepts, as this is the only way to cope with the
complexity of applications. And so they turned structured programming into
a pseudoscience.

The Second Delusion

The Second Delusion
1 1
The second delusion emerged when the theorists attempted to restore some of
the complexity lost through the first delusion. An application implemented as
a strict nesting scheme would be trivial, its performance no more complex
than what could be represented with a hierarchical structure of sequential
constructs. We could perhaps describe mathematically its flow of execution,
but it would have no practical value. There are two reasons for this: first,
without jumps in the flow of execution – jumps controlled by run-time
conditions – the application would always do the same thing; second, without
a way to link the flow-control structure to the structures that depict files,
subroutines, business practices, and so forth, these processes would remain
isolated and would have no bearing on the application’s performance.

Real-world applications are complex phenomena, systems of interacting
structures. So, to make structured programming practical, the theorists had to
abandon the idea of a single structure. In the second delusion, they make the
flow-control structure (supposed to be just the nesting scheme) a complex
structure again, by permitting multiple flow-control structures. In the third
delusion, we will see later, they make the whole application a complex structure
again, by restoring the interactions between the flow-control structures and
some of the other types of structures. And in the fourth delusion they abandon
the last restrictions and permit any flow-control structures that are useful.
The pseudoscientific nature of this project is revealed, as I already pointed out,
by the reinstatement of concepts that were previously excluded (because they

538 structured programming chapter 7

contradict the principles of structured programming), and by the delusion
that the theory can continue to function as originally claimed, despite these
reversals.

�

The second delusion involves the standard conditional and iterative constructs.
Under structured programming, you recall, these two constructs, along with
the sequential construct, are the only flow-control constructs permitted.
Because it is possible – in principle, at least – to implement any application
using only these constructs and the nesting scheme, the three constructs are
seen as a basic set of software operations.

The theorists look at the application’s flow diagram, note that the flow-
control constructs create levels of nesting, and conclude that their purpose
is to combine software elements into higher-level elements – just as the
operations that define a simple hierarchical structure create the elements of
each level from those of the lower one. But this conclusion is mistaken: the
theorists confuse the hierarchical nesting scheme and the three constructs,
with the concept of a hierarchy and its operations.

Now, in the flow diagram the constructs do appear to combine elements on
higher and higher levels; but in the running application their role is far
more complex. The theorists believe that the restriction to a nesting scheme
and standard constructs ensures that the flow-control structure is a simple
structure, when the real purpose of these constructs is the exact opposite: to
make the flow-control structure a complex structure.

This is easy to understand if we remember why we need these constructs in
the first place. The conditional and iterative constructs provide (implicit)
jumps in the flow of execution; and the function of jumps is to override the
nesting scheme, by relating software elements in ways additional to the way
they are related through the nesting scheme. We need the two constructs, thus,
when certain requirements cannot be implemented with only one flow-control
structure. As we saw earlier, the ability of an element to alter the flow of
execution, implicitly or explicitly, is in effect a flow-control attribute (see
pp. 529–530). Jumps override the nesting scheme by creating additional flow-
control attributes, and hence additional flow-control structures. (We will
examine these structures shortly.)

So the whole idea of standard flow-control constructs springs from a
misunderstanding: the theorists mistakenly interpret the sequential, condi-
tional, and iterative constructs as the operations of a hierarchical structure.
To understand this mistake, let us start by recalling what is a hierarchical
structure.

the second delusion 539chapter 7

In a hierarchical structure, we combine a number of relatively simple
elements (the starting elements) into more and more complex ones, until we
reach the top element. The set of starting elements can be described as the basic
building blocks of the hierarchy. At each level, the new elements are created by
performing certain operations with the elements of the lower level. Thus, the
elements become more and more complex as we move to higher levels,
while the operations themselves may remain quite simple. The definition of a
hierarchy includes the starting elements, the operations, and some rules
describing their permissible uses.

The fallacy committed by the advocates of structured programming is in
perceiving the three standard constructs as operations in the hierarchical
structure that is the nesting scheme. The function of these constructs, in other
words, is thought to be simply to combine software elements (the statements
of a programming language) into larger and larger elements, one nesting level
at a time. In reality, only the sequential construct combines elements into
higher-level ones; the function of the conditional and iterative constructs is not
to combine elements, but to generate multiple flow-control structures.

To appreciate why the conditional and iterative constructs are different, let
us look at other kinds of structures and operations. In a physical structure, the
starting elements are the basic components, and the operations are the means
whereby the components are combined to form the levels of subassemblies.
When the physical structure is a device like a machine, its performance too can
be represented with a structure; and the operations in this structure are the
ways in which the working of a subassembly is determined by the working of
those at the lower level. In electronic systems, the starting elements are
simple parts like resistors, capacitors, and transistors, and the operations are
the connections that combine these parts into circuits, circuit boards, and
devices. Here, too, in addition to the physical structure there is a structure that
represents the performance of the system, and the operations in the latter are
the ways in which the electronic functions at one level give rise to the functions
we observe at the next higher level.

Turning now to software systems, consider a hypothetical application
consisting of only one structure – the flow-control structure, just as structured
programming says. The starting elements in this hierarchy are the statements
permitted by a particular programming language, and the operations are the
various ways in which statements are combined into blocks of statements, and
blocks into larger blocks, modules, and so on. (Remember that the operations
we are discussing here are the operations that define the hierarchical flow-
control structure, which exists in time – not the operations we see as statements
in a programming language; those operations function as the starting elements
of the flow-control structure.) Clearly, if the flow of execution is to reflect

540 structured programming chapter 7

the flow-control structure, the operations must be determined solely by
the nesting scheme. Or, to put it differently, the only operations required
in a software structure are the relations that create a nesting scheme of
software elements. In particular, we need operations to delimit blocks of
statements, and to invoke modules or subroutines. Ultimately, the operations
in a software hierarchy must fulfil the same function as those in other types of
hierarchies: combining the elements of one level to create the elements of the
next higher level.

Note what is common to all these hierarchical systems: they are based on a
set of starting elements and a set of operations, which constitute the definition
of the hierarchy; and these sets can then generate any number of actual
structures – different objects, or devices, or circuits, or software applications.
Each actual structure is one particular implementation of a certain hierarchical
system – a physical system, an electronic system, or a software system; that is,
one combination of elements out of the many possible in that system. Note also
that the actual structures are fixed: when we create a particular combination of
elements, we end up with a specific device, circuit, or software application. The
same structure – the same combination of elements – cannot represent two
devices, circuits, or applications.

Given these common features, the second delusion ought to be obvious:
the three standard constructs are not the set of operations that make up
the definition of hierarchical software systems, as the theorists believe; and
consequently, the resulting structures are not simple hierarchical software
structures. That set of operations is found in the concept of sequential con-
structs, and in the concepts of blocks, modules, and subroutines. These are the
only operations we need in order to generate hierarchical structures of software
elements; that is, to generate any nesting scheme. With these operations,
we create a higher level by combining several elements into a larger one:
consecutive elements when using sequential constructs, and separate, distant
elements when invoking modules and subroutines. (Subroutines, of course,
also serve to create other types of structures, as we saw under the first delusion.
But we must discuss one delusion at a time, so here we assume, with the
theorists, that the flow-control structure is an independent structure.)

Of the three standard constructs, then, only the sequential construct
performs the kind of operation that defines a hierarchical structure. We do not
need conditional or iterative constructs to create software structures, so these
two constructs do not perform ordinary operations, and are not part of the
definition of a software hierarchy. Hierarchical systems, we just saw, generate
actual structures that are fixed; and the structures formed with these two
constructs are variable. While ordinary operations consist in combining
elements, the operation performed by the conditional and iterative constructs

the second delusion 541chapter 7

consists in selecting elements. Specifically, instead of combining several ele-
ments into a higher-level element, the conditional and iterative constructs
select one of two elements: in the conditional construct there is one selection,
and one of the two elements may be empty; in the iterative construct the
selection is performed in each iteration, and one of the two elements (the one
selected when exiting the loop) is always empty.

So these two constructs do not treat software elements in the way a physical
system treats the parts of a subassembly, or an electronic system treats the
components of a circuit. In the other hierarchies, all the lower-level elements
become part of the higher level, whereas in software hierarchies only one of the
two elements that make up these constructs is actually executed. The real
function of these constructs, therefore, is not to create higher-level elements
within one nesting scheme, but to create multiple nesting schemes. Their
function, in other words, is to turn the flow of execution from one structure
into a system of structures.

2

2
If you still can’t see how different they are from ordinary operations, note that
both the conditional and the iterative constructs employ a condition. This is an
important clue, and we can now analyze the second delusion with the method
of simple and complex structures. Simple structures have no conditions in
their operations. Hence, software structures that incorporate these constructs
are complex, not simple. The condition, evaluated at run time and variously
yielding True or False, is what generates the multiple structures.

Remember, again, that the structure we are discussing is the application’s
flow of execution (a structure that exists in time), not its flow diagram (a
structure that exists in space). In flow diagrams these constructs do perhaps
combine elements in a simple hierarchical way; but their run-time operation
performs a selection, not a combination. And, since the running application
includes all possible selections, it embodies all resulting structures.

Let us try, in our imagination, to identify and separate the structures that
make up the complex flow-control structure – the one depicting the true
manner in which the computer executes the application’s elements. Let us start
with the static structure (the flow diagram) and replace all the conditional and
iterative constructs with the elements that are actually executed at run time.
For simplicity, imagine an application that uses only one such construct
(see figure 7-9).

Thus, in the case of the conditional construct, instead of a condition and two
elements, what we will see in the run-time structure is a sequential construct

542 structured programming chapter 7

with one element – the element actually executed. And in the case of the
iterative construct, instead of a condition and an element in a loop, what we
will see is a sequential construct made up of several consecutive sequential
constructs, their number being the number of times the element is executed at
run time. More precisely, each iteration adds a sequential construct containing
that element to the previous sequential construct, thereby generating a new,
higher-level sequential construct.

In the flow of execution, then, there is only a sequential construct. So,
from the perspective of the flow of execution, the original structure can be
represented as two or more overlapping structures, which differ only in the
sequential construct that replaces the original conditional or iterative one. It is
quite easy to visualize the two resulting structures in the case of the conditional
construct, where the sequential construct contains one or the other of the two
elements that can be selected. In the case of the iterative construct, though,
there are many structures, as many as the possible number of iterations: the
final construct can include none, one, two, three, etc., merged sequential
constructs, depending on the condition. Each number gives rise to a slightly
different final construct, and hence a different structure. Clearly, since the
running application can perform a different number of iterations at different
times, it embodies all these structures.

We can also explain the additional flow-control structures by counting the

Figure 7-9

STATIC DYNAMIC

…















C1

True

False

S1

S2

S1

S2

C1

True

False

S1

S1

S1 S1

S1 S1 S1

the second delusion 543chapter 7

number of jumps implicit in a construct. Each jump in execution creates,
as we know, a flow-control attribute, and hence a flow-control structure.
The number of possible jumps reflects, therefore, the number of different
sequences of execution that the application can display – the number of
different paths that the execution can follow. In the conditional construct there
are two possible paths, but only one needs a jump; the other is, in effect, the
flow diagram itself. Let us decide, arbitrarily, that the path selected when the
condition is False represents the flow diagram; then, the one selected when
the condition is True represents the jump, and hence the additional structure.

In the iterative construct there are many possible paths, because the condi-
tion is evaluated in each iteration. For example, if in a particular situation the
condition permits five iterations, this means that it is True five times, so there
are five (backward) jumps. In another situation, the number of iterations, and
hence the number of jumps generated by the construct, will be different. The
number of possible structures is the largest number of iterations permitted
by the condition, which is the same as the number of different paths. It is
convenient to interpret these structures as those that are additional to the flow
diagram; then, the flow diagram itself is represented by the path followed when
ending the loop, when the condition is False.

�

To summarize, ordinary operations – the kind we see in other types of
hierarchical systems – give rise to fixed structures, whereas the conditional
and iterative software constructs give rise to variable structures. A variable
structure is logically equivalent to a family of structures that are almost
identical, sharing all their elements except for one sequential construct. And,
since these structures exist together in the running application, a variable
structure is the same as a complex structure.

We can also describe the flow-control constructs as means of turning a
simple static structure (the flow diagram, which reflects the nesting scheme)
into a complex dynamic one (the flow-control structure of the running
application). Through its condition, each construct creates from one nesting
scheme several flow-control structures, and hence several sequences of exe-
cution. (We saw earlier how a hierarchical structure defines, through the
nesting convention, a specific sequence of execution; see p. 531.) The construct
does this by endowing elements with several flow-control attributes, thereby
relating them, from the perspective of the flow of execution, in several ways.
We can call the individual flow-control structures dynamic nesting schemes,
since each one is a slightly different version, in the running application, of the
static nesting scheme. The complex flow-control structure that reflects the

544 structured programming chapter 7

performance of the application as a whole is then the totality of dynamic
nesting schemes.

Complex structures cannot be reduced to simple ones, of course. We
can perhaps study the individual structures when we assume one or two
conditional or iterative constructs. But in real applications there are thousands
of constructs, used at all levels, with elements and modules nested within one
another. The links between structures are then too involved to analyze, and
even to imagine.

So it is the static flow-control structure, not the dynamic one, that is the
software equivalent of a physical structure. It is the dynamic structure that the
theorists attempt to represent mathematically, though. Were their interest
limited to flow diagrams, then strictly hierarchical methods like those used to
build physical structures would indeed work. They work with the other types
of systems because in those systems the dynamic structure usually mirrors the
static one.É

�

We saw how each flow-control construct generates, through its condition, a
system of flow-control structures. But in addition to the interactions between
these structures, the flow-control constructs cause other interactions yet, with
other types of structures. Here is how: The conditions employed by these
constructs perform calculations and comparisons, so they necessarily involve
memory variables, database fields, subroutines, or practices. They involve,
thus, software processes; and, as we know, each process gives rise to a structure
– the structure reflecting how the application’s elements are affected by a
particular variable, field, subroutine, or practice. Through their conditions,
therefore, the flow-control constructs link the complex flow-control structure
to some of the other structures that make up the application – structures that
were supposedly isolated from the flow-control structure in the first delusion.
The links to those structures are officially reinstated by the theorists in the

É Man-made physical systems that change over time (complicated mechanical or
electronic systems) may well have a dynamic flow-control structure that is different from
their static flow diagram and is, at the same time, complex – just like software systems. Even
then, however, they remain relatively simple, so their dynamic behaviour can be usefully
approximated with mechanistic means. They are equivalent, thus, to trivial software
systems. We refrain from creating physical systems that we cannot fully understand and
control, while being more ambitious with our software systems. But then, if we create
software systems that are far more involved than our physical ones, we should be prepared
to deal with the resulting complexity. It is absurd to attempt to represent them as we do the
physical ones, mechanistically. Note that it is quite common for natural physical systems to
display non-mechanistic behaviour (the three-body system, for instance, see pp. 107–108).

the second delusion 545chapter 7

third delusion, but they must be mentioned here too, just to demonstrate the
great complexity created by the conditional and iterative constructs, even as
they are believed to be nothing but ordinary operations.

The complexity created by the conditional and iterative constructs is, in fact,
even greater. For, in addition to the links to other types of structures, each
construct creates links to other flow-control structures: to the families of
structures generated by other constructs. The nesting process is what causes
these links. Because these constructs are used at all levels, the links between
the structures generated by a particular construct, at a particular level, also
affect the structures generated by the constructs nested within it. So the
links at the lower levels are additional to the links created by the lower-level
constructs themselves.

3

3
The second delusion, we saw, consists in confusing the standard flow-control
constructs with the set of operations that defines a simple hierarchical struc-
ture. The theorists are fascinated by the fact that three constructs are all we
need, in principle, in order to create software applications; so they conclude,
wrongly, that these constructs constitute a minimal set of software operations.

Now, a real minimal set of operations would indeed be an important
discovery. If a set like this existed, then by restricting ourselves to these
operations we could perhaps develop our applications mathematically. Even a
minimal set defining just the flow-control structure (which is all we can hope
for after the first delusion) would still be interesting. But if these constructs
are not ordinary operations, the fact that they are a minimal set is irrelevant.
If the flow-control structure is not a simple hierarchical structure, we cannot
develop applications mathematically no matter what starting elements and
operations we use.

The three constructs may well form a minimal set, but all we can say about
it is that it is the minimal set of constructs that can generate enough flow-
control structures to implement any software requirement. Here is why: The
nesting scheme, as we know, endows all the elements in the application with
one flow-control attribute; but each flow-control construct endows certain
elements with additional flow-control attributes; finally, each one of these
attributes gives rise to a flow-control structure, and this system of flow-control
structures constitutes the application’s flow of execution. To create serious
applications, elements must be related through many different attributes, but
only some of these attributes need to be of the flow-control type. What has been
proved, thus, is that the three standard constructs – in conjunction with

546 structured programming chapter 7

the nesting scheme – provide, in principle, the minimal set of flow-control
attributes required to create any application. In principle, then, we can replace
the extra flow-control attributes present in a given application with other types
of attributes. It is possible, therefore, to reduce all flow-control structures to
structures based on the three standard constructs – if we agree to add other
types of structures. (This is the essence of the transformations prescribed in the
third delusion.)

So the idea of a minimal set of flow-control constructs may be an interesting
subject of research in computer science, and this is how it was perceived
by the scientists who first studied it.Ê But it is meaningless as a method
of programming. For, if the flow-control structure (to say nothing of the
application as a whole) ceases to be a simple hierarchical structure as soon as
we add any conditional or iterative constructs to the nesting scheme, the dream
of mathematical programming is lost, so it doesn’t matter whether the minimal
set has three constructs or thirty, or whether we restrict ourselves to a minimal
set or create our own constructs.

�

When misinterpreting the function of the flow-control constructs, the software
mechanists are committing the same fallacy as all the mechanists before
them: attempting to represent a complex phenomenon by means of a simple
structure. These constructs are seen as mere operations within the traditional
nesting concept, when in reality they constitute a new concept – a concept
powerful enough to turn simple static structures into complex dynamic ones.
The mechanists, though, continue to believe that the flow of execution can be
represented with one structure. So the real function of these constructs is to
restore some of the complexity that was lost in the first delusion, when the
mechanists reduced applications to one structure. (The rest of that complexity
is restored in the third and fourth delusions.)

The fallacy, thus, is in the belief that we can discover a simple structure
that has the potency of a complex one. The software mechanists note that
the hierarchical concept allows us to generate large structures with just a
few operations and starting elements, and that this is useful in fields like
manufacturing and construction; and they want to have the same qualities in
software. They want software systems to be simple hierarchical structures, but

Ê See, for example, Corrado Böhm and Giuseppe Jacopini, “Flow Diagrams, Turing
Machines and Languages with Only Two Formation Rules,” in Milestones in Software
Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society
Press, ©1990 IEEE) – paper originally published in Communications of the ACM 9, no. 5
(1966): 366–371. We will return to this paper later.

the second delusion 547chapter 7

to retain their power and versatility; that is, their ability to perform tasks which
cannot be performed by mechanical or electronic systems. They fail to see that
this ability derives precisely from the fact that software allows us to create a
kind of structures which the other systems do not – complex structures.

Nothing stops us from restricting software applications to simple hierarchi-
cal structures, just like those we create with the other systems. We would be
able to develop, however, only trivial applications – only those that could be
represented as a nesting scheme of sequential constructs. To create a greater
variety of applications, we must enhance the nesting concept with the concept
of conditional and iterative constructs; but then the applications are no
longer simple structures. In the end, it is only through self-deception that the
mechanists manage to have a simple structure with the potency of a complex
one: they are creating complex software structures while continuing to believe
that they are working with simple ones.

The Third Delusion

The Third Delusion
1 1
The first delusion, we recall, was the belief that the flow-control structure can
be isolated from the other structures that make up the application, and that it
can be reduced to a simple structure. With the second delusion, the flow-
control structure became a system of interacting flow-control structures;
moreover, it was linked, through the conditions used in the flow-control
constructs, to other types of structures. Thus, if after the first delusion the
expectation of a mechanistic representation of the flow-control structure was
still valid, this expectation was illogical after the second delusion, when it
became a complex structure.

