
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Introduction: Belief and Software
Section The Software Myth

This extract includes the book’s front matter
and part of the introductory chapter.

Copyright ©2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This section examines the fallacies of the mechanistic software
ideology, and shows how it is preventing expertise in software-
related activities.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Introduction: Belief and Software

The Software Myth The Software Myth
1 1
The software myth is the idea of software mechanism – the enactment of
mechanistic beliefs through software. If traditional mechanism holds that
every phenomenon can be represented with a hierarchical structure, software
mechanism holds that every phenomenon can be represented with a hierarchi-
cal software structure. This is true because, once we reduce a phenomenon
hierarchically to its simplest entities, these entities can be emulated by means
of simple software entities. To represent the original phenomenon, all we
have to do then is combine these entities hierarchically, and thereby generate
a software structure that corresponds to the structure of entities that is the
phenomenon itself.

In particular, the phenomena associated with human knowledge can be
represented with software. Since any type of knowledge can be reduced
hierarchically to simpler and simpler pieces down to some basic bits of
knowledge, by incorporating these bits in a software device we can emulate the

26 the software myth introduction

original knowledge structure. Then, simply by operating the device, anyone
will be able to perform the same tasks as a person who took the time to acquire
the actual knowledge.

Software devices, thus, are perceived as substitutes for knowledge, skills,
and experience. Whereas in the past we needed much learning and practice in
order to attain expertise in a given field, all we need to know now, it seems, is
how to operate software devices.

One type of knowledge that we have been trying especially hard to represent
with software is programming knowledge. If software devices are only now
gaining acceptance in our businesses and in our homes, their counterparts in
the world of programming have existed since the 1960s. Thus, if the use of
software devices as substitutes for expertise still sounds plausible for other
types of knowledge, we have already had several decades to assess their value
in programming work. And, as we will see in chapter 7, the claim that there exist
substitutes for programming expertise has proved to be a fraud.

The study of software mechanism in the domain of programming can help
us to understand, therefore, the delusion of software devices in general. For, it
is the same myth that the elites invoke when promoting knowledge substitutes,
whether they address programmers or other workers. Programming is the only
domain in which we can, today, actually demonstrate the failure of software
mechanism and the dishonesty of the software elites. Thus, we must make
the most of this experience. If we understand how the software myth has
destroyed the programming profession, we will be in a better position to
recognize its dangers, and to prevent it perhaps from destroying other fields
of knowledge.

2

2
The reason it is so tempting to think of software development as a mechanistic
process is that software applications are indeed hierarchical structures –
modules within modules. No matter how large or complex, it seems that an
application can always be depicted as a neat structure of software entities, just
as a manufactured object can be depicted as a neat structure of parts and
subassemblies.

As we do in manufacturing, therefore, we should break down the process of
software development into smaller and smaller parts, until we reach software
entities that are easy to program. Then, as in manufacturing, we will be able to
create applications of any size and complexity by employing inexperienced
workers – workers who, individually, can only program small and simple pieces
of software.

the software myth 27introduction

This idea, known as software engineering, is behind every programming
theory of the last forty years. But the idea is wrong. We already saw that
software applications are in fact systems of hierarchical structures, so the
structure of modules that appears to represent an application is merely one
of the structures that make it up. The software entities that constitute the
application possess many attributes: they call subroutines, use database fields,
reflect business practices, etc. Since each attribute gives rise to a structure, each
structure represents a different aspect of the application: one subroutine and
its calls, the uses of one database field, the implementation of one business
practice, etc. But because they share their elements (the software entities that
constitute the application), these structures are not independent. So the only
way to develop applications is by dealing with several structures at the same
time – something that only minds can do, and only after much practice.

Thus, while software engineering is said to turn programmers from old-
fashioned artisans into modern professionals, its true purpose is the exact
opposite: to eliminate the need for programming expertise. And this, the elites
believe, can be accomplished by discovering scientific (i.e., mechanistic)
programming theories, and by restricting programmers to methodologies
and development systems based on these theories. The aim is to separate
applications into their constituent structures, and further separate these
structures into their constituent elements, at which point programmers will
only need to deal with small, isolated software entities. For example, the theory
of structured programming claims that the only important structure is the one
that represents the application’s flow of execution, and that this structure can
be reduced to some simple, standard constructs; and the theory of object-
oriented programming claims that we can treat each aspect of our affairs as a
separate structure, which can then be assembled from some smaller, existing
structures.