The third delusion is the belief that it is important to reduce the application
– through a series of transformations – to the flow-control structure defined in
the second delusion. It is important, the theorists insist, because that structure
can be represented mechanistically. Through this reduction, therefore, we will
represent the entire application mechanistically. Just as they succumbed to the
second delusion when attempting to suppress the evidence of complexity after
the first one, the theorists succumbed to the third delusion because they
ignored the evidence of complexity after the second one.

I defined the four delusions as stages in a process of degradation, as
distinct opportunities for the theorists and the practitioners to recognize
the fallaciousness of structured programming. On this definition, the third
delusion is a new development. The idea of structured programming could

548 structured programming chapter 7

have ended with the second delusion, when the conditional and iterative
constructs were introduced, since the very need for these constructs proves
that the flow-control structure of a serious application is more than a simple
hierarchical structure. Having missed the second opportunity to recognize
their mistake, the theorists promoted now the idea of transformations: we
must modify the application’s requirements so as to limit the application to
flow-control structures based on the three standard constructs; all other flow-
control structures must be replaced with structures based on shared data or
shared operations (see pp. 524–527).

Everyone could see that these transformations are artificial, that they
complicate the application, that in most situations they are totally impractical,
and that even when we manage to implement them we still cannot prove our
applications mathematically. Yet no one wondered why, if the principle of
hierarchical structures works so well in other fields, if we understand it so
readily and implement it so easily with other systems, it is impractical for
software systems. No one saw this as one more piece of evidence that software
applications are not simple hierarchical structures. Thus, the theorists and the
practitioners missed the third opportunity to recognize the fallaciousness of
structured programming.

2

2
Let us review the motivation for the transformations. To perform a given task,
the application’s elements must be related; and, usually, they must be related in
more than one way. It is by sharing attributes that software elements are related.
Each attribute gives rise to a set of relations; namely, the structure representing
how the application’s elements are affected by that attribute.

There are several types of attributes and relations. A relation is formed, for
example, when elements use the same memory variable or database field, when
they perform the same operation or call the same subroutine, or when they are
part of the same business practice. Elements can also be related through the
flow of execution: the relative sequence in which they are executed constitutes
a logical relation, so it acts as a shared attribute. And it is only this type of
attributes and relations – the flow-control type – that structured programming
recognizes.

A software element can possess more than one attribute. Thus, an element
can use several variables, call several subroutines, and be part of several
practices. Each attribute gives rise to a different set of relations between the
application’s elements, so each element can be related to the others in several
ways at the same time. Since these sets of relations are the structures that

the third delusion 549chapter 7

make up the application, we can also express this by saying that each element
is part of several structures at the same time. The multiplicity of software
relations is necessary because this is how the real entities – the processes and
events that make up our affairs, and which we want to represent in software –
are related.

As is the case with the other types of attributes, elements can possess more
than one flow-control attribute. Elements, therefore, can also be related to one
another in more than one way through the flow of execution. Multiple flow-
control relations are necessary when the relative position of an element in the
flow of execution must change while the application is running.

The nesting scheme (the static arrangement we see in the application’s flow
diagram) provides one of these attributes. The nesting scheme defines a formal,
precise set of relations, which constitutes in effect a default flow-control
attribute – one shared by all the elements in the application. And if this were
the only flow-control attribute, the application would have only one flow-
control structure – a structure mirroring, in the actual flow of execution, the
hierarchical structure that is the static nesting scheme.

In serious applications, though, elements must be related through more
than one flow-control attribute, so the simple flow of execution established by
the nesting scheme is insufficient. The additional flow-control attributes
are implemented by performing jumps in the flow of execution; that is, by
overriding the sequence dictated by the nesting scheme. The elements from
which and to which a jump occurs, and the elements bypassed by the jump, are
then related – when viewed from the perspective of the flow of execution – in
two ways: through the nesting scheme, and through the connection created by
the jump. Jumps provide an alternative to the sequence established by the
nesting scheme: whether the flow of execution follows one jump or another, or
the nesting scheme, depends on run-time conditions. So the execution of each
element in the application reflects, in the end, both the nesting scheme and the
various jumps that affect it.

Jumps can be explicit or implicit. Explicit jumps (typically implemented
with GOTO statements) permit us to create any flow-control relations we want.
Programming languages, though, also provide a number of built-in flow-
control constructs. These constructs are basic syntactic units designed to
create automatically, by means of implicit jumps, some of the more common
flow-control relations. The best-known built-in constructs, and the only ones
permitted by structured programming, are the elementary conditional and
iterative constructs (also known as the standard constructs).

By eliminating the explicit jumps, these constructs simplify programming.
But they are not versatile enough to satisfy all likely requirements; in fact, as we
saw earlier, even some very simple requirements cannot be implemented with

550 structured programming chapter 7

these constructs alone. The impossibility of implementing a given requirement
means that some elements must have more flow-control attributes than what
the nesting scheme and the standard constructs provide. Some elements, in
other words, must be related to others – when viewed from the perspective of
the flow of execution – in more ways than the number of jumps implicit in
these constructs. (For the conditional construct, we recall, there is one possible
jump, one way to override the nesting scheme; and for the iterative construct,
the number of jumps equals the number of possible iterations. The sequential
construct is not mentioned in this discussion, since it does not provide a jump
that can override the nesting scheme; sequential constructs, in fact, are the
entities that form the original nesting scheme, before adding conditional and
iterative constructs.)

We shouldn’t be surprised that software elements need more flow-control
attributes for a difficult requirement than they do for a simple one; after all, we
are not surprised that elements need more of the other types of attributes for a
difficult requirement (they need to use more variables or database fields, for
instance, or to call more subroutines).

Now, we could implement the additional flow-control relations by enhanc-
ing the standard conditional and iterative constructs, or by creating our own,
specialized constructs. In either case, though, we would have to add flow-
control attributes in the form of explicit jumps, and this is prohibited under
structured programming. The reason it is prohibited, we saw under the second
delusion, is the belief that applications restricted to the standard constructs
have only one flow-control structure (the nesting scheme). And this, in turn,
allows us to represent, develop, and prove them mathematically. Thus, the
theorists say, since it is possible, in principle, to transform any requirements
into a format programmable with the standard constructs alone, and since the
benefits of this concept are so great, any effort invested in realizing it is
worthwhile. This is the motivation for the transformations.

�

The transformations convert those flow-control relations that we need but
cannot implement with the standard constructs, into relations based on shared
data or shared operations. They convert, thus, some of the flow-control
structures into other types of structures (so they create more structures of the
types that have been ignored since the first delusion). When shared by several
elements, data and operations can serve as attributes, since they relate the
elements logically. (This, obviously, is why they can be used as substitutes for
the flow-control attributes.)

Consider a simple example. If we want to override the nesting scheme by

the third delusion 551chapter 7

jumping across several elements and levels without resorting to GOTO, we can
use a memory variable, like this: In the first element, instead of performing a
jump, we assign the value 1 to a variable that is normally 0. Then, we enclose
each element that would have been bypassed by the jump, inside a conditional
construct where the condition is the value of this variable: if 1, the element is
bypassed. So the flow of execution can follow the nesting scheme, as before, but
those elements controlled by the condition will be bypassed rather than
executed. In this way, one flow-control relation based on an explicit jump is
replaced with several flow-control relations based on the standard conditional
construct, plus one relation based on shared data.

The paper written by Corrado Böhm and Giuseppe Jacopini,É regarded by
everyone as the mathematical foundation of structured programming, proved
that we can always use pieces of storage (in ways similar to the foregoing
example) to reduce an arbitrary flow diagram to a diagram based on the
sequential, conditional, and iterative constructs. The paper proved, in other
words, that any flow-control structure can be transformed into a functionally
equivalent structure where the elements possess no more than three types of
flow-control attributes: one provided by the nesting concept and by merging
consecutive sequential constructs, and the others by the conditional and
iterative constructs.Ê

Another way to put this is by stating that any flow of execution can be
implemented by using no more than three types of flow-control relations. A
simple nesting scheme, made up of sequential constructs alone, is insufficient.
We need more than one type of relations between elements if we want the
ability to implement any conceivable requirement. But we don’t need more
than a certain minimal set of relations. The minimal set includes the relations
created by the nesting scheme, and those created by the standard conditional
and iterative constructs. Any other flow-control relations can be replaced with
relations based on other types of attributes; specifically, relations based on
shared data or shared operations.

It is important to note that the paper only proved these facts in principle; that
is, from a theoretical perspective. It did not prove that practical applications
can actually be programmed in this fashion. This is an important point,
because the effort of performing the transformations – the essence of the

É Corrado Böhm and Giuseppe Jacopini, “Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules,” in Milestones in Software Evolution, eds. Paul
W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society Press, ©1990 IEEE)
– paper originally published in Communications of the ACM 9, no. 5 (1966): 366–371.

Ê The paper proved, in fact, that conditional constructs can be further transformed into
iterative constructs; so, in the end, only sequential and iterative constructs are necessary.
I will return to this point later.

552 structured programming chapter 7

third delusion – is justified by citing this paper, when in reality the paper is
only a study in mathematical logic, unconcerned with the practicality of the
transformations. (We will analyze this misrepresentation shortly.)

But regardless of their impracticality, the transformations would only make
sense if the resulting flow-control structure were indeed a simple structure.
The fallacies of the second delusion, thus, beget the fallacies of the third one:
because they believe that a flow-control structure restricted to the standard
constructs is a simple structure, the advocates of structured programming
believe that the effort of performing the transformations is worthwhile.

�

The difficulty of programming – what demands skills and experience – is
largely the need to deal with multiple structures, and hence with simultaneous
relations. The theorists acknowledge this when they stress the importance of
reducing the application to one flow-control structure: if every element in the
application is restricted to one flow-control attribute, every element will be
related to the others in only one way, and the application – viewed from the
perspective of the flow of execution – will have only one structure. We will then
be able to represent the application with a mechanistic model, and hence
develop and prove it with the tools of mathematics. To put this differently, by
eliminating the need to deal with simultaneous relations in our mind we will
turn programming into a routine activity, and thereby eliminate the need for
personal skills and experience.

This is the idea behind structured programming, but then the theorists
contradict themselves and permit several flow-control relations per element,
not one: the nesting scheme plus the relations generated by the standard
conditional and iterative constructs. The flow-control structure, as a result, is
a system of interacting structures. It was a simple hierarchical structure only
when it was a nesting scheme of elements that were all sequential constructs.
The implicit jumps that are part of the standard constructs create additional
flow-control relations between the application’s elements in exactly the same
way that explicit jumps would. It is quite silly to think that, just because there
are no explicit jumps – no GOTO statements – we have only one flow-control
structure. After all, the very reason we added the conditional and iterative
constructs is that the nesting scheme alone (a simple structure) could not
provide all the flow-control relations we needed.

The theorists believe that transformations keep the flow-control structure
simple because they eliminate the non-standard constructs. But if the standard
constructs already make the flow-control structure complex, the use of non-
standard ones is irrelevant, since we can no longer represent the flow-control

the third delusion 553chapter 7

structure mechanistically anyway. So, whether easy or difficult to implement,
the transformations are futile if their purpose is to turn programming into a
routine activity. Both with and without transformations, the flow-control
structure is a system of interacting structures, so the most difficult aspect
of programming – the need to process multiple structures in the mind –
remains unchanged. Thus, because structured programming fails to reduce
applications to a simple structure, it also fails to simplify programming.

And we must not forget that the transformations work by replacing flow-
control structures with structures of other types, so in the end they add to the
complexity of other systems of structures. Therefore, in those situations where
an explicit jump provides the most effective relation between elements, the
transformation will replace one structure with several, making the application
as a whole more involved. (The impracticality of the transformations is finally
acknowledged by the theorists in the fourth delusion.)

It is up to the programmer to select the most effective system of structures
for a given requirement, and this system may well include some flow-control
structures generated by means of explicit jumps. Discovering the best system
and coping with the unavoidable interactions – this, ultimately, is the skill of
programming. Since our affairs, and the software that mirrors them, consist
of interacting structures, we must develop the capacity to deal with these
interactions if we want to have useful applications. The aim of structured
programming is to obviate the need for this expertise; specifically, to turn
programming from an activity demanding skills and experience into one
demanding only mechanistic knowledge. But now we see that, in their desire
to simplify programming, the theorists add to the complexity of software, and
end up making programming more difficult.

3

3
Let us examine next the mechanistic belief that it is possible to actually
implement an idea that was only shown to be valid in principle. We saw that
even when we manage to reduce the application to standard constructs, the
flow of execution, and the application as a whole, remain complex structures;
so the transformations are always futile. Let us ignore this fallacy, though,
and assume with the theorists that by applying the transformations we will be
able to represent the application mathematically, so the effort is worthwhile.
But Böhm and Jacopini’s paper only shows that applications can be reduced
to the standard constructs in principle. The theorists, thus, are confidently
promoting the idea of transformations when there is nothing – apart from
a blind faith in mechanism – to guarantee that this idea can work with

554 structured programming chapter 7

practical applications.
It is common for mathematical concepts to be valid in principle but not

in practice, and many mechanistic delusions spring from confusing the
theoretical with the practical aspects of an idea. The pseudosciences we
studied in chapter 3, for instance, are founded upon the idea that it is possible
to account for all the alternatives displayed by human minds and human
societies. They claim, thus, that it is possible to discover a mechanistic model
where the starting elements are some basic physiological entities, and the
values of the top element represent every possible mental act, or behaviour
pattern, or social phenomenon (see pp. 281–284). Now, it is perhaps true that
every alternative of the top element is, ultimately, a combination of some
elementary entities or propensities; but it doesn’t follow that we can express
these combinations in precise, mathematical terms. The mechanists invoke the
principles of reductionism and atomism to justify their optimism, but they
cannot discover a working mechanistic model; that is, a continuous series of
reductions down to the basic entities. So, while it may be possible in principle
to explain human intelligence or behaviour in terms of low-level physiological
entities, we cannot actually do it.

The most fantastic mechanistic delusion is Laplacean determinism, which
makes the following claim: the world is nothing but a system of particles of
matter acting upon one another according to the mechanistic theory of
gravitation; it should therefore be possible, in principle, to explain all current
entities and phenomena, and to predict all future ones, simply by expressing
the relations between all the particles in the universe in the form of equations
and then solving these equations. The mechanists admit that this is only an
idea, that we cannot actually do it; but this doesn’t stop them from concluding
that the world is deterministic. (We will discuss this fallacy in greater detail in
chapter 8; see pp. 810–812.)

Returning to the domain of computer science, a well-known example of a
mechanistic model that is only an idea is the Turing machine.Ë This theoretical
device consists of a read-write head and a tape that moves under it in both
directions, one position at a time. The device can be in one of a finite number
of internal states, and its current state changes at each step. Also at each step,
the device reads the symbol found on the tape in the current position, perhaps
erases it or writes another one, and then advances the tape one position left
or right. The operations performed at each step (erasing, replacing, or leaving
the symbol unchanged; advancing the tape left or right; and selecting the
next internal state) depend solely on the current state and the symbol found

Ë Named after the mathematician and computer pioneer Alan Turing, who invented it
while studying the concept of computable and non-computable functions.

the third delusion 555chapter 7

in the current position.
Turing machines can be programmed to execute algorithms. For example,

if the permissible symbols are the digits 0 to 9, a program could read a series
of digits written in consecutive positions on the tape, interpret them as a
number, calculate its square root by using the tape as working area, and finally
erase the temporary symbols and write on the tape the digits that make up the
result. (The program for a Turing machine is not a list of instructions, as for a
computer, but a table specifying the operations to be performed for every
possible combination of machine states and input symbols.)

There are many variations, but the most interesting Turing machines are
those that define a minimal device: the machine with the smallest number of
internal states, or the smallest alphabet of symbols, or the shortest tape,
that can still solve any problem from a certain class of problems. It should
be obvious, for instance, that we can always restrict Turing machines to
two symbols, such as 0 and 1, since we can reduce any data to this binary
representation, just as we do in computers. Compared with devices that use a
larger alphabet – the full set of letters and digits, for example – the minimal
device would merely need a larger program and a longer tape to execute a
given algorithm.

Now, it has been proved that a Turing machine can be programmed to
execute, essentially, any algorithm. This simple computational device can
represent, therefore, any deterministic phenomenon, any process that can be
described precisely and completely. In particular, it can be programmed
to execute any task that can be executed by more complicated devices –
computers, for instance. Again, the program for the Turing machine would be
larger and less efficient, and in most cases totally impractical, but the device is
only an idea. We are only interested in the fact that, in principle, it can solve any
problem. In principle, then, any problem, no matter how complicated, can be
reduced to the simple operations possible on a basic Turing machine.

Thus, although the Turing machine is only a theoretical device, it is an
interesting subject of study in computer science. Since we know that anything
that can be computed can also be computed on a Turing machine, we can
determine, say, whether a certain problem can be solved at all mathematically,
by determining whether or not it can be programmed on a Turing machine.
Often this is easier than actually finding a mathematical solution. The practi-
cality of this program is irrelevant, since we don’t have to run it, or even
to develop it; all we need is the knowledge that such a program could be
developed.

�

Restricting software applications to the standard flow-control constructs is just

556 structured programming chapter 7

like these other ideas: it is only possible in principle. Just like the theories that
can explain only in principle any intelligent act, or those that can predict only
in principle any future event, or the Turing machine that can execute only in
principle any algorithm, it is possible only in principle to restrict software
applications to the three standard constructs. The software theorists, thus, are
promoting as a practical programming method an idea that is the software
counterpart of well-known mechanistic fantasies.

Despite our mechanistic culture, not many scientists seriously claim that
those other ideas have immediate, practical applications. But the software
experts were enthusiastic about the possibility of mathematical programming.
The idea of transformations – and hence the whole idea of structured program-
ming, which ultimately depends on the practicality of these transformations –
was taken seriously by every theorist, even though one could see from the start
that it is the same type of fantasy as the other ideas.

But it is the Turing machine that is of greatest interest to us, not only because
of its connection to programming in general, but also because Böhm and
Jacopini actually discuss in their paper the link between Turing machines and
standard flow-control constructs. (This link is clearly indicated even in the
paper’s title: “Flow Diagrams, Turing Machines and Languages with Only Two
Formation Rules.”)

Although computers can be reduced to Turing machines, everyone agrees
that this is true only in principle, that most tasks would be totally impractical
on a Turing machine. Thus, no one has suggested that, given the theoretical
benefits of minimal computational devices, we replace our computers with
Turing machines. Nor has anyone suggested that, given the theoretical benefits
of minimal programming languages, we simulate the operation of a Turing
machine on our computers, and then restrict programming languages to the
instructions of the Turing machine.

At the same time, the software theorists perceive the transformations as a
practical programming principle, and insist that we actually restrict our
applications to the standard constructs. Their naivety is so great that, even in a
mechanistic culture like ours, it is hard to find a precedent for such an
absurd claim. And we must not forget that the delusion of transformations
is additional to the two delusions we discussed earlier. This means that,
since applications cannot be represented mechanistically in any case, the
transformations would be futile even if they were practical.

It is important to emphasize that Böhm and Jacopini discussed the standard
constructs and the transformations strictly as a concept in mathematical
logic; they say nothing in their paper about grounding a programming theory
on this concept. It was only the advocates of structured programming who,
desperate to find a scientific foundation for their mechanistic fantasy, decided

the third delusion 557chapter 7

to interpret the paper in this manner. Having accepted as established fact what
was only a wish – the idea that software applications can be represented
mathematically – they saw in this paper something that its authors had not
intended: the evidence for the possibility of a practical mechanistic program-
ming theory.

The link between flow diagrams and Turing machines discussed by Böhm
and Jacopini is this: They demonstrated that there exists a minimal Turing
machine which is logically equivalent to a flow diagram restricted to the
standard flow-control constructs. More specifically, they showed that a Turing
machine restricted to the equivalent of the sequential, conditional, and iterative
operations can still execute, essentially, any algorithm. In other words, any
Turing machine, no matter how complicated, can be reduced, in principle, to
this minimal configuration.

By discussing the link between flow diagrams and Turing machines, then,
Böhm and Jacopini asserted in effect that they considered the transformation
of flow diagrams to be, like the Turing machine, a purely theoretical concept.
So it can be said that their study is the exact opposite of what the later theorists
claimed it was: it is an abstract idea, not the basis of a practical program-
ming theory. The study is misrepresented when invoked as the foundation of
structured programming.

4

4
We saw that the advocates of structured programming misrepresent Böhm and
Jacopini’s paper when invoking it as the foundation of a practical programming
theory. But this is not all. They also misrepresent the paper when saying
that it proved that only three flow-control constructs – the sequential, the
conditional, and the iterative – are necessary to create software applications.
In reality, the paper proved that only two constructs are necessary – the
sequential and the iterative ones. The conditional construct, it turns out, is
merely a special case of the iterative construct. Just as we can reduce through
transformations all non-standard constructs to conditional and iterative
ones, we can further reduce, through similar transformations, all conditional
constructs to iterative ones.

Thus, the paper is routinely depicted as the mathematical foundation of
structured programming, and we are told that the only way to derive the
benefits of mathematics is by restricting our applications to the elementary
sequential, conditional, and iterative constructs – while the paper itself shows
that the conditional construct is not an elementary construct. There are
thousands of references to this paper – in casual as well as formal discussions

558 structured programming chapter 7

of structured programming, in popular as well as professional publications –
and it is difficult to find a single one stating what Böhm and Jacopini actually
proved. According to all these references, they proved that applications can be
built from three, not two, elementary constructs. We must study now this
second aspect of the misrepresentation.

It is true that Böhm and Jacopini started by proving that any flow diagram
can be reduced to the three elementary constructs. But they went on and
proved that the conditional construct can be reduced to the iterative one. And
they also proved that an equivalent reduction is possible for Turing machines
(so the minimal Turing machine does not require conditional operations). Like
the link to Turing machines, this final reduction is clearly indicated even
in the paper’s title (“. . . Languages with Only Two Formation Rules”) and
in its introduction (“. . . a language which admits as formation rules only
composition [i.e., merging consecutive constructs] and iteration”Ì).

Although they proved it through mathematical logic, we can demonstrate

Ì Böhm and Jacopini, “Flow Diagrams,” p. 3.

this reduction with flow diagrams (see figure 7-10). In the first step, the
conditional construct is reduced to two consecutive, simpler conditional
constructs. The new constructs have only one operation each, S1 and S2,

Figure 7-10

C1

True

False

S1

S2

C1

True

False

S1

not C1

True

False

S2

x ← 0 C1 and x=0

True

False

S1 x ← 1

x ← 0 (not C1) and x=0

True

False

S2 x ← 1

the third delusion 559chapter 7

and the condition in the second one is the logical negation of the original
condition. In the second step, the new constructs are transformed into two
consecutive iterative constructs: the variable x, cleared before each loop and set
in the first iteration, is part of the condition. In the end, either S1 or S2 is
executed, and only once.Í

The fallacy of the third delusion, we saw, is the idea of transformations. But
now we see that, even within this idea, there is an inconsistency. And, even if
we ignore the other delusions, and the other fallacies of the third delusion, this
inconsistency alone is serious enough to cast doubt on the entire idea of
structured programming.

The inconsistency is this: The theorists tell us that we must reduce our
applications to the three standard flow-control constructs, because only if
created with these elementary entities can applications be developed and
proved mathematically. But if the most elementary software entities are
two constructs, not three, the theorists claim in effect that even with some
unreduced constructs we can derive the benefits of mathematical program-
ming. It is unimportant, they tell us, to reduce our applications from three
constructs to two; that is, from the conditional to the iterative construct. This
reduction, though, as shown in figure 7-10, is similar to the reduction from
any non-standard construct to the standard ones. (We saw examples of these
other reductions earlier, from figure 7-5 to 7-6 and from figure 7-7 to 7-8,
pp. 524–527.) So, if the mathematical benefits are preserved even without a
complete reduction, if it is unimportant to reduce our applications from three
constructs to two, why is it important to reduce them to three constructs in the
first place?

Imagine an application that also employs a non-standard construct, for a
total of four types of constructs. If this application can be reduced through
similar transformations from four constructs to three and from three to two,
and if at the same time it is unimportant to reduce it from three to two, then it
must also be unimportant to reduce it from four to three. And, continuing this
logic, it must also be unimportant to reduce an application from five constructs
to four, from six to five, and so on. In other words, whatever mathematical
benefits we are promised to gain from a reduction to the three standard
constructs are ours to enjoy with any number of non-standard constructs.
The transformations, therefore, and structured programming generally, are
unnecessary, and we should be able to develop and prove our applications
mathematically no matter how we choose to program them.

The theory of structured programming, thus, is inconsistent if its principles

Í The use of a memory variable as switch was explained earlier, for the transformation
shown in figure 7-8 (see pp. 526–527).

560 structured programming chapter 7

prescribe a certain programming method, and the same principles lead to
the conclusion that this method is irrelevant. The promoters of structured
programming failed to notice what is, in fact, a blatant self-contradiction:
claiming, at the same time, that it is important and that it is unimportant to
reduce applications to three constructs. Having misrepresented Böhm and
Jacopini’s paper as the basis of a practical programming theory (as we saw
earlier), they were now actually attempting to implement their fantasy. So, in
their eagerness, they added to the misrepresentation. Moreover, they added to
the theory’s fallaciousness, by making it inconsistent.

It is impossible to prove mathematically the correctness of our applications
– with or without transformations, with three or with two constructs. Since
applications are not simple structures, the idea of mathematical programming
is a fantasy, so there are no benefits in reducing them to any set of constructs.
Let us ignore for a moment, though, this fallacy, and believe with the theorists
that the transformations are worthwhile. But then, to be consistent – that is, to
benefit from these transformations – we would have to seek a complete
reduction, to two constructs. This shows that stopping the reduction at three
constructs is a separate fallacy, additional to the fallacy of mathematical
programming.

�

The following quotations are typical of how Böhm and Jacopini’s work is
misrepresented in programming books (that is, by mentioning the reduction
to three constructs, not two): “In 1966, Böhm and Jacopini formally proved the
basic theory of structured programming, that any program can be written
using only three logical constructs.”Î “One of the theoretical milestones of
systems science was Böhm and Jacopini’s proof that demonstrated it was
possible to build a good program using only three logical means of construc-
tion: sequences, alternatives, and repetition of instruction.”Ï “The first major
step toward structured programming was made in a paper published by
C. Böhm and G. Jacopini. . . . They demonstrated that three basic control
structures, or constructs, were sufficient for expressing any flowchartable
program logic.”Ð “According to Böhm and Jacopini, we need three basic
building blocks in order to construct a program: 1. A process box. 2. A
generalized loop mechanism. 3. A binary-decision mechanism.”Ñ “Böhm and

Î Victor Weinberg, Structured Analysis (Englewood Cliffs, NJ: Prentice Hall, 1980), p. 27.
Ï Ken Orr, Structured Requirements Definition (Topeka, KS: Ken Orr and Associates,

1981), p. 58.
Ð Randall W. Jensen, “Structured Programming,” in Software Engineering, eds. Randall

W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979), p. 228.

the third delusion 561chapter 7

Jacopini . . . first showed that statement sequencing, IF-THEN-ELSE conditional
branching, and DO-WHILE conditional iteration would suffice as a set of control
structures for expressing any flow-chartable program logic.”ÉÈ “In a now-
classical paper, Böhm and Jacopini proved that any ‘proper’ program can
be solved using only the three logic structures . . . 1. Sequence. 2. Selection.
3. Iteration.”ÉÉ “Böhm and Jacopini provided the theoretical framework by
showing it possible to write any program using only three logic structures:
DOWHILE, IFTHENELSE, and SEQUENCE.”ÉÊ “A basic fact about structured pro-
gramming is that it is known to be possible to duplicate the action of any
flowchartable program by a program which uses as few as three basic program
figures, namely, a SEQUENCE, an IFTHENELSE, and a WHILEDO. . . . This fact is due
to C. Böhm and G. Jacopini.”ÉË “Structured programming is a technique of
writing programs that is based on the theorem (proved by Böhm and Jacopini)
that any program’s logic, no matter how complex, can be unambiguously
represented as a sequence of operations, using only three basic structures.”ÉÌ

Even the Encyclopedia of Computer Science, in the article on structured
programming, says the same thing: “. . . a seminal paper by Böhm and Jacopini,
who proved that every ‘flowchart’ (program), however complicated, could be
rewritten in an equivalent way using only repeated or nested subunits of no
more than three different kinds – a sequence of executable statements, a
decision clause . . . and an iteration construct.”ÉÍ

Why did the theorists misrepresent the original study? Why did they
not insist on a complete reduction, to two constructs, just as Böhm and
Jacopini did in their paper? Why, in other words, do they permit us to use the
conditional construct, when the paper proved that it is not an elementary
construct, and that it can be reduced to the iterative one?

To understand the reason, recall that characteristic feature of structured

Ñ Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975), p. 146.
ÉÈ Clement L. McGowan and John R. Kelly, Top-Down Structured Programming Tech-

niques (New York: Petrocelli/Charter, 1975), p. 5.
ÉÉ Robert T. Grauer and Marshal A. Crawford, The COBOL Environment (Englewood

Cliffs, NJ: Prentice Hall, 1979), p. 4.
ÉÊ Gary L. Richardson, Charles W. Butler, and John D. Tomlinson, A Primer on Structured

Program Design (New York: Petrocelli Books, 1980), p. 4.
ÉË Richard C. Linger and Harlan D. Mills, “On the Development of Large Reliable

Programs,” in Current Trends in Programming Methodology, vol. 1, Software Specification and
Design, ed. Raymond T. Yeh (Englewood Cliffs, NJ: Prentice Hall, 1977), p. 122.
ÉÌ Donald A. Sordillo, The Programmer’s ANSI COBOL Reference Manual (Englewood

Cliffs, NJ: Prentice Hall, 1978), pp. 296–297.
ÉÍ Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.

(New York: Van Nostrand Reinhold, 1993), p. 1309.

562 structured programming chapter 7

programming – the continual blending of formal and informal concepts.
The theorists like the formal, mechanistic principles, so they invoke them
whenever they want to make their claims appear “scientific.” But, because
software applications are non-mechanistic phenomena, the formal principles
are useless; so the theorists are compelled to revert to the informal concepts.

Thus, it would be embarrassing to ask programmers to avoid conditional
constructs, just because they are not elementary (that is, to replace them, in the
name of science, with their unwieldy transformation into iterative constructs),
seeing that programming languages already include the simple IF statement,
designed specifically for implementing conditional constructs.

But programming languages also include the simple GOTO statement,
designed specifically for implementing jumps, and hence non-elementary
flow-control constructs. And yet, while permitting us to use IF, the theorists
prohibit us from using GOTO. The explanation for the discrepancy is that asking
us to avoid GOTO can be made to look scientific, while asking us to avoid IF can
only look silly.

Mathematically, a flow diagram with GOTO statements is no different
from one with IF statements, since both can be reduced, through similar
transformations, to the same two elementary flow-control constructs. The
theorists, though, consider the former to be “unstructured” and the latter
“structured.” This attitude – invoking the formal, precise principles when
practical, and reverting to informal guidelines when the formal principles are
inconvenient – is the essence of the fourth delusion, as we will soon see. At that
point, many other non-elementary flow-control constructs will be permitted.

�

The academics and the gurus who routinely cite Böhm and Jacopini’s paper
probably never set eyes on it. Most likely, only a handful of theorists actually
studied it, and, blinded by their mechanistic obsession, saw in it the proof for
the possibility of a science of programming. The other theorists, and the
authors and the teachers, accepted then uncritically this distorted interpreta-
tion and helped to spread it further. By the time it reached the books and the
periodicals, the programmers and the managers, and the general public, no one
was questioning the interpretation, or verifying it against the original ideas.
(Few would have understood the original paper anyway, written as it is in a
formal, and rather difficult and laconic, language.) Everyone was convinced
that structured programming is an important theory, mathematically grounded
on Böhm and Jacopini’s work, when in reality it is just another mechanistic
fantasy, grounded on a misrepresentation of that work.

And so it is how Böhm and Jacopini – humble authors of an abstract study

the third delusion 563chapter 7

of flow diagrams – became unwitting pioneers of the structured programming
revolution.

5

5
For twenty years, in thousands of books, articles, and lectures, the software
experts were promoting structured programming. To understand how it is
possible to promote an invalid theory for twenty years, it may help to analyze
the style of this promotion. Typically, the experts start their discussion by
presenting the formal principles and the mathematical foundation; and,
often, they mention Böhm and Jacopini’s paper explicitly, as in the passages
previously quoted. This serves to set a serious, authoritative tone; but then they
continue with informal, childish arguments.

For example, the Encyclopedia of Computer Science,ÉÎ after citing Böhm and
Jacopini’s “seminal paper,” includes the following “principles” in the definition
of structured programming: “judicious use of embedded comments” (notes
to explain the program’s logic); “a preference for straightforward, easily
readable code over slightly more efficient but obtuse code”; modules no larger
than about one page, “mostly for the sake of the human reader”; “careful
organization of each such page into clearly recognizable paragraphs based on
appropriate indentation” of the nested constructs (again, for ease of reading).

Some of these “principles” make good programming sense, but what have
they to do with the theory of structured programming? Besides, if the validity
of structured programming has been proved mathematically, why are these
informal guidelines mentioned here? Or, conversely, if structured program-
ming is no longer a formal theory and “may be defined as a methodological
style,”ÉÏ why mention Böhm and Jacopini’s mathematical foundation? The
formal and the informal arguments overlap continually. They appear to
support each other, but in fact the informal ones are needed only because the
formal theory does not work.

Incredibly, we also find the following requirement listed as a structured
programming principle: “the ability to make assertions about key segments of
a structured program so as to ‘prove’ that the program is correct.”ÉÐ The
editors enclosed the word “prove” in quotation marks presumably because
the principle only stipulates an informal verification, not a real proof. This
principle, thus, is quite ludicrous, seeing that structured programming is
supposed to guarantee mathematically (that is, with no qualifications) the

ÉÎ The quotations in this paragraph are ibid., pp. 1309–1311. ÉÏ Ibid., p. 1308.
ÉÐ Ibid., p. 1311.

564 structured programming chapter 7

correctness of software; it is supposed to guarantee, moreover, the correctness
of the entire program, not just “key segments.”

Another absurd principle is the permission to deviate from the standard
constructs if this “removes a gross inefficiency.”ÉÑ It is illogical to suggest that
what is, in fact, the main tenet of this theory – the standard constructs – may
cause inefficiency and must be forsaken. This principle is an excellent example
of pseudoscientific thinking: every situation where one must deviate from the
standard constructs is a falsification of structured programming; and the
experts suppress these falsifications by turning them into features of the theory
– non-standard constructs.

Lastly, we are told that “still further evolution of [structured programming]
is to be expected.”ÊÈ The editors seem to have forgotten that structured
programming is a formally defined theory, so it cannot evolve. What can evolve
is only the interpretations of the theory. Only pseudosciences evolve – expand,
that is, and become increasingly vague, as their defenders add more and more
“principles” in order to suppress the endless falsifications.

�

Instead of all these arguments, formal and informal, why don’t the theorists
simply show us how to develop perfect applications using nothing but neat
structures of standard constructs? This, after all, was the promise of structured
programming. The theorists promote it as a practical programming concept,
but all they can show us is some small, artificial examples (which, presumably,
is the only type of software they ever wrote). They leave it to us to prove its
benefits with real, fifty-thousand-line applications.

It is also worth repeating that, while this discussion is concerned with
events that took place in the 1970s and 1980s, the principles of structured
programming are being observed today as faithfully as they were then. Current
textbooks and courses, for instance, avoid GOTO as carefully as did the earlier
ones. In other words, despite their failure, these principles were incorporated
into every programming theory and methodology that followed, and are now
part of our programming culture. The irresistible appeal that structured
programming has to the software bureaucrats, notwithstanding the popularity
of more recent theories, can be understood only by recognizing its unique
blend of mathematical pretences and trivial principles. Thus, simply by talking
about top-down design or about GOTO, ignorant academics, programmers, and
managers can feel like scientists.

ÉÑ Ibid., p. 1310. ÊÈ Ibid.

the third delusion 565chapter 7

The Fourth Delusion

The Fourth Delusion
1 1
The fourth delusion is the absurd notion of inconvenience. The theorists
continue to maintain that the principles of structured programming are sound,
and the reason it is so difficult to follow them is just the inconvenience of the
restriction to standard constructs. They note that structured programming
works in simple situations – in their textbook illustrations, for instance. And
they also note that the definition of structured programming guarantees its
success for programs of any size: all we have to do is combine constructs and
modules on higher and higher levels of nesting. So, they conclude, there is
nothing wrong with the theory. If we find it increasingly difficult to follow its
principles as we move to larger programs – and entirely impractical in serious
business applications – we must simply disregard as many of these principles
as is necessary to render the theory serviceable.

In particular, the theorists say, we don’t have to actually restrict ourselves to
standard constructs. Their justification for allowing non-standard constructs
is this: We know that it is possible, in principle, to develop any application with
standard constructs alone. And we know that, in principle, non-standard
constructs can be reduced to standard ones through transformations. Why,
then, restrict ourselves to the standard constructs? We will enjoy the benefits
of structured programming even if we use the more convenient non-standard
constructs.

Clearly, the theorists fail to appreciate the absurdity of this line of logic:
if structured programming is promoted as a programming theory, the fact
that its principles are impractical means that the theory is wrong. As was
the case with the previous delusions, the theorists can deny this falsification
of structured programming only by concocting an absurd explanation. The
benefits of structured programming were only shown to emerge if we actually
build our applications as hierarchies of standard constructs. If we agree
to forgo its principles whenever found to be inconvenient, those benefits
will vanish, and we no longer have a theory. What is left then is just some
informal guidelines, not very different from what we had before structured
programming.

The response should have been to determine why it is so difficult to apply
these principles. We don’t find it difficult to apply mechanistic principles in
those fields where the mechanistic model is indeed practical – in engineering,
for instance. We don’t find these principles inconvenient with physical systems,
or with electronic systems, so why are they inconvenient with software systems?

For mechanistic phenomena, the simple hierarchical structure works well

566 structured programming chapter 7

no matter how large is the system. In fact, the larger the system, the more
important it is to have a mechanistic model. When building a toy airplane,
for example, we may well find it inconvenient to follow strictly the hierarchical
principle of subassemblies, and impractical to adhere strictly to the mathemat-
ical principles of aerodynamics; but we couldn’t build a jumbo jet without these
principles. With software systems the problem is reversed: the mechanistic
principles of structured programming seem to work in simple cases, but break
down in large, serious applications.

The inconvenience is due, as we know, to the non-mechanistic nature of
software applications. While the hierarchical structure is a good model for
mechanistic phenomena, for non-mechanistic ones it is not: the approximation
it provides is rarely close enough to be useful. What we notice with poor
approximations is that the model works only in simple cases, or works in some
cases but not in others. Thus, the fact that structured programming fails in
serious applications while appearing to work in simple situations indicates that
software systems cannot be usefully represented with a simple hierarchical
structure.

Structured programming fails because it attempts to reduce software appli-
cations, which consist of many interacting structures, to one structure. It starts
by taking into account only the flow-control structures and ignoring the others.
And then it goes even further and recognizes only one flow-control structure
– the nesting scheme. But this reified model cannot represent accurately
enough the complex structure that is the actual application.

2

2
Let us examine some of the non-standard constructs that were incorporated
into structured programming, and their justification. The simplest example is a
loop where the terminating condition is tested after the operation – rather than
before it, as in the standard iterative construct (see figure 7-11). Although this
construct can be reduced to the standard one by means of a transformation,É
most programming languages provide statements for both. And since these
statements are equally simple, and the two types of loops are equally common
in applications, the theorists could hardly ask us to use one construct and
avoid the other. The justification for permitting the non-standard one, thus,
is the inconvenience of the transformation: “Do we need both iteration

É There is one transformation based on memory variables, and another based on
duplicating operations. The latter, for instance, is as follows: convert the non-standard
construct into a standard one that has the same operation and condition, S1 and C1, and
add in front of it an operation identical to S1.

the fourth delusion 567chapter 7

variants? The Böhm-Jacopini theorem says ‘no,’ but that theorem addresses
only constructibility and not convenience. For this reason, programmers like
to have both variants.”Ê

Ê Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1310.