But each theory, while presented as a revolution in programming concepts,
is in reality very similar to the others. This is true because they are all based on
the same fallacy; namely, on the assumption that software and programming
are mechanistic phenomena, and can be studied with the principles of reduc-
tionism and atomism. Ultimately, the naive idea of software engineering is a
reflection of the ignorance that the academics and the practitioners suffer
from. They remain ignorant because they waste their time with worthless
theories: they are forever trying to explain the phenomena of software and
programming through the mechanistic myth. It is not an exaggeration to say
that, for the last forty years, their main preoccupation has been this absurd
search for a way to reduce software to mechanics. The preoccupation is also
reflected in their vocabulary: programmers call themselves “engineers,” and
refer to programming as “building” or “constructing” software.

28 the software myth introduction

The programming theories, thus, are mechanistic delusions, because they
attempt to represent complex phenomena mechanistically. What is worse,
instead of being abandoned when found to be useless, they are turned by their
defenders into pseudosciences. Here is how: Since neither the academics nor
the practitioners are willing to admit that their latest theory has failed, they
continue to praise it even as they struggle against its deficiencies. They deny
the endless falsifications, and keep modifying the theory in the hope of making
it practical. While described as new features, the modifications serve in fact to
mask the falsifications: they reinstate the traditional, non-mechanistic pro-
gramming concepts – precisely those concepts that the theory had attempted
to eliminate. In the end, the theory’s exact, mechanistic principles are forgotten
altogether. Its defenders, though, continue to promote it by invoking the
benefits of mechanism. Then, after perpetrating this fraud for a number
of years, another mechanistic theory is invented and the same process is
repeated.

So the software workers are not the serious professionals they appear to
be, but impostors. Whether they are academics who invent mechanistic
theories, or software companies that create systems based on these theories, or
programmers who rely on these systems, very little of what they do is genuine.
They appear to be dealing with important issues, but most of these issues are
senseless preoccupations engendered by their mechanistic delusions: since our
problems rarely have simple, mechanistic answers, there is no limit to the
specious activities that one can contrive when attempting to solve them
mechanistically.

The mechanistic software ideology, thus, is the perfect medium for incom-
petents and charlatans, as it permits them to engage in modern, glamorous,
and profitable activities while doing almost nothing useful. The software
practitioners have become a powerful bureaucracy, exploiting society while
appearing to serve it. Less than 10 percent (and often less than 1 percent) of
their work has any value. Their main objective is not to help us solve our
problems through software, but on the contrary, to create new, software-related
problems; in other words, to make all human activities as complicated and
inefficient as they have made their own, programming activities.

At the top of this bureaucracy are the software elites – the universities and
the software companies. It is these elites that control, ultimately, our software-
related affairs. And they do it by promoting mechanistic software concepts:
since we believe in mechanism, and since their theories and systems are
founded on mechanistic principles, we readily accept their elitist position. But
if software mechanism is generally useless, their theories and systems are
fraudulent, and their elitist position is unwarranted.

the software myth 29introduction

3

3
Three ingredients are needed to implement totalitarianism: a myth, an elite,
and a bureaucracy. And the spread of totalitarianism is caused by an expansion
of the bureaucracy: larger and larger portions of the population change from
their role as citizens, or workers, to the role of bureaucrats; that is, from
individuals who perform useful tasks to individuals whose chief responsibility
is to practise the myth.

A characteristic of totalitarianism, thus, is this continuous increase in the
number of people whose beliefs and acts are a reflection of the myth. Rather
than relying on common sense, or logic, or some personal or professional
values, people justify their activities by invoking the myth. Or, they justify
them by pointing to certain ideas or theories, or to other activities; but if these
in their turn can only be justified by invoking the myth, the original activities
are specious.

A totalitarian bureaucracy can be seen as a pyramid that expands down-
ward, at its base. The elite, which forms its apex, uses the myth to establish the
system’s ideology and to recruit the first bureaucrats – the first layer of the
pyramid. Further layers are then added, and the pyramid becomes increasingly
broad and deep, as more and more categories of people cease living a normal
life and join the bureaucracy. Thus, as the pyramid expands, fewer and fewer
people are left who perform useful activities; and the closer an individual is to
the top of the pyramid, the greater the number of senseless, myth-related
preoccupations that make up his life.

Since the lower layers support the higher ones, the model of a pyramid also
explains how social power is distributed under totalitarianism: each layer
exploits the layers that lie below it, and the elite, at the top of the pyramid,
exploits the entire bureaucracy. Thus, the closer we get to the top, the more
power, influence, and privileges we find. In addition, the bureaucracy as a
whole exploits the rest of society – those individuals and institutions that have
not yet joined it.