Ë The term “CASE” refers to the different cases, or alternatives, handled by this construct.
An additional alternative (the default) is usually included to allow for the case when none
of the comparisons is successful.

Another example is the conditional construct CASE, shown in figure 7-12.
A variable, or the result of an expression, is compared with several values; a
certain sequential construct (a statement, or a block of statements) is specified
for each value, and only the one for which the comparison is successful is
actually executed.Ë

Again, we could use the standard conditional construct instead: we would
specify a series of consecutive IF statements and perform the comparison with
each value in turn. When only a few values are involved, this solution (or the
alternative solution of nesting a second IF in the ELSE part of the previous one,
and so on) is quite effective. But there are situations where we must specify
many values, sometimes more than a hundred; the CASE construct is then more
convenient (and also more efficient, because the compiler can optimize the
comparisons).

Figure 7-11

S1 C1

True

False

Figure 7-12

C1

C2

C3

…

S1

S2

S3

568 structured programming chapter 7

The most embarrassing problem for structured programming, however, is
the ordinary loop, one of the most common software constructs. Practically
every statement in a typical application is part of a loop of some sort, its
execution repeated under the control of various conditions. And it is not
just inconvenient, but totally impractical, to reduce all forms of repetitive
execution to the standard iterative construct. We already saw how the need to
specify the terminating condition at the end of the loop led to the acceptance
of a new construct. But this is only one of the situations that cannot be
managed with the standard construct. Just as common is the situation where
the terminating condition is in the middle of the loop, or where there are
conditions throughout the loop, or where a condition terminates the current
iteration but not the loop. Since the standard construct cannot handle these
situations, we must either perform some complicated transformations, or add
to programming languages a new construct for each situation, or resort to
explicit jumps (GOTO statements) and create our own, specialized constructs.

The problem is even more serious in the case of nested loops. A loop nested
within another is nearly as frequent as a single loop, and even three and
four levels of nesting are common. Thus, since the situations previously
mentioned can occur at all levels, without explicit jumps even more compli-
cated transformations would be required, or dozens of constructs would have
to be added to cover all possible combinations.

In the end, the software theorists adopted all three methods: they incorpo-
rated into structured programming a small number of built-in constructs
(typically, a statement that lets us terminate the iterations, and a statement that
lets us terminate just the current iteration, from anywhere in the loop); they
recommend transformations in the other situations; and they permit the use
of GOTO when the first two methods are impractical.

Nearly as difficult as the combination of loops and conditions is the
combination of conditions alone. Although we could, in principle, express all
combinations by nesting IF-THEN-ELSE statements, this often leads to unwieldy
transformations, or too many nesting levels, or huge blocks of statements in the
THEN or ELSE part. A common requirement, for instance, is to terminate
prematurely the current block or the current module. As in the case of loops,
we can implement this requirement through transformations, or by adding to
the language new constructs, or with explicit jumps. The theorists, in the
end, incorporated into structured programming such constructs as EXIT and
RETURN, which terminate a module; but we must still use transformations to
terminate a block, unless the transformations are especially awkward, in which
case we are permitted to use GOTO.

�

the fourth delusion 569chapter 7

The following quotations illustrate how the advocates of structured program-
ming justify the adoption of non-standard constructs. The fact that we need
these constructs at all proves that the theory of structured programming has
failed. The constructs, though, are presented as “extensions” of the theory.
They are substantially “in the spirit” of structured programming, we are told,
and the only reason we need them is to make structured programming easier,
or more practical, or more convenient. This explanation is illogical, of course:
one cannot claim that non-standard constructs make structured programming
easier, when the very essence of structured programming is the absence of non-
standard constructs. What these experts are doing, in effect, is promoting
the principles of structured programming, praising their benefits, and then
showing us how to override them.

Edward Yourdon, one of the best-known experts, has this to say: “While the
[three standard constructs] are sufficient to write any computer program, a
number of organizations have found it practical to add some ‘extensions.’”Ì
And after describing some of these “extensions,” Yourdon concludes: “A
number of other modifications or compromises of the basic structured pro-
gramming theory could be suggested and probably will be suggested as more
programming organizations gain familiarity with the concept. As indicated,
many of the compromises do not violate the black-box principle behind the
original Böhm and Jacopini structures; other compromises do represent a
violation and should be allowed only under extenuating circumstances.”Í

Note again the misrepresentation of Böhm and Jacopini’s paper. What
Yourdon calls the black-box principle – namely, the restriction to constructs
with one entry and exit, which allows us to ignore their internal details and nest
them hierarchically – is not a principle but a consequence of Böhm and
Jacopini’s theorem. (I will return to this point later.) Yourdon cites their work,
but ignores the real principle – the restriction to nested standard constructs.
Böhm and Jacopini did not say that we can use any construct that has one entry
and exit. Yourdon invokes an exact theorem, but feels free to treat it as an
informal rule: we can add to the theorem any “extensions,” “modifications,”
and “compromises” (and, “under extenuating circumstances,” violate even
what is left of it), and the result continues to be called structured programming.

Here is another author who expresses the same view: “Although it is
theoretically possible to write all well-formed programs using nothing more
than the three basic logic structures shown here, we will find that program-
ming is easier if we expand our repertoire a little. Extensions to the three basic
logic structures are permitted as long as they retain the one-entry, one-exit

Ì Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975), p. 149. Í Ibid., p. 152.

570 structured programming chapter 7

property.”Î And here is another misrepresentation of Böhm and Jacopini’s
work: “The legitimate code blocks using structured programming theory are
as follows: 1. SEQUENCE 2. IFTHENELSE 3. DOWHILE 4. DOUNTIL
5. CASE This basic set of logic structures is a practical extension of Böhm
and Jacopini’s original form, which proved theoretically that any problem
can be broken down into small subproblems whose equivalent form can be
expressed with only the first three logic types described above. However, from
a practical coding viewpoint, all five logic types outlined above facilitate the
process without destroying its basic intent.”Ï So the authors of this book have
decided that, in order to make structured programming practical, the original
theorem should be interpreted as the combination of a “basic intent,” which
must be respected, and some other parts, which may be ignored.

Some additional examples of the same justifications: “Usually the restriction
to allow only these three control constructs in a structured program is relaxed
to include extensions such as the nested IF, the CASE statement, and the escape.
Allowing these extensions makes the program easier to code and to maintain.”Ð
“To the three basic figures SEQUENCE, IF-THEN-ELSE, and DO-WHILE we have
added for programming convenience the ITERATIVE-DO . . . and the REPEAT-
UNTIL, LOOP-EXITIF-ENDLOOP, and the SELECT-CASE figures.”Ñ “One should always
try to solve the problem using the basic composition rules (sequencing,
conditionals, repetition and recursion). If this does not give a good solution,
then use of some of the special types of jumps is justified.”ÉÈ “In general, the
dogmatic use of only the structured constructs can introduce inefficiency when
an escape from a set of nested loops or nested conditions is required.”ÉÉ The
best solution, the author explains, is to redesign the module so as to avoid this
requirement; alternatively, though, the structured programming restrictions
may be “violated in a controlled manner,”ÉÊ because such a violation “can be
accommodated without violating the spirit of structured programming.”ÉË

Î Dennie Van Tassel, Program Style, Design, Efficiency, Debugging, and Testing, 2nd ed.
(Englewood Cliffs, NJ: Prentice Hall, 1978), p. 76.

Ï Gary L. Richardson, Charles W. Butler, and John D. Tomlinson, A Primer on Structured
Program Design (New York: Petrocelli Books, 1980), pp. 46–47.

Ð James Martin and Carma McClure, Structured Techniques: The Basis for CASE, rev. ed.
(Englewood Cliffs, NJ: Prentice Hall, 1988), p. 46. (Regarding “nested IF,” the authors are
wrong, of course: this is the nesting of standard conditional constructs, and hence not an
extension but within the concept of structured programming.)

Ñ Clement L. McGowan and John R. Kelly, Top-Down Structured Programming Tech-
niques (New York: Petrocelli/Charter, 1975), p. 76.
ÉÈ Suad Alagić and Michael A. Arbib, The Design of Well-Structured and Correct Programs

(New York: Springer-Verlag, 1978), p. 226.
ÉÉ Roger S. Pressman, Software Engineering: A Practitioner’s Approach (New York:

McGraw-Hill, 1982), p. 246. ÉÊ Ibid. ÉË Ibid., p. 247.

the fourth delusion 571chapter 7

So, with all useful constructs again permitted, what was left of the theory of
structured programming was just some informal bits of advice on disciplined
programming, supplemented with the exhortation to use standard constructs
and avoid GOTO “as much as possible.”

In general, whenever a programming language included some new, useful
constructs, these constructs were enthusiastically adopted, simply because
they obviated the need for GOTO. The jumps implicit in these constructs
could be easily implemented with GOTO; but this alternative was considered
bad programming, even as the constructs themselves were praised as good
programming. Many theorists went so far as to describe these constructs as
modern language enhancements that help us adhere to the principles of
structured programming, when their role, clearly, is to help us override those
principles. (The only jumps allowed in structured programming, we recall, are
those implicit in the standard conditional and iterative constructs.) The
absence of the phrase “go to” was enough to turn their jumps from bad to good
programming, and the resulting programs from unstructured to structured.

Thus, despite the insistence that structured programming is more than just
GOTO-less programming, this concern – contriving transformations or new
constructs in order to avoid GOTO, or debating whether GOTO is permissible in
a particular situation – became in fact the main preoccupation of both the
academics and the practitioners.

Their reaction to what is in reality a blatant falsification of structured
programming – the need for explicit jumps – clearly reveals the theorists’
ignorance and dishonesty. Not only were they naive enough to believe that we
can program without jumps, but they refused to accept the evidence when this
was tried in actual applications. Even more than the difficulties encountered
under the first three delusions, the apparent inconvenience of the standard
constructs should have motivated them to question the validity of structured
programming. Instead, they suppressed this falsification by reinstating the
very feature that the original theory had excluded (the use of non-standard
constructs), and on the exclusion of which its promises were based. The
original dream, thus, was now impossible even if we forget that the previous
delusions had already negated it. The theorists, nevertheless, continued to
advertise structured programming with the same promises.

3

3
Returning to the previous quotations, what is striking is the lack of explanation.
The theorists mention rather casually that the reason we are permitted to
violate the principles of structured programming is the inconvenience of the

572 structured programming chapter 7

standard constructs. They are oblivious to the absurdity of this justification; it
doesn’t occur to them that this inconvenience is an important clue, that we
ought to study it rather than avoid it. Incredibly, they are convinced that if the
theory of structured programming does not work, we can make it work
simply by disregarding some of its principles. Specifically, those important
transformations we discussed earlier need to be performed now only when
convenient. We will derive the same benefits, the theorists say, whether we
actually reduce the application to standard constructs, or simply know that in
principle we could do it.

When we do find an explanation, it is the black-box principle that is
invoked. This principle, we are told now, is the only important one: since any
flow-control construct with one entry and one exit will function, for all
practical purposes, just like a standard construct, there is no need to restrict
ourselves to the standard constructs. We will enjoy the benefits of structured
programming with any constructs that have one entry and one exit.ÉÌ

We saw the meaning of a software “black box” in figures 7-4 to 7-8 (pp. 513,
524–527). A program is deemed structured if its flow diagram can be repre-
sented with nested boxes. Each box encloses a standard construct and can be
treated as a separate software element. And, since the standard constructs have
only one entry and exit, from the perspective of the flow of execution each box
is in effect a sequential construct. Moreover, when studying a certain box
from higher nesting levels, its internal details are immaterial; each element,
therefore, can be programmed independently of the others.

This principle applies at all nesting levels, so the entire application can be
developed simply by creating standard constructs: one construct at a time, one
level at a time. The restriction to software elements with one entry and exit
guarantees that, regardless of the number of nesting levels, the application can
be represented as a perfect hierarchical structure. The ultimate benefit of this
restriction, then, is that we can develop and prove our applications with the
formal methods of mathematics: if each element is correct, and if the relations
between levels (reflected in the single entries and exits) are correct, the
application as a whole is bound to be correct.

ÉÌ The term black box refers to a device, real or theoretical, that consists of an input, an
output, and an internal process that is unknown, or is immaterial in the current context. All
we can see, and all we need to know, is how the output changes as a function of the input.
Strictly speaking, then, since software flow-control constructs do not have input and output,
the theorists are wrong to describe them as black boxes: the entry and exit points seen in
the diagram do not depict an input value converted by a process into an output value, but
rather a construct’s place relative to the other constructs in the sequence of execution. Only
if taken in its most general and informal sense, simply as a device whose internal operation
is immaterial, can the concept of a black box be used at all with software flow-control
constructs.

the fourth delusion 573chapter 7

Suddenly, then, it seems that the principles of structured programming can
be relaxed: from a restriction to the standard constructs, to a restriction to any
constructs that have one entry and exit. Incredibly, structured programming
can be expanded from three to an infinity of constructs without having to give
up any of its original benefits. Still, as we just saw, there is no obvious fallacy in
this expansion; those benefits appear indeed attainable through any constructs
that have one entry and exit. But this sudden freedom, this ease of expanding
the theory, is precisely what should have worried the advocates of structured
programming, what should have prompted them to doubt its soundness.
Instead, they interpreted this apparent freedom as a good thing, as evidence
of its power: we can now combine in one theory, they concluded, the strictness
of a mathematical concept and the convenience needed in a practical program-
ming methodology.

This freedom is an illusion, of course. It appears logical only if we study
the new claim in isolation, only if we forget that the principles of structured
programming had been refuted before the theorists discovered the inconven-
ience of the standard constructs. Thus, to recognize the fallacies inherent in the
new delusion we must bear in mind the previous ones.

We note, first, that what the theorists call the black-box principle is not a
principle at all; it is a corollary, a consequence of the principles of structured
programming. Since the standard constructs have only one entry and exit, if
we restrict ourselves to standard constructs the flow diagram will display this
characteristic at every nesting level. The main principle is the restriction to the
standard constructs. The theorists take what is one of the results of this
principle (constructs with only one entry and exit) and make it the main
principle. Then, they substitute for what is the actual restriction (the three
standard constructs) a new, vague restriction.

The new restriction merely states that we should use non-standard con-
structs “as little as possible.” The number of constructs varies from expert to
expert: some permit only three or four (the minimum needed to alleviate the
inconvenience of the standard ones), others permit a dozen, and some go so
far as permitting any constructs with one entry and exit. Whether permitting
few or many, though, this restriction is specious; it is not an exact principle, as
was the restriction to standard constructs. In reality, if permitted to use a
construct just because it has one entry and exit, it matters little whether we use
one or a hundred: the issue now is, at best, one of programming style. But by
counting, studying, and debating the new constructs, and by describing them
as extensions of structured programming, the experts can delude themselves
that they still have a theory.

�

574 structured programming chapter 7

So the experts embraced the black-box principle because it allowed them to
bypass the rigours of structured programming. For, once we annul the real
principle (the restriction to standard constructs), any flow-control construct
can be said to have only one entry and exit. Take the CASE construct, for
instance – one of the first to be permitted in structured programming (see
figure 7-12, p. 568). Its flow diagram contains one component with several exits;
but, if we draw a rectangular box around the whole diagram, that box will have
only one entry and exit.

The same trick, obviously, can be performed with any piece of software:
first, we create the most effective or convenient construct, which will likely
violate the principles of structured programming by containing parts with
more than one entry or exit; then, we draw a box around the whole thing and
declare it an extension of structured programming, because now it has only
one entry and exit. It is entirely up to us to decide at what point this structuring
method becomes silly.

All non-standard constructs are based, ultimately, on this trick. And
every expert was convinced that structured programming could be saved by
extending it in this fashion. To pick just one case, Jensen allows six non-
standard constructs in his definition of structured programming.ÉÍ One of
these constructs, for example, is called POSIT, and its purpose is to replace a
particular combination of conditional statements, which involves an unusual
jump.ÉÎ Jensen shows us how much simpler his POSIT is than using standard
constructs and transformations, and he considers this to be sufficient justifi-
cation for including it in structured programming. (The jump, of course, is
even easier to implement with GOTO; the sole reason for his new construct is to
avoid the GOTO.) But Jensen may well be the only expert who deems this
particular instance of explicit jumps important enough to become an official
construct. Some experts would recommend transformations, others would
permit the use of GOTO, and others yet would suggest more than six non-
standard constructs. Still, no one saw how absurd these ideas were. Clearly, if
each expert is free to interpret the theory of structured programming in his
own way, there is no limit to the number of variants that can be invented. Is
structured programming, then, this open-ended collection of variants?

Significantly, the experts did not replace the original principle with a more
flexible, but equally precise, one. The original principle was strict and simple:
in only two situations – within the standard conditional and iterative constructs
– can the flow diagram include a component with more than one entry or exit.

ÉÍ Randall W. Jensen, “Structured Programming,” in Software Engineering, eds. Randall
W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979), p. 238.
ÉÎ Ibid., p. 250.

the fourth delusion 575chapter 7

By adopting the black-box principle, the experts increased the number of
permitted situations from two to an infinity.

And with this permission, structured programming finally became a
practical concept: whenever we want to avoid an awkward transformation, we
can simply use a language-specific construct, or create a specialized flow-
control construct, and justify this by claiming that it is a logical extension of
structured programming.

We recognize in the black-box principle the pseudoscientific stratagem of
turning falsifications into features (see “Popper’s Principles of Demarcation”
in chapter 3): the theory is expanded by permitting those situations that
would otherwise falsify it, and calling them new features. Thus, the black-box
principle permits almost any constructs, while the principle of standard
constructs permitted only three. As a result, constructs whose usefulness
originally falsified the theory are now features of the theory. This saves the idea
of structured programming from refutation, but at the price of making it
unfalsifiable, and hence worthless.

4

4
It is even easier to understand the fourth delusion when we represent applica-
tions as systems of interacting software structures. Recall our discussion under
the second delusion. The purpose of the standard conditional and iterative
constructs is to provide alternatives to the flow of execution defined by the
nesting scheme. Each alternative endows the application with a unique flow-
control structure. And, since the actual flow of execution is affected by all the
flow-control constructs in the application, it is in reality a system comprising
all the individual flow-control structures (see pp. 541–545).

So the two standard constructs already make the flow of execution a
complex structure. When we study the application from the perspective of the
nesting scheme alone – when we study the flow diagram, for instance – what
we see is elements neatly related through one hierarchical structure. But if
some of these elements are conditional or iterative constructs, the actual flow
of execution will comprise many structures. Each one of these structures differs
from the nesting scheme only slightly, in one element of one particular flow-
control construct.

As far as their effect on the flow of execution is concerned, then, there is
indeed no difference between the standard and the non-standard flow-control
constructs. Just like the standard ones, any flow-control construct provides, by
means of jumps, alternatives to the flow of execution defined by the nesting
scheme: each possible jump creates a different flow-control attribute, and

576 structured programming chapter 7

hence a flow-control structure. In the standard constructs, the jumps are
implicit. In non-standard constructs, the jumps can be both implicit (when we
use built-in, language-specific constructs) and explicit (when we create our
own constructs with GOTO).

Thus, in a certain sense, the software theorists are right to claim that any
construct with one entry and one exit is a valid structured programming
extension. Since constructs possessing this quality can be elements in a
hierarchical structure, a nesting scheme that includes non-standard constructs
remains a correct hierarchy. There is no fallacy in the claim that, within the
nesting scheme, non-standard constructs function just like the standard ones.
The fallacy, rather, is in the belief that the nesting scheme alone represents the
flow of execution.

The reason it seems that we can add an infinity of extensions and still enjoy
the benefits promised by structured programming is that those benefits were
already lost, since the first delusion. If the application consists of interacting
flow-control structures even when restricted to the standard constructs, this
means that it cannot be represented mathematically in any case. So it is
true that there is nothing to lose by allowing non-standard constructs. The
extensions are logical, just as the theorists say, but for a different reason: they
are logical, not because structured programming is valid both with and
without them, but because it is invalid both with and without them.

�

The dream of structured programming was always to establish a direct, one-
to-one correspondence between the static flow diagram and the actual flow of
execution (see pp. 532–533). Since flow diagrams can be drawn as hierarchical
structures, and hence represented with the exact tools of mathematics, such a
correspondence means that the same model that describes mathematically the
flow diagram would also describe the flow of execution, and therefore the
behaviour of the running application.

So the restriction to one entry and exit is important to the theorists because
it guarantees that all the elements in the application are related through a
simple hierarchical structure. And indeed, this restriction makes the flow
diagram a hierarchical structure. The theorists then mistakenly conclude that
the flow of execution, formed as it is from the same elements and relations, will
mirror at run time the flow diagram; so it too will be a hierarchical structure.
The flow of execution, though, is the combination of all the flow-control
structures in the application. We could perhaps represent mathematically each
one of those structures. But even if we accomplished this, we still could not
represent mathematically the complex structure that is their totality, and which

the fourth delusion 577chapter 7

is the only true model of the application’s flow of execution. And we must not
forget the other types of structures – structures based on shared data or
operations, and on business or software practices – all interacting with one
another and with the flow-control structures, and therefore affecting the
application’s performance.

It is only when we recognize the great complexity of software that we can
appreciate how ignorant the software experts are, and how naive is their belief
that the nesting scheme represents the flow of execution. As I pointed out
earlier, the theory of structured programming was refuted in the first delusion,
when this belief was born. The movement known as structured programming
was merely the pursuit of the various delusions that followed. It was, thus, a
fraud: a series of dishonest and futile attempts to defend an invalid mechanistic
theory.

5

5
Our concept of software structures can also help us to understand why the
restriction to standard constructs is, indeed, inconvenient. The theorists, we
saw, make no attempt to explain the reason for this inconvenience. They
correctly note that non-standard constructs are more convenient, but they
don’t feel there is a need to understand this phenomenon. They invoke their
convenience to justify their use, but, ultimately, it is precisely this phenomenon
– the difference in convenience between the standard and the non-standard
constructs – that must be explained.

The few theorists who actually attempt to explain this phenomenon seem to
conclude that, since non-standard constructs can be reduced to standard ones,
they function as software subassemblies: non-standard constructs consist of
combinations of standard ones in the same way that subassemblies consist of
simpler parts in a physical structure. So they are more convenient in building
software structures for the same reason it is more convenient to start with
subassemblies than with individual parts when building physical structures.
In short, non-standard constructs are believed to be at a higher level of
abstraction than the standard ones.ÉÏ Let us analyze this fallacy.

We saw, under the second delusion, that the theorists confuse the operations
performed by the three standard constructs with the operations that define a

ÉÏ Knuth, for example, expresses this mistaken view when he says that the various flow-
control constructs represent in effect different levels of abstraction in a given programming
language, and that we can resolve the inconvenience of the standard constructs simply by
inventing some new, higher-level constructs. Donald E. Knuth, “Structured Programming
with go to Statements,” in Computing Surveys 6, no. 4 (©1974 ACM, Inc.): 295–296.

578 structured programming chapter 7

hierarchical structure; they confuse these constructs, thus, with the operations
that create the elements of one level from those of the lower level. Now it seems
that this confusion extends to the non-standard constructs.

The only operations that define software structures, we saw, are those
performed by the sequential constructs, and those that invoke modules and
subroutines; in other words, the kind of operations that combine software
elements into larger elements, one level at a time (see pp. 541–542). This is how
the application’s nesting scheme is formed, and we can create hierarchical
software structures of any size with sequential constructs alone. The condi-
tional and iterative constructs do not perform the same kind of operation; they
do not combine elements into larger, higher-level elements. Their role, in fact,
is to override the operations performed by the sequential constructs, by
providing alternatives to the nesting scheme. And they do it by endowing the
software elements with flow-control attributes (in the form of jumps): each
attribute gives rise to an additional flow-control structure.

The non-standard constructs, too, endow elements with flow-control
attributes; so their role, too, is to create additional flow-control structures.
The two kinds of constructs fulfil a similar function, therefore, and their
relationship is not one of high to low levels.

�

So the theorists are correct when noting that the non-standard constructs are
more convenient, but they are wrong about the reason: the convenience is not
due to starting from higher levels of abstraction. Let us try to find the real
explanation.

Whether we employ non-standard constructs or restrict ourselves to the
standard ones, the application will have multiple, interacting flow-control
structures. In either case, then, it is our mind that must solve the most difficult
programming problem – dealing with the interactions between structures.
Thus, even when following the principles of structured programming, our
success depends largely on our skills and experience, not on the soundness of
these principles.

The defenders of structured programming delude themselves when main-
taining that a perfectly structured program can be represented with an exact,
mechanistic model. The static flow-control structure – the nesting scheme
depicted by the flow diagram – has perhaps a mathematical representation. But
this cannot help us, since we must ensure that the dynamic, complex flow-
control structure is correct; we must ensure, in other words, that all the
individual flow-control structures, and their interactions, are correct. So the
most difficult aspect of programming is precisely that aspect which cannot be

the fourth delusion 579chapter 7

represented mathematically, and which lies therefore beyond the scope of
structured programming (or any other mechanistic theory).

The goal of all mechanistic software theories is to eliminate our dependence
on the non-mechanistic capabilities of the mind, on such imprecise qualities as
talent, skill, and experience. And the only way to eliminate this dependence
is by treating software applications as simple structures, or as systems of
separable structures. This is an illogical quest, however, because software
structures must interact. Our affairs consist of interacting processes and
events; so, if we want our software to mirror our affairs accurately, the software
entities that make up applications must be related in several ways at the same
time. The only way for software entities to have multiple relations is by sharing
more than one attribute. And, since each attribute gives rise to a different
structure, these entities will belong to several structures at the same time,
causing them to interact.

Even within that one aspect of the application that is the flow of execution,
we find the need for multiple, interacting structures: to represent our affairs,
the application’s elements must possess and share several flow-control attri-
butes. Each flow-control attribute serves to relate a number of elements,
from the perspective of the flow of execution, in a unique way. The nesting
scheme is, in effect, a flow-control attribute shared by all the elements in the
application. And we create the other flow-control attributes by introducing
jumps in the flow of execution: each possible jump, whether explicit or
implicit, gives rise to a unique flow-control attribute, and hence a different
flow-control structure.

The standard conditional and iterative constructs, useful as they are, can
provide only two types of jumps; so they can create only some of the flow-
control relations between the application’s elements, only some of the attributes.
In order to mirror in software our affairs, we need more types of relations, and
hence more types of flow-control attributes. We need, in other words, more
types of jumps than those provided by the standard constructs. We can provide
the additional relations with our own, explicit jumps, or with the implicit
jumps found in some language-specific constructs. Or, if we want to avoid
jumps altogether, as structured programming recommends, we can resort to
transformations: we provide the additional relations then, not through flow-
control attributes, but through attributes based on shared data or shared
operations.

And herein lies the explanation for the inconvenience of the standard
constructs and the transformations. We usually need several relations of
other types to replace one flow-control relation. That is, instead of one flow-
control attribute, our elements must have several attributes of other types in
order to implement a given requirement. More precisely, to replace one flow-

580 structured programming chapter 7

control attribute deriving from non-standard constructs, we need one or more
flow-control attributes deriving from standard constructs, plus one or more
attributes deriving from shared data or shared operations. Thus, since each
attribute gives rise to a structure, we end up with more structures, and more
interactions. While the additional complexity may be insignificant with only
a few elements and attributes, as in a small piece of software, it becomes
prohibitive in a serious application, because the number of interactions grows
exponentially relative to the number of structures.

To make matters worse, the substitute relations are less intuitive than the
flow-control ones. They do not reflect the actual relations – those relations we
observe in our activities, and which we wanted to implement in software. The
substitute relations are unnatural, in that they exist only between software
elements, and are necessary only in order to satisfy an illogical principle.

Our programming languages, as a matter of fact, do permit us to implement
the actual relations simply and naturally, but only if we use both standard and
non-standard constructs. It is the restriction to standard constructs that creates
artificial relations, and makes the application larger and more complicated.

Let us analyze a specific case: the requirement to exit an iterative construct
depending on a condition encountered in the middle of the loop. The simplest
way to implement this requirement is by jumping out of the loop with a GOTO.
This jump, moreover, simulates naturally in software what we do in our
everyday activities when we want to end a repetitive act. If, however, we want
to avoid the explicit jump, we must use a memory variable as switch (this
transformation is similar to the one shown in figure 7-8, p. 527). Instead of
simply terminating the loop, the condition only sets the switch; the operations
to the end of the loop are placed in the other branch of this condition, so
they are bypassed; then, the switch is checked in the main condition, so
the loop will end before the next iteration. This method is more complicated
than a GOTO, but it is the one recommended by the advocates of structured
programming.

In our everyday activities, we terminate a repetitive act simply by ending
the repetition; we don’t make a note about ending the repetition, go back to the
beginning of the act as if we intended to repeat it, pretend to discover the
note we made a moment earlier, and only then decide to end the repetition.
A person who regularly behaved in this manner would be considered stupid.
Yet, we are asked to display this behaviour in our programming activities. No
wonder we find the transformations inconvenient – unnatural and impractical.

We need thousands of such transformations in a serious application. Still,
the real difficulty is not the large number of individual transformations, but
their interactions. We saw that the application remains a system of interacting
structures, and that the transformations add even more structures. Thus, in

the fourth delusion 581chapter 7

addition to the original interactions, we must now deal with the interactions
between the new structures, and between these and the original ones. So,
when multiplying, transformations that individually are merely inconvenient
become a major part of the application’s logic. In the end, it is the transforma-
tions, rather than the actual requirements, that govern the application’s design.

Since it is quite easy to implement isolated transformations, we can justify
the additional effort by calling this activity “software engineering.” Software
engineering, though, becomes increasingly awkward as our applications
grow in size and detail. So what we perceive then as a new problem – the
impracticality of the transformations – is in reality the same phenomenon as
in simple situations, where structured programming appears to work. The only
difference is that we can disregard the inconvenience when slight, but must
face it when it becomes a handicap.

�

The inconvenience of the restriction to standard constructs indicates that our
mental effort, even when developing “structured” software, entails more than
just following mechanistic principles. It indicates that we are also using our
non-mechanistic capabilities. It indicates, therefore, that we are dealing with
systems of interacting structures; for, were applications mechanistic in nature,
the restriction to standard constructs would be increasingly helpful as they grew
in size.

The phenomenon of inconvenience proves, then, that it is not the mecha-
nistic principles of structured programming but our mind – our skills and
experience – that we are relying on. This phenomenon proves, in other words,
that the theory of structured programming is invalid. So, by misinterpreting
the inconvenience, the theorists missed the fourth opportunity to recognize
the fallaciousness of structured programming.

In conclusion, non-standard constructs are more convenient because
they result in fewer structures and interactions for implementing the same
requirements. We need a certain number of flow-control attributes in order to
mirror in software a given combination of processes and events; and we end up
with more attributes, and hence more structures, when replacing the flow-
control attributes with attributes of other types. There is a limit to our capacity
to process interacting structures in our mind, and we reach this limit much
sooner when following the principles of structured programming.

The best programming method, needless to say, is the one that results in the
fewest interactions. The promise of structured programming is to eliminate the
interactions altogether, and thereby obviate the need for non-mechanistic
thinking. But now we see that the opposite is taking place: programmers need

582 structured programming chapter 7

even greater non-mechanistic capabilities – an even greater capacity to process
complex structures – with structured programming than without it.

A simple, ten-line piece of software will be changed by structured program-
ming into a slightly more involved piece of software. Thus, if we believe in
some ultimate benefits, we will gladly accept the small increase in complexity.
But this self-deception cannot help us in real-world situations. Because the
complexity induced by structured programming grows exponentially, a serious
application will become, not slightly more, but much more, involved. Creating
and maintaining such an application is not just inconvenient but totally
impractical. Moreover, because it is still a system of interacting structures, the
application will still be impossible to represent mathematically. There are no
ultimate benefits, and no one ever developed a serious application while
rigorously adhering to the principles of structured programming.

In the end, structured programming turned the activities of programmers
into a kind of game: searching for ways to avoid GOTO. The responsibility of
programmers shifted, from creating useful applications and improving their
skills, to merely conforming to a certain dogma. They were pleased with their
success in performing transformations on isolated pieces of software, while
reverting to non-standard constructs whenever the transformations were
inconvenient. And they believed that this senseless programming style was
structured programming; after all, even the experts were recommending it.
Thus, just as the experts were deluding themselves that structured program-
ming was a valid theory, the programmers could delude themselves that what
they were practising was structured programming.

6

6
Let us examine, lastly, that aspect of the fourth delusion that is the continued
belief in an exact, mathematical representation of software applications, when
in fact no one ever managed to represent mathematically anything but small
and isolated pieces of software. When a phenomenon is mechanistic, mathe-
matics works just as well for large systems as it does for small ones. Thus, the
fact that a mathematical theory that works for small pieces of software becomes
increasingly impractical as software grows in size should have convinced the
theorists that software systems give rise to non-mechanistic phenomena.

Take a trivial case: an IF statement where, for instance, a memory variable is
either incremented or decremented depending on a condition. Even this
simple construct, with just one condition and two elements, is related to the
rest of the application through more than one structure; so it is part of a
complex system. In its static representation, there are at least two logical

the fourth delusion 583chapter 7

connections between the two elements, and between these elements and the
rest of the application: the flow-control structure, the structure based on the
memory variable, and further structures if the condition itself entails variables,
subroutines, etc. And in the dynamic representation there are at least three
logical connections, because the condition’s branches generate an additional
structure (we studied these structures under the second delusion). We are
dealing with a complex system; but because it is such a small system, we
can identify all the structures and even some of the interactions. In real
applications, however, we must deal with thousands of structures, most of them
interacting with one another; and, while in principle we can still study these
systems, we cannot actually do it. Many mechanistic delusions, we saw earlier,
spring from the failure to appreciate this difference between simple and real-
world situations (see p. 555).

Thus, even at this advanced stage, even after all the falsifications, many
theorists remained convinced that structured programming allows us to
develop and prove applications mathematically. The success of this idea in
simple situations gave them hope that, with further work, we would be able to
represent mathematically increasingly large pieces of software. Entire books
have been written with nothing more solid than this belief as their foundation.
In one example after another, we are shown how to prove the validity of
a piece of software by reducing it to simpler entities, just as we do with
mathematical problems. But these demonstrations are worthless, because the
theorists recognize only one structure – the static nesting scheme, typically –
and ignore the other relations that exist between the same software elements;
they only prove, therefore, the validity of one aspect of that piece of software.
So, even when correct, these demonstrations remain abstract studies and have
no practical value. Whether empirical (using software transformations) or
analytical (using mathematical logic), they rely on the fact that, in simple
situations, those structures and interactions that we can identify constitute a
major portion of the system. Thus, although their study only approximates the
complex software phenomenon, for small pieces of software the approximation
may well be close enough to be useful.

The theorists take the success of these demonstrations as evidence that it
is possible to represent software mathematically: if the method works in
simple cases, they say, the principles of reductionism and atomism guarantee
its success for larger and larger pieces of software, and eventually entire
applications. But the number of structures and interactions in real-world
situations grows very quickly, and any method that relies on identifying and
studying them separately is bound to fail. No one ever managed to prove,
either empirically or analytically, the validity of a significant piece of software,
let alone a whole application. The software mechanists remain convinced

584 structured programming chapter 7

that mathematical programming is a practical concept, when, like the other
mechanistic delusions, it is only valid in principle.ÉÐ

In principle, then, it is indeed possible to develop and prove applications
mathematically – just as it is possible, in principle, to predict future events
through Laplacean determinism, or to explain human acts with the theories of
behaviourism, or to depict social phenomena with the theories of structural-
ism, or to represent languages with Chomskyan linguistics. But actually using
a mathematical programming theory – just like using those other theories –
is inconvenient.

�

The mathematical representation of software, thus, is treated by the theorists
just like the restriction to standard constructs: they show that it works in
simple, isolated cases; they believe that the principles of structured program-
ming assure its success in actual applications; and they refuse to see its failure
in actual applications as evidence that structured programming does not work.

So the conclusion we must draw from the fourth delusion is that structured
programming never works, not even in those situations where we do not find
it inconvenient. Even requirements simple enough to program with standard
constructs alone, and simple enough to represent mathematically, give rise to
multiple, interacting structures. But because in these situations we can identify
the structures and the interactions, we can delude ourselves that we are dealing
with a mechanistic phenomenon. The fourth delusion, then, can also be
described as the belief that structured programming is inconvenient only in
certain situations, while in reality the inconvenience is always present. We just
don’t notice it, or don’t mind it, for simple requirements.

Simple requirements, in fact, can be programmed with mechanistic knowl-
edge alone, if we follow a method that takes into account the most important
structures and interactions. Thus, we often hear the remark that inexperienced
programmers find it easier than experienced ones to adapt to the rigours
of structured programming. As usual, the theorists misinterpret this fact.
Experienced programmers dislike structured programming, the theorists say,
because they are accustomed to the old-fashioned, undisciplined style of
programming. Actually, experienced programmers dislike structured program-
ming because they already possess superior, non-mechanistic knowledge, which

ÉÐ It must be noted that this fallacy affected, not just the specific theory known as
structured programming, but all theories based on structures of nested constructs. As
example, here is a methodology that claims to validate mathematically entire applications,
and an actual development system based on it: James Martin, System Design from Provably
Correct Constructs (Englewood Cliffs, NJ: Prentice Hall, 1985).

the fourth delusion 585chapter 7

exceeds the benefits of a mechanistic theory. Inexperienced programmers
possess no knowledge at all, or a modicum of mechanistic knowledge; so
they like structured programming because they indeed accomplish more
with it than without it. But substituting rules and methods for skills and
experience can benefit them only in simple situations. Ultimately, with serious
applications, programmers possessing non-mechanistic knowledge easily
outperform those who attempt to practise strict structured programming.

This, incidentally, explains also why CASE (the promise of automatic
software generation, see pp. 465–469) works in simple situations while failing
for real-world applications. Only by following precise rules and methods – that
is, by treating software as a mechanistic phenomenon – can a device convert
requirements into applications. (Software devices, thus, display the same type
of behaviour as inexperienced programmers.) In simple situations, the device
can account for most interactions; but this method of programming breaks
down when tried with serious applications, where the number of interactions
is practically infinite.

Mathematics can represent large systems as easily as it can small ones. This
is why phenomena that are truly mechanistic can be represented mathemati-
cally no matter how many elements, levels, and relations are involved. But,
because software phenomena are not mechanistic, mechanistic theories only
appear to represent software systems mathematically. When practical at all,
they work merely by accounting for the individual interactions – not through
general principles, like the truly useful mathematical theories.ÉÑ

The GO TO Delusion

The GOTO Delusion
1 1
There is no better way to conclude our discussion of the structured program-
ming delusions than with an analysis of the GOTO delusion – the prohibition
and the debate.

We have already encountered the GOTO delusion: under the third delusion,
we saw that the reason for transformations was simply to avoid GOTOs; and
under the fourth delusion, we saw that the reason for introducing non-
standard constructs into structured programming was, again, to avoid GOTOs.

ÉÑ A related fallacy is the idea of software metrics – the attempt to measure the complexity
of an application by counting and weighing in various ways the conditions, iterations,
subroutines, etc., that make it up. Like the mathematical fallacy, these measurements
reflect individual aspects of the application, not their interactions; so the result is a poor
approximation of the actual complexity.

586 structured programming chapter 7

The GOTO delusion, however, deserves a closer analysis. The most famous
problem in the history of programming, and unresolved to this day, this
delusion provides a vivid demonstration of the ignorance and dishonesty of
the software theorists. They turned what is the most blatant falsification
of structured programming – the need for explicit jumps in the flow of
execution – into its most important feature: new flow-control constructs that
hide the jumps within them. The sole purpose of these constructs is to perform
jumps without using GOTO statements. Thus, while purposely designed to
help programmers override the principles of structured programming, these
constructs were described as language enhancements that facilitate structured
programming.

Turning falsifications into features is how fallacious theories are saved from
refutation (see “Popper’s Principles of Demarcation” in chapter 3). The GOTO
delusion alone, therefore, ignoring all the others, is enough to characterize
structured programming as a pseudoscience.

Clearly, if it was proved mathematically that structured programming needs
no GOTOs, the very fact that a debate is taking place indicates that structured
programming has failed as a practical programming concept. In the end, the
GOTO delusion is nothing but the denial of this reality, a way for the theorists
and the practitioners to cling to the idea of structured programming years and
decades after its failure.

It is difficult for a lay person to appreciate the morbid obsession that was
structured programming, and its impact on our programming practices.
Consider, first, the direct consequence: programmers were more preoccupied
with the “principles” of structured programming – with trivial concepts like
top-down design and avoiding GOTO – than with the actual applications they
were supposed to develop, and with improving their skills. A true mass
madness possessed the programming community in the 1970s – a madness
which the rest of society was unaware of. We can recall this madness today by
studying the thousands of books and papers published during that period,
something well worth doing if we want to understand the origins of our
software bureaucracy. All universities, all software experts, all computer
publications, all institutes and associations, and management in all major
corporations were praising and promoting structured programming – even as
its claims and promises were being falsified in a million instances every day,
and the only evidence of usefulness consisted of a few anecdotal and distorted
“success stories.”

The worst consequence of structured programming, though, is not what
happened in the 1970s, but what has happened since then. For, the incompe-
tence and irresponsibility engendered by this worthless theory have remained
the distinguishing characteristic of our software culture. As programmers and

the goto delusion 587chapter 7

managers learned nothing from the failure of structured programming, they
accepted with the same enthusiasm the following theories, which suffer in fact
from the same fallacies.

2

2
Recall what is the GOTO problem. We need GOTO statements in order to
implement explicit jumps in the flow of execution, and we need explicit jumps
in order to create non-standard flow-control constructs. But explicit jumps and
non-standard constructs are forbidden under structured programming. If we
restrict ourselves to the three standard constructs, the theorists said at first, we
will need no explicit jumps, and hence no GOTOs. We may have to subject our
requirements to some awkward transformations, but the benefits of this
restriction are so great that the effort is worthwhile.

The theorists started, thus, by attempting to replace the application’s flow-
control structures with structures based on shared data or shared operations; in
other words, to replace the unwanted flow-control relations between elements
with relations of other types. Then, they admitted that it is impractical to
develop applications in this fashion, and rescued the idea of structured
programming by permitting the use of built-in non-standard constructs; that
is, constructs already present in a particular programming language. These
constructs, specifically prohibited previously, were described now as extensions
of the original theory, as features of structured programming. Only the use of
GOTO – that is, creating our own constructs – continued to be prohibited.

The original goal of structured programming had been to eliminate all
jumps, and thereby restrict the flow-control relations between elements to
those defined by a single hierarchical structure. This is what the restriction to a
nesting scheme of standard flow-control constructs was thought to accomplish
– mistakenly, as we saw under the second delusion, because the implicit jumps
present in these constructs already create multiple flow-control structures.
Apart from this fallacy, though, it is illogical to permit built-in non-standard
constructs while prohibiting our own constructs. For, just as there is no real
difference between standard constructs and non-standard ones, there is no
real difference between built-in non-standard constructs and those we create
ourselves. All these constructs fulfil, in the end, the same function: they create
additional flow-control structures in order to provide alternatives to the flow
of execution established by the nesting scheme. Thus, all that the built-in
constructs accomplish is to relate elements through implicit rather than
explicit jumps. So they render the GOTOs unnecessary, not by eliminating the
unwanted jumps, but by turning the explicit unwanted jumps into implicit

588 structured programming chapter 7

unwanted ones. The unwanted relations between elements, therefore, and the
multiple flow-control structures, remain.

The goal of structured programming, thus, was now reversed: from the
restriction to standard constructs – the absence of GOTO being then merely a
consequence – to searching for ways to replace GOTOs with implicit jumps; in
other words, from avoiding non-standard constructs, to seeking and praising
them. More and more constructs were introduced, but everyone agreed in the
end that it is impractical to provide GOTO substitutes for all conceivable
situations. So GOTO itself was eventually reinstated, with the severe admonition
to use it “only when absolutely necessary.” The theory of structured program-
ming was now, in effect, defunct. Incredibly, though, it was precisely at this
point that it generated the greatest enthusiasm and was seen as a programming
revolution. The reason, obviously, is that it was only at this point – only after
its fundamental principles were annulled – that it could be used at all in
practical situations.

The GOTO delusion, thus, is the belief that the preoccupation with GOTO is
an essential part of a structured programming project. In reality, the idea of
structured programming had been refuted, and the use or avoidance of
GOTO is just a matter of programming style. What had started as a precise,
mathematical theory was now an endless series of arguments on whether GOTO
or a transformation or a built-in construct is the best method in one situation
or another. And, while engaged in these childish arguments, the theorists and
the practitioners called their preoccupation structured programming, and
defended it on the strength of the original, mathematical theory.É

�

Let us see first some examples of the GOTO prohibition – that part of the
debate which claims, without any reservation, that GOTO leads to bad program-
ming, and that structured programming means avoiding GOTO: “The primary
technique of structured programming is the elimination of the GOTO statement

É For example, as late as 1986, and despite the blatant falsifications, the theorists were
discussing structured programming just as they had been discussing it in the early 1970s: it
allows us to prove mathematically the correctness of applications, write programs that work
perfectly the first time, and so on. Then, as evidence, they mention a couple of “success
stories” (using, thus, the type of argument used to advertise weight-loss gadgets on
television). See Harlan D. Mills, “Structured Programming: Retrospect and Prospect,” in
Milestones in Software Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA:
IEEE Computer Society Press, ©1990 IEEE), pp. 286–287 – paper originally published in
IEEE Software 3, no. 6 (1986): 58–66. See also Harlan D. Mills, Michael Dyer, and Richard C.
Linger, “Cleanroom Software Engineering,” in Milestones, eds. Oman and Lewis, pp. 217–218
– paper originally published in IEEE Software 4, no. 5 (1987): 19–24.

the goto delusion 589chapter 7

and its replacement with a number of other, well-structured branching and
control statements.”Ê “The freedom offered by the GOTO statement has been
recognized as not in keeping with the idea of structures in control flow. For
this reason we will never use it.”Ë “If a programmer actively endeavours to
program without the use of GOTO statements, he or she is less likely to make
programming errors.”Ì “By eliminating all GOTO statements, we can do even
better, as we shall see.”Í “In order to obtain a simple structure for each segment
of the program, GOTO statements should be avoided.”Î “Using the techniques of
structured programming, the GOTO or branch statement is avoided entirely.”Ï

And the Encyclopedia of Computer Science offers us the following (wrong
and silly) analogy as an explanation for the reason why we must avoid GOTO:
it makes programs hard to read, just like those articles on the front page
of a newspaper that are continued (with a sort of “go to”) to another page.
Then the editors conclude: “At least some magazines are more considerate,
however, and always finish one thought (article) before beginning another.
Why can’t programmers? Their ability to do so is at the heart of structured
programming.”Ð

It is not difficult to understand why the subject of GOTO became such
an important part of the structured programming movement. After all the
falsifications, what was left of structured programming was just a handful
of trivial concepts: top-down design, hierarchical structures of software
elements, constructs with only one entry and exit, etc. These concepts were
then supplemented with a few other, even less important ones: indenting the
nested elements in the program’s listing, inserting comments to explain the
program’s logic, restricting modules to a hundred lines, etc. The theorists
call these concepts “principles,” but these simple ideas are hardly the basis
of a programming theory. Some are perhaps a consequence of the original
structured programming principles, but they are not principles themselves.

Ê Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975), p. 145.

Ë J. N. P. Hume and R. C. Holt, Structured Programming Using PL/1, 2nd ed. (Reston, VA:
Reston, 1982), p. 82.

Ì Ian Sommerville, Software Engineering, 3rd ed. (Reading, MA: Addison-Wesley,
1989), p. 32.

Í Gerald M. Weinberg et al., High Level COBOL Programming (Cambridge, MA:
Winthrop, 1977), p. 43.

Î Dennie Van Tassel, Program Style, Design, Efficiency, Debugging, and Testing, 2nd ed.
(Englewood Cliffs, NJ: Prentice Hall, 1978), p. 78.

Ï Nancy Stern and Robert A. Stern, Structured COBOL Programming, 7th ed. (New York:
John Wiley and Sons, 1994), p. 13.

Ð Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1308.

590 structured programming chapter 7

To appreciate this, imagine that the only structured programming concepts
we ever knew were top-down design, hierarchical structures, indenting state-
ments, etc. Clearly, no one would call it a programming revolution on the
strength of these concepts. It was the promise of precision and rigour that
made it famous – the promise of developing and proving software applications
mathematically.

So, now that what was left of structured programming was only the trivial
concepts, the preoccupation with GOTO provided a critical substitute for the
original, strict principles: it allowed both the theorists and the practitioners to
delude themselves that they were still pursuing a serious idea. GOTO-less
programming is the only remnant of the formal theory, so it serves as a link to
the original claims, to the promise of mathematical programming.

The formal theory, however, was about structures of standard constructs,
not about avoiding GOTO. All the theory says is that, if we adhere to these
principles, we will end up with GOTO-less programs. The defenders of struc-
tured programming violate the strict principles (because impractical), and
direct their efforts instead to what was meant to be merely a consequence of
those principles. By restricting and debating the use of GOTO, and by contriving
substitutes, they hope now to attain the same benefits as those promised by the
formal theory.

Here are some examples of the attempt to ground the GOTO prohibition
on the original, mathematical principles: “A theorem proved by Böhm and
Jacopini tells us that any program written using GOTO statements can be
transformed into an equivalent program that uses only the [three] structured
constructs.”Ñ “Böhm and Jacopini showed that essentially any control flow
can be achieved without the GOTO by using appropriately chosen sequential,
selection, and repetition control structures.”ÉÈ “Dijkstra’s [structured pro-
gramming] proposal could, indeed, be shown to be theoretically sound by
previous results from [Böhm and Jacopini,] who had showed that the control
logic of any flowchartable program . . . could be expressed without GOTOs, using
sequence, selection, and iteration statements.”ÉÉ

We saw under the third delusion that the theorists misrepresent Böhm and
Jacopini’s work (see pp. 557–561). Thus, invoking their work to support the
GOTO prohibition is part of the misrepresentation.

Ñ Doug Bell, Ian Morrey, and John Pugh, Software Engineering: A Programming Approach
(Hemel Hempstead, UK: Prentice Hall, 1987), p. 14.
ÉÈ Ralston and Reilly, Encyclopedia, p. 361.
ÉÉ Harlan D. Mills, “Structured Programming: Retrospect and Prospect,” in Milestones

in Software Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE
Computer Society Press, ©1990 IEEE), p. 286 – paper originally published in IEEE Software
3, no. 6 (1986): 58–66.

the goto delusion 591chapter 7

�

The GOTO preoccupation, then, was the answer to the failure of the formal
theory. By degrading the definition of structured programming from exact
principles to a preoccupation with GOTO, everyone appeared to be practising
scientific programming while pursuing in reality some trivial and largely
irrelevant ideas.

It is important to note that the absurdity of the GOTO delusion is not so much
in the idea of avoiding GOTO, as in the never-ending debates and arguments
about avoiding it: in which situations should it be permitted, and in which ones
forbidden. Had the GOTO avoidance been a strict prohibition, it could have
been considered perhaps a serious principle. In that case, we could have agreed
perhaps to redefine structured programming as programming without the use
of explicit jumps. But, since a strict GOTO prohibition is impractical, what
started as a principle became an informal rule: the exhortation to avoid it “as
much as possible.” The prohibition, in other words, was to be enforced only
when the GOTO alternatives were not too inconvenient.

An even more absurd manifestation of the GOTO delusion was the attempt to
avoid GOTO by replacing it with certain built-in, language-specific constructs,
which perform in fact the same jumps as GOTO. The purpose of avoiding
GOTO had been to avoid all jumps in the flow of execution, not to replace
explicit jumps with implicit ones. Thus, in their struggle to save structured
programming, the theorists ended up interpreting the idea of avoiding GOTO
as a requirement to avoid the phrase “go to,” not the jumps. I will return to this
point later.

Recognizing perhaps the shallowness of the GOTO preoccupation, some
theorists were defending structured programming by insisting that the GOTO
prohibition is only one of its principles. Thus, the statement we see repeated
again and again is that structured programming is “more” than just GOTO-less
programming: “The objective of structured programming is much more far
reaching than the creation of programs without GOTO statements.”ÉÊ “There
is, however, much more to structured programming than modularity and
the elimination of GOTO statements.”ÉË “Indeed, there is more to structured
programming than eliminating the GOTO statement.”ÉÌ

These statements, though, are specious. They sound as if “more” meant
the original, mathematical principles. But, as we saw, those principles were
falsified. So “more” can only mean the trivial principles – top-down design

ÉÊ James Martin and Carma McClure, Structured Techniques: The Basis for CASE, rev. ed.
(Englewood Cliffs, NJ: Prentice Hall, 1988), p. 39.
ÉË L. Wayne Horn and Gary M. Gleason, Advanced Structured COBOL: Batch and

Interactive (Boston: Boyd and Fraser, 1985), p. 1. ÉÌ Yourdon, Techniques, p. 140.

592 structured programming chapter 7

and nested constructs, writing and documenting programs clearly, etc. – which
had replaced the original ones.

The degradation from a formal theory to trivial principles is also seen in
the fact that the term “structured” was commonly applied now, not just to
programs restricted to certain flow-control constructs, but to almost any
software-related activity. Thus, in addition to structured programming, we
had structured coding, structured techniques, structured analysis, structured
design, structured development, structured documentation, structured flow-
charts, structured requirements, structured specifications, structured English
(for writing the specifications), structured walkthrough (visual inspection
of the program’s listing), structured testing, structured maintenance, and
structured meetings.

3

3
To summarize, there are three aspects to the GOTO delusion. The first one is the
reversal in logic: from the original principle that applications be developed as
structures of standard constructs, to the stipulation that applications be
developed without GOTO. The GOTO statement is not even mentioned in the
original theory; its absence is merely a consequence of the restriction to
standard constructs. Thus, the first aspect of the GOTO delusion is the belief that
a preoccupation with ways to avoid GOTO can be a substitute for an adherence
to the original principle.

The second aspect is the belief that avoiding GOTO need not be a strict,
formal principle: we should strive to avoid it, but we may use it when its
elimination is inconvenient. So, if the first belief is that we can derive the same
benefits by avoiding GOTO as we could by restricting applications to standard
constructs, the second belief is that we can derive the same benefits if we avoid
GOTO only when it is convenient to do so. The second aspect of the GOTO

delusion can also be described as the fallacy of making two contradictory
claims: the claim that GOTO is harmful and must be banned (which sounds
scientific and evokes the original theory), and the claim that GOTO is sometimes
acceptable (which turns the GOTO prohibition from a fantasy into a practical
method). Although in reality the two claims cancel each other, they appear to
express important programming concepts.

Lastly, the third aspect of the GOTO delusion is the attempt to avoid GOTO,
not by eliminating those programming situations that require jumps in the flow
of execution, but by replacing GOTO with some new constructs, specifically
designed to perform those jumps in its stead. The third aspect, thus, is the
belief that we can derive the same benefits by converting explicit jumps into

the goto delusion 593chapter 7

implicit ones, as we could with no jumps at all; in other words, the belief that
it is not the jumps, but just the GOTO statement, that must be avoided.

�

We already saw examples of the first aspect of the GOTO delusion – those
statements simply asserting that structured programming means programming
without GOTO (see pp. 589–590). Let us see now some examples of the second
aspect; namely, claiming at the same time that GOTO must be avoided and that
it may be used.

The best-known case is probably that of E. W. Dijkstra himself. One of the
earliest advocates of structured programming, Dijkstra is the author of the
famous paper “Go To Statement Considered Harmful.” We have already
discussed this paper (see pp. 508–509), so I will only repeat his remark that
he was “convinced that the GOTO statement should be abolished from all
‘higher level’ programming languages”ÉÍ (in order to make it impossible for
programmers to use it, in any situation). He reasserted this on every oppor-
tunity, so much so that his “memorable indictment of the GOTO statement”
is specifically mentioned in the citation for the Turing award he received
in 1972.ÉÎ

Curiously, though, after structured programming became a formal theory –
that is, when it was claimed that Böhm and Jacopini’s paper vindicated
mathematically the abolition of GOTO – Dijkstra makes the following remark:
“Please don’t fall into the trap of believing that I am terribly dogmatical about
[the GOTO statement].”ÉÏ

Now, anyone can change his mind. Dijkstra, however, did not change his
mind about the validity of structured programming, but only about the
strictness of the GOTO prohibition. Evidently, faced with the impossibility of
programming without explicit jumps, he now believes that we can enjoy the
benefits of structured programming whether or not we restrict ourselves to the
standard constructs. Thus, the popularity of structured programming was
unaffected by his change of mind. Those who held that GOTO must be banned
could continue to cite his former statement, while those who accepted GOTO
could cite the latter. Whether against or in favour of GOTO, everyone could base
his interpretation of structured programming on a statement made by the
famous theorist Dijkstra.

ÉÍ E. W. Dijkstra, “Go To Statement Considered Harmful,” in Milestones, eds. Oman and
Lewis, p. 9. ÉÎ Ralston and Reilly, Encyclopedia, p. 1396.
ÉÏ E. W. Dijkstra, quoted as personal communication in Donald E. Knuth, “Structured

Programming with go to Statements,” in Computing Surveys 6, no. 4 (©1974 ACM, Inc.): 262
(brackets in the original).

594 structured programming chapter 7

One of those who chose Dijkstra’s latter statement, and a famous theorist
and Turing award recipient himself, is Donald Knuth: “I believe that by
presenting such a view I am not in fact disagreeing sharply with Dijkstra’s
ideas”ÉÐ (meaning his new idea, that GOTO is not harmful). Knuth makes this
statement in the introduction to a paper that bears the striking title “Structured
Programming with go to Statements” – a forty-page study whose goal is “to lay
[the GOTO] controversy to rest.”ÉÑ It is not clear how Knuth hoped to accomplish
this, seeing that the paper is largely an analysis of various programming
examples, some with and others without GOTO, some where GOTO is said to be
bad and others where it is said to be good; in other words, exactly what was
being done by every other expert, in hundreds of other studies. The examples,
needless to say, are typical textbook cases: trivial, isolated pieces of software
(the largest has sixteen statements), where GOTO is harmless even if misused,
and which have little to do, therefore, with the real reasons why jumps are good
or bad in actual applications. One would think that if the GOTO controversy
were simple enough to be resolved by such examples, it would have ended long
before, through the previous studies. Knuth, evidently, is convinced that his
discussion is better.

From the paper’s title, and from some of his arguments, it appears at first
that Knuth intends to “lay to rest” the controversy by boldly stating that the use
of GOTO is merely a matter of programming style, or simplicity, or efficiency.
But he only says this in certain parts of the paper. In other parts he tells us that
it is important to avoid GOTO, shows us how to eliminate it in various situations,
and suggests changes to our programming languages to help us program
without GOTO.ÊÈ

By the time he reaches the end of the paper, Knuth seems to have forgotten
its title, and concludes that GOTO is not really necessary: “I guess the big
question, although it really shouldn’t be so big, is whether or not the ultimate
language will have GOTO statements in its higher levels, or whether GOTO will
be confined to lower levels. I personally wouldn’t mind having GOTO in the
highest level, just in case I really need it; but I probably would never use it, if
the general iteration and situation constructs suggested in this paper were
present.”ÊÉ

ÉÐ Donald E. Knuth, “Structured Programming with go to Statements,” in Computing
Surveys 6, no. 4 (©1974 ACM, Inc.): 262. ÉÑ Ibid., p. 291.
ÊÈKnuth admits proudly that he deliberately chose “to present the material in this

apparently vacillating manner” (ibid., p. 264). This approach, he explains, “worked beauti-
fully” in lectures: “Nearly everybody in the audience had the illusion that I was largely
supporting his or her views, regardless of what those views were!” (ibid.). What is the point
of this approach, and this confession? Knuth and his audiences are evidently having fun
debating GOTO, but are they also interested in solving this problem? ÊÉ Ibid., p. 295.

the goto delusion 595chapter 7

Note how absurd this passage is: “wouldn’t mind . . . just in case I really need
it; but I probably would never use it” This is as confused and equivocal as a
statement can get. Knuth is trying to say that it is possible to program without
GOTO, but he is afraid to commit himself. So what was the point of this lengthy
paper? Why doesn’t he state, unambiguously, either that the ideal high-level
programming language must include certain constructs but not GOTO, or,
conversely, that it must include GOTO, because we will always encounter
situations where it is the best alternative?

Knuth also says, at the end of the paper, that “it’s certainly possible to write
well-structured programs with GOTO statements,”ÊÊ and points to a certain
program that “used three GOTO statements, all of which were perfectly easy
to understand.” But then he adds that some of these GOTOs “would have
disappeared” if that particular language “had had a WHILE statement.” Again, he
is unable to make up his mind. He notes that the GOTOs are harmless when used
correctly, then he contradicts himself: he carefully counts them, and is pleased
that more recent languages permit us to reduce their number.

One more example: In their classic book, The C Programming Language,
Brian Kernighan and Dennis Ritchie seem unsure whether to reject or accept
GOTO.ÊË It was included in C, and it appears to be useful, but they feel they must
conform to the current ideology and criticize it. First they reject it: “Formally,
the GOTO is never necessary, and in practice it is almost always easy to write
code without it. We have not used GOTO in this book.”ÊÌ We are not told how
many situations are left outside the “almost always” category, but their two
GOTO examples represent in fact a very common situation (the requirement to
exit from a loop that is nested two or more levels within the current one).

At this point, then, the authors are demonstrating the benefits of GOTO. They
even point out (and illustrate with actual C code) that any attempt to eliminate
the GOTO in these situations results in an unnatural and complicated piece of
software. The logical conclusion, thus, ought to be that GOTO is necessary in C.
Nevertheless, they end their argument with this vague and ambiguous remark:
“Although we are not dogmatic about the matter, it does seem that GOTO

statements should be used sparingly, if at all.”ÊÍ

�

ÊÊ The quotations in this paragraph are ibid., p. 294.
ÊË Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood

Cliffs, NJ: Prentice Hall, 1978), pp. 62–63.
ÊÌ Ibid., p. 62. Incidentally, they managed to avoid GOTO in all their examples simply

because, as in any book of this kind, the examples are limited to small, isolated, artificial
bits of logic. But the very fact that the avoidance of GOTO in examples was a priority
demonstrates the morbidity of this preoccupation. ÊÍ Ibid., p. 63.

596 structured programming chapter 7

It is the third aspect of the GOTO delusion, however, that is the most absurd:
eliminating the GOTO statements by replacing them with new constructs that
are designed to perform exactly the same jumps. At this point, it is no longer
the jumps that we are asked to avoid, but just the phrase “go to.”

At first, we saw under the fourth delusion, the idea of structured pro-
gramming was modified to include a number of non-standard constructs –
constructs already found in the existing programming languages. Originally,
these constructs had been invented simply as language enhancements, as
alternatives to the most common jumps. (They simplify the jumps, typically,
by obviating the need for a destination label.) But, as they allowed practitioners
to bypass the restriction to standard constructs, they were enthusiastically
incorporated into structured programming and described as “extensions”
of the theory.

Although the inclusion of language-specific constructs appeared to rescue
the idea of structured programming, there remained many situations where
GOTO could only be eliminated through some unwieldy transformations, and
still others where GOTO-based constructs were the only practical alternative.
So the concept of language-specific constructs – what had been originally
intended merely as a way to improve programming languages – was expanded
and turned by the theorists into a means to eliminate GOTO. Situations easily
implemented with GOTO in any language became the subject of research,
debate, and new constructs. More and more constructs were suggested as GOTO
replacements, although, in the end, few were actually added to the existing
languages.

The theorists hoped to discover a set of constructs that would eliminate
forever the need for GOTO by providing built-in jumps for all conceivable
programming situations. They hoped, in other words, to redeem the idea
of structured programming by finding an alternative to the contrived and
impractical transformations. No such set was ever found, but this failure was
not recognized as the answer to the GOTO delusion, and the controversy
continued.

The theorists justified their attempts to replace GOTO with language-specific
constructs by saying that these constructs facilitate structured programming.
But this explanation is illogical. If we interpret structured programming as
the original theory, with its restriction to standard constructs, the role of
the non-standard constructs is not to facilitate but to override structured
programming. And if we interpret structured programming as the extended
theory, which allows any construct with one entry and exit, we can implement
all the constructs we need by combining standard constructs and GOTO

statements; in this case, then, the role of the non-standard constructs is not to
facilitate structured programming but to facilitate GOTO-less programming.

the goto delusion 597chapter 7

The theorists, therefore, were not inventing built-in constructs out of a concern
for structured programming – no matter how we interpret this theory – but
only in order to eliminate GOTO.

As an example of the attempts to define a set of flow-control constructs that
would make GOTO unnecessary, consider Jensen’s study.ÊÎ Jensen starts by
defining three “atomic” components: “We use the word atomic to character-
ize the lowest level constituents to which we can reduce the structure of a
program.”ÊÏ The three atomic components are called process node, predicate
node, and collector node, and represent lower software levels than do the
three standard constructs of structured programming. Then, Jensen defines
nine flow-control constructs based on these components (the three standard
constructs plus six non-standard ones), proclaims structured programming to
mean the restriction, not to the three standard constructs but to his nine
constructs, and asserts that any application can be developed in this manner:
“By establishing program structure building blocks (akin to molecules made
from our three types of atoms) and a structuring methodology, we can scientif-
ically implement structured programs.”ÊÐ But, even though Jensen discusses the
practical implementation of this concept with actual programming languages
and illustrates it with a small program, the concept remains a theoretical study,
and we don’t know how successful it would be with real-world applications.

An example of a set of constructs that was actually put into effect is found
in a language called Bliss. One of its designers makes the following statement
in a paper presented at an important conference: “The inescapable conclusion
from the Bliss experience is that the purported inconvenience of programming
without a GOTO is a myth.”ÊÑ

It doesn’t seem possible that the GOTO delusion could reach such levels, but
it did. That statement is ludicrous even if we overlook the fact that Bliss
was just a special-purpose language (designed for systems software, so the
conclusion about the need for GOTO is not at all inescapable in the case of other
types of programs). The academics who created Bliss invented a number of
constructs purposely in order to replace, one by one, various uses of GOTO. The
constructs, thus, were specifically designed to perform exactly the same jumps
as GOTO. To claim, then, that using these constructs instead of GOTO proves that
it is possible to program without GOTO, and to have such claims published and
debated, demonstrates the utter madness that had possessed the academic and
the programming communities.

ÊÎ Randall W. Jensen, “Structured Programming,” in Software Engineering, eds. Randall
W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979).
ÊÏ Ibid., p. 238. ÊÐ Ibid., p. 241.
ÊÑWilliam A. Wulf, “A Case against the GOTO,” Proceedings of the ACM Annual

Conference, vol. 2 (1972), p. 795.

598 structured programming chapter 7

Here is how Knuth, in the aforementioned paper, describes this madness:
“During the last few years several languages have appeared in which the
designers proudly announced that they have abolished the GOTO statement.
Perhaps the most prominent of these is Bliss, which originally replaced
GOTO’s by eight so-called ‘escape’ statements. And the eight weren’t even
enough. . . . Other GOTO-less languages for systems programming have similarly
introduced other statements which provide ‘equally powerful’ alternative ways
to jump. . . . In other words, it seems that there is widespread agreement that
GOTO statements are harmful, yet programmers and language designers still
feel the need for some euphemism that ‘goes to’ without saying GOTO.”ËÈ

Unfortunately, Knuth ends his paper contradicting himself; now he praises
the idea of replacing GOTO with new constructs designed to perform the same
operation: “But GOTO is hardly ever the best alternative now, since better
language features are appearing. If the invariant for a label is closely related to
another invariant, we can usually save complexity by combining those two into
one abstraction, using something other than GOTO for the combination.”ËÉ
What Knuth suggests is that we improve our programming languages by
creating higher levels of abstraction: built-in flow-control constructs that
combine several operations, including all necessary jumps. Explicit jumps, and
hence GOTO, will then become unnecessary: “As soon as people learn to apply
principles of abstraction consciously, they won’t see the need for GOTO.”ËÊ

Knuth’s mistake here is the fallacy we discussed under the second and fourth
delusions (see pp. 539–542, 578–579): he confuses the flow-control constructs
with the operations of a hierarchical structure. In the static flow diagram – that
is, in the nesting scheme – these constructs do indeed combine elements to
form higher levels of abstraction. But because they employ conditions, their
task in the flow of execution is not to create higher levels, but to create multiple,
interacting nesting schemes.

The idea of replacing GOTO with higher-level constructs is, therefore,
fallacious. Only an application restricted to a nesting scheme of sequential
constructs has a flow of execution that is a simple hierarchical structure,
allowing us to substitute one construct for several lower-level ones. And no
serious application can be restricted to such a nesting scheme. This is why
no one could invent a general-purpose language that eliminates the need
for jumps. In the end, all flow-control constructs added to programming
languages over the years are doing exactly what GOTO-based constructs are
doing, but without using the phrase “go to.”

ËÈKnuth, “Structured Programming,” pp. 265–266. ËÉ Ibid., p. 294.
ËÊ Ibid., pp. 295–296.

the goto delusion 599chapter 7

4

4
Because of its irrationality, the GOTO prohibition acquired in the end the
character of a superstition: despite the attempt to ground the debate on
programming principles, avoiding GOTO became a preoccupation similar in
nature to avoiding black cats, or avoiding the number 13.

People who cling to an unproven idea develop various attitudes to rational-
ize their belief. For example, since it is difficult to follow strictly the precepts
of any superstition, we must find ways to make the pursuit of superstitions
practical. Thus, even if convinced that certain events bring misfortune, we will
tolerate them when avoiding them is inconvenient – and we will contrive an
explanation to justify our inconsistency. Similarly, we saw, while GOTO is
believed to bring software misfortune, most theorists agree that there is no
need to be dogmatic: GOTO is tolerable when avoiding it is inconvenient.

Humour is an especially effective way to mask the irrationality of our acts.
Thus, it is common to see people joke about their superstitions – about their
habit of touching wood, for instance – even as they continue to practise them.
So we shouldn’t be surprised to find humorous remarks accompanying the
most serious GOTO discussions. Let us study a few examples.

In his assessment of the benefits of structured programming, Yourdon
makes the following comment: “Many programmers feel that programming
without the GOTO statement would be awkward, tedious, and cumbersome. For
the most part, this complaint is due to force of habit. . . . The only response that
can be given to this complaint comes from a popular television commercial
that made the rounds recently: ‘Try it – you’ll like it!’”ËË This is funny, perhaps,
but what is the point of this quip? After explaining and praising GOTO-less
programming, Yourdon admits that the only way to demonstrate its benefits is
with the techniques of television advertising.

Another example of humour is the statement COME FROM, introduced as an
alternative to GOTO. Although meant as a joke, this statement was actually
implemented in several programming languages, and its merits are being
discussed to this day in certain circles. Its operation is, in a sense, the reverse
of GOTO; for instance, COME FROM L1 tells the computer to jump to the statement
following it when the flow of execution encounters the label L1 somewhere in
the program. (The joke is that, apart from being quite useless, COME FROM is
even more difficult than GOTO to understand and to manage.) It is notable that
the official introduction of this idea was in Datamation’s issue that proclaimed

ËË Yourdon, Techniques, p. 178.

600 structured programming chapter 7

structured programming a revolution (see p. 523). Thus, out of the five articles
devoted to this revolution, one was meant in its entirety as a joke.ËÌ

One expert claims that the GOTO prohibition does not go far enough: the
next step must be to abolish the ELSE in IF statements.ËÍ Since an IF-THEN-ELSE
statement can be expressed as two consecutive IF-THEN statements where the
second condition is the logical negation of the first, ELSE is unnecessary and
complicates the program. The expert discusses in some detail the benefits of
ELSE-less programming. The article, which apparently was not meant as a joke,
ends with this sentence: “Structured programming, with elimination of the
GOTO, is claimed to be a step toward changing programming from an art to a
cost-effective science, but the ELSE will have to go, too, before the promise is a
reality”ËÎ (note the pun, “go, too”).

Knuth likes to head his writings with epigraphs, but from the quotations he
chose for his aforementioned paper on GOTO, it is impossible to tell whether
this is a serious study or a piece of entertainment. Two quotations, from a
poem and from a song, were chosen, it seems, only because they include the
word “go”; the third one is from an advertisement offering a remedy for
“painful elimination.” Also, we find the following remark in the paper: “The
use of four-letter words like GOTO can occasionally be justified even in the best
of company.”ËÏ

The most puzzling part of Knuth’s humour, however, is his allusion to
Orwell’s Nineteen Eighty-Four. He dubs the ideal programming language
Utopia 84, as his “dream is that by 1984 we will see a consensus developing. . . .
At present we are far from that goal, yet there are indications that such a
language is very slowly taking shape. . . . Will Utopia 84, or perhaps we should
call it Newspeak, contain GOTO statements?”ËÐ

Is this a joke or a serious remark? Does Knuth imply that the role of
programming languages should be the same as the role of Newspeak in
Orwell’s totalitarian society – that is, to degrade knowledge and minds? (See
“Orwell’s Newspeak” in chapter 5.) Perhaps this is Knuth’s dream, unless the
following statement, too, is only a joke: “The question is whether we should
ban [GOTO], or educate against it; should we attempt to legislate program
morality? In this case I vote for legislation, with appropriate legal substitutes in
place of the former overwhelming temptations.”ËÑ

As the theorists and the practitioners recognized the shallowness of their
preoccupation with GOTO, humour was the device through which they could

ËÌ R. Lawrence Clark, “A Linguistic Contribution to GOTO-less Programming,” Data-
mation 19, no. 12 (1973): 62–63.
ËÍAllan M. Bloom, “The ‘ELSE’ Must Go, Too,” Datamation 21, no. 5 (1975): 123–128.
ËÎ Ibid., p. 128. ËÏKnuth, “Structured Programming,” p. 282.
ËÐ Ibid., pp. 263–264. ËÑ Ibid., p. 296.

the goto delusion 601chapter 7

pursue two contradictory ideas: that the issue is important, and that it is
irrelevant. Humour, generally, is a good way to deal with the emotional conflict
arising when we must believe in two contradictory concepts at the same
time. Thus, like people joking about their superstitions, the advocates of
structured programming discovered that humour allowed them to denounce
the irrational preoccupation with GOTO even while continuing to foster it.

5

5
The foregoing analysis has demonstrated that the GOTO prohibition had no
logical foundation. It has little to do with the original structured program-
ming idea, and can even be seen as a new theory: the theory of structured
programming failed, and the GOTO preoccupation took its place. The theorists
and the practitioners kept saying that structured programming is more than
just GOTO-less programming, but in reality the elimination of GOTO was
now the most important aspect of their work. What was left of structured
programming was only some trivial concepts: top-down design, constructs
with one entry and exit, indenting the levels of nesting in the program’s listing,
and the like.

To appreciate this, consider the following argument. First, within the
original, formal theory of structured programming, we cannot even discuss
GOTO; for, if we adhere to the formal principles we will never encounter
situations requiring GOTO. So, if we have to debate the use of GOTO, it means
that we are not practising structured programming.

It is only within the modified, informal theory that we can discuss GOTO at
all. And here, too, the GOTO debate is absurd, because this degraded variant of
structured programming can be practised both with and without GOTO. We
can have structured programs either without GOTO (if we use only built-in
constructs) or with GOTO (if we also design our own constructs). The only
difference between the two alternatives is the presence of explicit jumps in
some of the constructs, and explicit jumps are compatible with the informal
principles. With both methods we can practise top-down design, create
constructs with one entry and exit, restrict modules to a hundred lines, indent
the levels of nesting in the program’s listing, and so forth. Every principle
stipulated by the informal theory of structured programming can be rigorously
followed whether or not we use GOTO.

The use of GOTO, thus, is simply a matter of programming style, or program-
ming standards, which can vary from person to person and from place to place.
Since it doesn’t depend on a particular set of built-in constructs, the informal
style of structured programming can be practised with any programming

602 structured programming chapter 7

language (even with low-level, assembly languages): we use built-in constructs
when available and when effective, and create our own with explicit jumps
when this alternative is better. (So we will have more GOTOs in COBOL, for
example, than in C.)

Then, if GOTO does not stop us from practising the new, informal structured
programming, why was its prohibition so important? As I stated earlier (see
pp. 590–591), the GOTO preoccupation served as a substitute for the original
theory: that theory restricted us to the three standard flow-control constructs
(a rigorous principle that is all but impossible to follow), while the new theory
permits us to use an arbitrary, larger set of constructs (in fact, any built-in
constructs). Thus, the only restriction now is to use built-in constructs rather
than create our own with GOTO. This principle is more practical than the
original one, while still appearing precise. By describing this easier principle as
an extension of structured programming, the theorists could delude them-
selves that they had a serious theory even after the actual theory had been
refuted.

The same experts who had promised us the means to develop and prove
applications mathematically were engaged now in the childish task of studying
the use of GOTO in small, artificial pieces of software. And yet, no one saw this
as evidence that the theory of structured programming had failed. While still
talking about scientific programming, the experts were debating whether one
trivial construct is easier or harder to understand than some other trivial
construct. Is this the role of software theorists, to decide for us which style of
programming is clearer? Surely, practitioners can deal with such matters on
their own. We listened to the theorists because of their claim that software
development can be a formal and precise activity. And if this idea turned out
to be mistaken, they should have studied the reasons, admitted that they
could not help us, and tried perhaps to discover what is the true nature of
programming. Instead, they shifted their preoccupation to the GOTO issue, and
continued to claim that programming would one day become a formal and
precise activity.

The theorists knew, probably, that the small bits of software they were
studying were just as easy to understand with GOTO as they were without it. But
they remained convinced that this was a critical issue: it was important to find
a set of ideal constructs because a flow-control structure free of GOTOs would
eventually render the same benefits as a structure restricted to the three
standard constructs. The dream of rigorous, scientific programming was still
within reach.

The theorists fancied themselves as the counterpart of the old thinkers, who,
while studying what looked like minute philosophical problems, were laying in
fact the foundation of modern knowledge. Similarly, the theorists say, subjects

the goto delusion 603chapter 7

like GOTO may seem trivial, but when studying the appearance of small
bits of software with and without GOTO they are determining in fact some
important software principles, and laying the foundation of the new science of
programming.

�

The GOTO issue was important to the theorists, thus, as a substitute for the
formal principles of structured programming. But there was a second, even
more important motivation for the GOTO prohibition.

Earlier in this chapter we saw that the chief purpose of structured pro-
gramming, and of software engineering generally, was to get inexperienced
programmers to perform tasks that require in fact great skills. The software
theorists planned to solve the software crisis, not by promoting programming
expertise, but, on the contrary, by eliminating the need for expertise: by
turning programming from a difficult profession, demanding knowledge,
experience, and responsibility, into a routine activity, which could be per-
formed by almost anyone. And they hoped to accomplish this by discovering
some exact, mechanistic programming principles – principles that could be
incorporated in methodologies and development tools. The difficult skills
needed to create software applications would then be reduced to the easier
skills needed to follow methods and to operate software devices. Ultimately,
programmers would only need to know how to use the tools provided by the
software elite.

The GOTO prohibition was part of this ideology. Structured programs,
we saw, can be written both with and without GOTO: we use only built-in
flow-control constructs, or also create our own with GOTO statements. The
difference is a matter of style and efficiency. So, if structured programming is
what matters, all that the theorists had to do was to explain the principle of
nested flow-control constructs. Responsible practitioners would appreciate
its benefits, but the principle would not prevent them from developing an
individual programming style. They would use custom constructs when better
than the built-in ones, and the GOTOs would make their programs easier, not
harder, to understand.

Thus, it was pointed out more than once that good programmers were
practising structured programming even before the theorists were promoting
it. And this is true: a programmer who develops and maintains large and
complex applications inevitably discovers the benefits of hierarchical flow-
control structures, indenting the levels of nesting in the program’s listing, and
other such practices; and he doesn’t have to avoid GOTO in order to enjoy these
benefits.

604 structured programming chapter 7

But the theorists had decided that programmers should not be expected to
advance beyond the level attained by an average person after a few months of
practice – beyond what is, in effect, the level of novices. The possibility of
educating and training programmers as we do individuals in other professions
– that is, giving them the time and opportunity to develop all the knowledge
that human minds are capable of – was not even considered. It was simply
assumed that if programmers with a few months of experience write bad
software, the only way to improve their performance is by preventing them
from dealing with the more difficult aspects of programming.

And, since the theorists believed that the flow-control structure is the most
important aspect of the application, the conclusion was obvious: programmers
must be forced to use built-in flow-control constructs, and prohibited from
creating their own. In this way, even inexperienced programmers will create
perfect flow-control structures, and hence perfect applications. Restricting
programmers to built-in constructs, the theorists believed, is like starting with
subassemblies rather than basic parts when building appliances: programming
is easier and faster, and one needs lower skills and less experience to create the
same applications. (We examined this fallacy earlier; see pp. 578–579.) Thus,
simply by prohibiting mediocre programmers from creating their own flow-
control constructs, we will attain about the same results as we would by
employing expert programmers.

�

It is clear, then, why the theorists could not just advise programmers to follow
the principles of structured programming. Since their goal was to control
programming practices, it was inconceivable to allow the programmers to
decide whether to use a built-in construct or a non-standard one, much less to
allow them to design a construct. With its restriction to the three standard
constructs, the original theory had the same goal, but it was impractical. So
the theorists looked for a substitute, a different way to control the work of
programmers. With its restriction to built-in constructs – constructs sanc-
tioned by the theorists and incorporated into programming languages – the
GOTO prohibition was the answer.

We find evidence that this ideology was the chief motivation for the GOTO
prohibition in the reasons typically adduced for avoiding GOTO. The theorists
remind us that its use gives rise to constructs with more than one entry or exit,
thereby destroying the hierarchical nature of the flow-control structure;
and they point out that it has been proved mathematically that GOTO is
unnecessary. But despite the power of these formal explanations, they ground
the prohibition, ultimately, on the idea that GOTO tempts programmers to

the goto delusion 605chapter 7

write “messy” programs. It is significant, thus, that the theorists consider the
informal observation that GOTO allows programmers to create bad software
more convincing than the formal demonstration that GOTO is unnecessary.

Here are some examples: “The GOTO statement should be abolished” because
“it is too much an invitation to make a mess of one’s program.”ÌÈ “GOTO

instructions in programs can go to anywhere, permitting the programmer to
weave a tangled mess.”ÌÉ “It would be wise to avoid the GOTO statement
altogether. Unconditional branching encourages a patchwork (spaghetti code)
style of programming that leads to messy code and unreliable performance.”ÌÊ
“The GOTO can be used to produce ‘bowl-of-spaghetti’ programs – ones
in which the flow of control is involuted in arbitrarily complex ways.”ÌË
“Unrestricted use of the GOTO encourages jumping around within programs,
making them difficult to read and difficult to follow.”ÌÌ “One of the most
confusing styles in computer programs involves overuse of the GOTO state-
ment.”ÌÍ “GOTO statements make large programs very difficult to read.”ÌÎ

What these authors are saying is true. What they are describing, though, is
not programming with GOTO, but simply bad programming. They believe that
there are only two alternatives to software development: bad programmers
allowed to use GOTO and writing therefore bad programs, and bad program-
mers prevented from using GOTO. The possibility of having good programmers,
who write good programs with or without GOTO, is not considered at all.

The argument about messy programs is ludicrous. It is true that, if used
incorrectly, GOTO can cause execution to “go to anywhere,” can create an
“arbitrarily complex” flow of control, and can make the program “difficult
to follow.” But the GOTO problem is no different from any other aspect of
programming: bad programmers do everything badly, so the messiness of their
flow-control constructs is not surprising. Had these authors studied other
aspects of those programs, they would have discovered that the file operations,
or the definition of memory variables, or the use of subroutines, or the
calculations, were also messy. The solution, however, is not to prohibit bad
programmers from using certain features of a programming language, but to
teach them how to program; in particular, how to create simple and consistent

ÌÈDijkstra, “Go To Statement,” p. 9.
ÌÉMartin and McClure, Structured Techniques, p. 133.
ÌÊDavid M. Collopy, Introduction to C Programming: A Modular Approach (Upper Saddle

River, NJ: Prentice Hall, 1997), p. 142.
ÌËWilliam A. Wulf, “Languages and Structured Programs,” in Current Trends in Pro-

gramming Methodology, vol. 1, Software Specification and Design, ed. Raymond T. Yeh
(Englewood Cliffs, NJ: Prentice Hall, 1977), p. 37.
ÌÌClement L. McGowan and John R. Kelly, Top-Down Structured Programming Tech-

niques (New York: Petrocelli/Charter, 1975), p. 43.
ÌÍWeinberg et al., High Level COBOL, p. 39. ÌÎ Van Tassel, Program Style, p. 78.

606 structured programming chapter 7

flow-control constructs. And if they are incapable or unwilling to improve
their work, they should be replaced with better programmers.

The very use of terms like “messy” to describe the work of programmers
betrays the distorted attitude that the software elite has toward this profession.
Programmers whose work is messy should not even be employed, of course.
Incredibly, the fact that individuals considered professional programmers
create messy software is perceived as a normal state of affairs. Theorists,
employers, and society accept the incompetence of programmers as a necessary
and irremediable situation. And we accept not only their incompetence, but
also the fact that they are irresponsible and incapable of improving their skills.
Thus, everyone agrees that it is futile to teach them how to use GOTO correctly;
they cannot understand, or don’t care, so it is best simply to prohibit them from
using it.

To be considered a professional programmer, an individual ought to display
the highest skill level attainable in the domain of programming. This is how we
define professionalism in other domains, so why do we accept a different
definition for programmers? The software theorists claim that programmers
are, or are becoming, “software engineers.” At the same time, they are redefin-
ing the notions of expertise and responsibility to mean something entirely
different from what they mean for engineers and for other professionals. In the
case of programmers, expertise means acquaintance with the latest theories
and standards, and responsibility means following them blindly. And what do
these theories and standards try to accomplish? To obviate the need for true
expertise and responsibility. No one seems to note the absurdity of this
ideology.

6

6
We must take a moment here to discuss some of the programming aspects of
the GOTO problem; namely, what programming style creates excellent, rather
than messy, GOTO-based constructs. Had the correct use of GOTO demanded
great expertise – outstanding knowledge of computers or mathematics, for
instance – the effort to prevent programmers from creating their own con-
structs might have been justified. I want to show, however, that the correct use
of GOTO is a trivial issue: from the many kinds of knowledge involved in
programming, this is one of the simplest.

The following discussion, thus, is not intended to promote a particular
programming style, but to demonstrate the triviality of the GOTO problem, and
hence the absurdity of its prohibition. This will serve as additional evidence for
my argument that the GOTO prohibition was motivated, not by some valid

the goto delusion 607chapter 7

software concerns, but by the corrupt ideology held by the software theorists.
They had already decided that programmers must remain incompetent, and
that it is they, the elite, who will control programming practices.

�

The first step is to establish, within the application, the boundaries for each set
of jumps: the whole program in the case of a small application, but usually a
module, a subroutine, or some other section that is logically distinct. Thus,
even when the programming language allows jumps to go anywhere in the
program, we will restrict each set of jumps to the section that constitutes a
particular procedure, report, data entry function, file updating operation, and
the like.

The second step is to decide what types of jumps we want to implement with
GOTO. The number of reasons for having jumps in the flow of execution is
surprisingly small, so we can easily account for all the possibilities. We can
agree, for example, to restrict the forward jumps to the following situations:
bypassing blocks of statements (in order to create conditional constructs);
jumping to the point past the end of a block that is at a lower nesting level than
the current one (in order to exit from any combination of nested conditions
and iterations); jumping to any common point (in order to terminate one
logical process and start another). And we can agree to restrict the backward
jumps to the following situations: jumping to the beginning of a block (in
order to create iterative constructs, and also to end prematurely a particular
iteration); jumping to any common point (in order to repeat the current
process starting from a particular operation).

We need, thus, less than ten types of jumps; and by combining jumps we can
create any flow-control constructs we like. We will continue to use whatever
built-in constructs are available in a particular language, but we will not depend
on them; we will simply use them when more effective than our own. Recall
the failed attempts to replace all possible uses of GOTO with built-in constructs.
Now we see that this idea is impractical, not because of the large number of
types of jumps, but because of the large number of combinations of jumps. And
the problem disappears if we can design our own constructs, because now we
don’t have to plan in advance all conceivable combinations; we simply create
them as needed.

Lastly, we must agree on a good naming system for labels. Labels are
those flow-control variables that identify the statement where execution is to
continue after a jump. And, since each GOTO statement specifies a label, we can
choose names that link logically the jump’s origin, its destination, and the
purpose of the jump. This simple fact is overlooked by those who claim that

608 structured programming chapter 7

jumps unavoidably make programs hard to follow. If we adopt an intelligent
naming system, the jumps, instead of confusing us, will explain the program’s
logic. (The compiler, of course, will accept any combination of characters as
label names; it is the human readers that will benefit from a good naming
convention.)

Here is one system: the first character or two of the name are letters
identifying that section of the program where a particular set of jumps and
labels are in effect; the next character is a letter identifying the type of jump;
and these letters are followed by a number identifying the relative position of
the label within the current set of jumps. In the name RKL3, for example, RK is
the section, L identifies the start of a loop, and 3 means that the label is found
after labels with numbers like 1 or 25, but before labels with numbers like 31 or
6. Similarly, T could identify the point past the end of a loop, S the point past a
block bypassed by a condition, E the common point for dealing with an error,
and so on.ÌÏ

Note that the label numbers identify their order hierarchically, not through
their values. For example, in a section called EM, the sequence of labels might
be as follows: EMS2, EML3, EMS32, EMS326, EML35, EMT36, EMT4, EME82. The
advantage of hierarchical numbering is that we can add new labels later
without having to modify the existing ones. Note also that, while the numbers
can be assigned at will, we can also use them to convey some additional
information. For example, labels with one- or two-digit numbers could signify
points in the program that are more important than those employing labels
with three- or four-digit numbers (say, the main loop versus an ordinary
condition).

Another detail worth mentioning is that we will sometimes end up with two
or more consecutive labels. For example, a jump that terminates a loop and one
that bypasses the block in which the loop is nested will go to the same point in
the program, but for different reasons. Therefore, even though the compiler
allows us to use one label for both jumps, each operation should have its own
label. Also, while the order of consecutive labels has no effect on the program’s
execution, here it should match the nesting levels (for the benefit of the human
readers); thus, the label that terminates the loop should come before the one
that bypasses the whole block (EMT62, EMS64).

Simple as it is, this system is actually too elaborate for most applications.
First, since the jump boundaries usually parallel syntactic units like subrou-
tines, in many languages the label names need to be unique only within each

ÌÏ In COBOL, labels are known as paragraph names, and paragraphs function also as
procedures, or subroutines; but the method described here works the same way. (It is poor
practice to use the same paragraph both as a GOTO destination and as a procedure, except
for jumps within the procedure.)

the goto delusion 609chapter 7

section; so we can often dispose of the section identifier and start all label
names in the program with the same letter. Second, in well-designed programs
the purpose of most jumps is self-evident, so we can usually dispose of the type
identifier too. (It is clear, for instance, whether a forward jump is to a common
error exit or is part of a conditional construct.) The method I have followed for
many years in my applications is to use even-numbered labels for forward
jumps (EM4, EM56, EM836, etc.) and odd-numbered ones for backward jumps
(EM3, EM43, EM627, etc.). I find this simplified identification of jump types
adequate even in the most intricate situations.ÌÐ

It is obvious that many other systems of jump types and label names are
possible. It is also obvious that the consistent use of a particular system is more
important than its level of sophistication. Thus, if we can be sure that every
jump and label in a given application obeys a particular convention, we will
have no difficulty following the flow of execution.

�

So the solution to the famous GOTO problem is something as simple as a
consistent system of jump types and label names. All the problems that the
software theorists attribute to GOTO have now disappeared. We can enjoy the
benefits of a hierarchical flow-control structure and the versatility of explicit
jumps at the same time.

The maintenance problem – the difficulty of understanding software created
by others – has also disappeared: no matter how many GOTOs are present in the
program, we know now for each jump where execution is going, and for each
label where execution is coming from. We know, moreover, the purpose of each
jump and label. Designing an effective flow-control structure, or following the
logic of an existing one, may still pose a challenge; but, unlike the challenge of
dealing with a messy structure, this is now a genuine programming problem.
The challenge, in fact, is easier than it is with built-in constructs, because we
have the actual, self-documented jumps and labels, rather than just the implicit
ones. So, even when a built-in construct is available, the GOTO-based one is
often a better alternative.

Now, it is hard to believe that any programmer can fail to understand a
system of jumps and labels; and it is also hard to believe that no theorist ever
thought of such a system. Thus, since a system of jumps and labels answers all
the objections the theorists have to using GOTO, why were they trying to
eliminate it rather than simply suggesting such a system? They describe the

ÌÐ Figures 7-13 to 7-16 (pp. 680, 683–685) exemplify this style. Note that this method also
makes the levels of nesting self-evident, obviating the need to indent the loops.

610 structured programming chapter 7

harmful effects of GOTO as if the only way to use it were with arbitrary
jumps and arbitrary label names. They say nothing about the possibility of an
intelligent and consistent system of jumps, or meaningful label names. They
describe the use of GOTO, in other words, as if the only alternative were to have
incompetent and irresponsible programmers. They appear to be describing a
programming problem, but what they are describing is their distorted view of
the programming profession: by stating that the best solution to the GOTO

problem is avoidance, they are saying in effect that programmers will forever
be too stupid even to follow a simple convention.

�

Structured programming, and the GOTO prohibition, did not make program-
ming an exact activity and did not solve the software crisis. Programmers who
had been writing messy programs before were now writing messy GOTO-less
programs: they were messy in the way they were avoiding GOTO, and also in the
way they were implementing subroutines, calculations, file operations, and
everything else. Clearly, programmers who must be prohibited from using
GOTO (because they cannot follow a simple system of jumps and labels) are
unlikely to perform correctly any other programming task.

Recall what was the purpose of this discussion. I wanted to show that the
GOTO prohibition, while being part of the structured programming movement,
has little to do with its principles, or with any other programming principles.
It is just another aspect of a corrupt ideology. The software elites claim
that their theories are turning programming into a scientific activity, and
programmers into engineers. In reality, the goal of these theories is to turn
programmers into bureaucrats. The programming profession, according to the
elites, is a large body of mediocre workers trained to follow certain methods
and to use certain tools. Structured programming was the first attempt to
implement this ideology, and the GOTO prohibition in particular is a blatant
demonstration of it.

The Legacy

The Legacy

Because the theorists thought that the flow-control structure is the most
important part of an application, they noticed at first only the GOTO messiness,
and concluded that a restriction to built-in flow-control constructs would solve
the problem of bad programming. Then, when this restriction was found to
make no difference, they started to notice the other types of messiness. But the

the legacy 611chapter 7

solution was thought to be, again, not helping programmers to improve their
skills, but preventing them from dealing on their own with various aspects of
programming. Thus, structured programming was followed by many other
theories, languages, methodologies, and database systems, all having the same
goal: to degrade the work of programmers by shifting it to higher and higher
levels of abstraction; to replace programming skills with a dependence on
development systems; and to reduce the contribution of programmers to
simple acts that require practically no knowledge or experience.

Had the theorists tried to understand why structured programming failed,
perhaps they would have discovered the true nature of software and program-
ming. They would have realized then that no mechanistic theory can help us,
because software applications consist of interacting structures. The mechanistic
software delusions, thus, could have ended with structured programming.
But because they denied its failure, and because they continued to claim
that formal programming methods are possible, the theorists established a
mechanistic software culture. After structured programming, the traditional
idea of expertise – skills that are mainly the result of personal knowledge and
experience – was no longer accepted in the field of programming.

Unlike structured programming, today’s theories are embodied in develop-
ment environments – large and complicated systems known as object-oriented,
fourth-generation, database management, CASE, and so on. Consequently, it
is mainly the software companies behind these systems, rather than the
theorists, that form now the software elite. No matter how popular they
are, though, the development environments are ultimately grounded on
mechanistic principles. So, if the mechanistic programming theories cannot
help us, these systems cannot help us either. The reason they appear to work is
that their promoters continually “enhance” them: while praising their high-
level features, they reinstate – within these systems, and under new names – the
low-level, versatile capabilities of the traditional programming languages. In
other words, instead of correctly interpreting a particular inadequacy as a
falsification of the original principles, they eliminate the inadequacy by
annulling those principles. Thus, the same stratagem that made structured
programming appear successful – modifying the theory by reinstating the very
features it was supposed to replace – also serves to cover up the failure of
development environments. (See “The Delusion of High Levels” in chapter 6;
see also “The Quest for Higher Levels” in the next section.)

Turning falsifications into features, we recall, is how pseudoscientists
manage to rescue their theories from refutation. High-level programming
aids, thus, are fraudulent: after all the “enhancements,” using a development
environment is merely a more complicated form of the same programming
work that we had been performing all along, with the traditional languages.

612 structured programming chapter 7

We must also recall the other method employed by pseudoscientists to
defend their theories: looking for confirmations instead of falsifications; that
is, studying the few cases where the theory appears to work, and ignoring the
many cases where it fails. All software theories are promoted with this simple
trick, whether or not they also benefit from the more sophisticated stratagem
of turning falsifications into features.

Thus, it is common to see a particular theory or development system
praised in books and periodicals on the basis of just one or two “success
stories.” Structured programming, for example, was tried with thousands of
applications, but the only evidence of usefulness comes from a handful of
cases: we see the same stories repeated over and over everywhere structured
programming is promoted. (And there is not a single case where a serious
application was implemented by following the original, formal principles.)

�

The study of structured programming is more than the study of a chapter in
the history of programming. If all mechanistic theories suffer from the same
fallacy – the belief that software applications can be separated into independent
structures – then what we learned in our analysis of structured programming
can help us to recognize the fallaciousness of any other programming theory.
All we need to do is identify the structures that each theory attempts to extract
from the complex whole.

The failure of structured programming is the failure of all mechanistic
programming theories, and hence the failure of the whole idea of software
engineering. This is true because software engineering is, in the final analysis,
the ideology of software mechanism; so one cannot say that the idea of
software engineering is sound if the individual theories are failing. The
dream of structured programming was to represent software applications
mathematically, and to turn programming into a precise, predictable activity.
And it is the same dream that we find in the other theories, and in the general
idea of software engineering. Individual theories may come and go, but if
they are all based on mechanistic principles, they are in effect different
manifestations of the same delusion.

If the individual theories are failing, the whole project of software engineer-
ing – replacing personal skills with formal methods, developing software the
way we build appliances, designing and proving applications mathematically –
is failing. Each theory displays the characteristics of a pseudoscience; but, in
addition, the failure of each theory constitutes a falsification of the very idea
of software engineering. Thus, by denying the failure of the individual theories,
software engineering as a whole has been turned into a pseudoscience.

the legacy 613chapter 7

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 7: Software Engineering
	Structured Programming
	The Theory
	1
	2
	3

	The Promise
	The Contradictions
	1
	2
	3

	The First Delusion
	The Second Delusion
	1
	2
	3

	The Third Delusion
	1
	2
	3
	4
	5

	The Fourth Delusion
	1
	2
	3
	4
	5
	6

	The GO TO Delusion
	1
	2
	3
	4
	5
	6

	The Legacy