The totalitarian ideal is that all people in society join the bureaucracy
and restrict themselves to myth-related activities. But this, clearly, cannot
happen; for, who would support them all? In the initial stages of the expansion,
when enough people are still engaged in useful activities, the elite and the
bureaucrats can delude themselves that their ideology is working. As more and
more people join the bureaucracy, however, the useful activities decline and the
system becomes increasingly inefficient. Eventually, the inefficiency reaches a
point where society can no longer function adequately, and collapses. It is

30 the software myth introduction

impossible to attain the totalitarian ideal – a bureaucracy that comprises the
entire society.

It should be obvious, then, why the software myth can serve as the founda-
tion of a totalitarian ideology. Since the essence of totalitarianism is endless
expansion, the ideology must be based on an idea that appeals to every
individual in society. And few ideas can match software in this respect.
As we will see in chapter 4, software is comparable only to language in
its versatility and potency. Thus, even when employed correctly, without
falling prey to mechanistic delusions, software can benefit almost anyone.
But when perceived as a mechanistic concept, its utopian promise becomes
irresistible. The promise, we saw, is that software devices can act as substitutes
for knowledge, skills, and experience. So, simply by operating a software
device, we will be able to perform immediately tasks that would otherwise
require special talents, or many years of study and practice. The promise of the
software myth, thus, exceeds even the most extravagant promises made by the
old political or religious myths. Consequently, an elite can dominate and
exploit society through the software myth even more effectively than the
political and religious elites did through the other myths, in the past.

�

The expansion of the software bureaucracy parallels the spread of computers;
and even a brief analysis of this expansion (later in this section) will reveal the
process whereby various categories of people are turned into bureaucrats. All
it takes is a blind belief in the software myth – something that the elite is
fostering through propaganda and indoctrination. Then, judged from the
perspective of the myth, activities that are in fact illogical, or inefficient, or
wasteful, are perceived as important and beneficial; and the incompetents who
engage in these activities are perceived as professionals.

Ignorance, therefore, is what makes the belief in a myth, and hence the
expansion of a bureaucracy, possible. An individual who took the time to
develop expertise in a certain field cannot also develop irrational beliefs in the
same field, as that would contradict his personal experience. Thus, in addition
to its versatility and potency, it is its novelty that makes software such a good
subject for myth. We allowed an elite to assume control of our software-related
affairs without first giving ourselves the time to discover what is the true nature
of software. And the elite saw software, not as a complex phenomenon, but as
a mechanistic one; in other words, not as a phenomenon that demands the full
capacity of the mind, but as one that requires only mechanistic thinking.

Because of this delusion, we have remained ignorant: we depend on software
while lacking the skills to create and use software intelligently. Instead of

the software myth 31introduction

developing software expertise, we wasted the last forty years struggling with
the worthless theories and methodologies promoted by the elite. Under these
conditions, the emergence of irrational beliefs was inevitable. The software
myth, thus, is a consequence of our mechanistic culture and our software
ignorance.

4

4
The first workers to be turned into software bureaucrats were the programmers
themselves. From the start, the theorists assumed that programming can be
reduced to some simple and repetitive acts, similar to those performed by
assembly-line workers in a factory. So, they concluded, programmers do not
require lengthy education, training, and practice. If we develop software
applications as we build appliances, all that programmers need to know is how
to follow certain methods, and how to use certain aids – methods and aids
based, like those in manufacturing, on the principles of reductionism and
atomism. And to improve their performance later, all we need to do is improve
the methods and aids.

Thus, instead of trying to understand the true nature of software and
programming, the theorists assumed them to be mechanistic phenomena;
and the programming profession was founded upon this assumption. Using
the mechanistic myth as warrant, programming expertise was redefined as
expertise in the use of theories, methodologies, and development aids; in other
words, expertise in the use of substitutes for expertise. So what was required of
programmers from then on was not programming skills, but merely familiarity
with the latest substitutes.

If expertise is the highest level attainable by human minds in a given
domain, and incompetence the lowest, programmers were neither expected
nor permitted to attain a level much higher than incompetence. And, as society
needed more and more software, everyone was convinced that what we needed
was more and more of this kind of programmers. The alternative – promoting
expertise and professionalism, allowing individuals to develop the highest
possible skills – was never considered.

The effects of this ideology can be seen in the large number of software
failures: development projects abandoned after spending millions of dollars,
critical business needs that remain unfulfilled, applications that are inadequate
or unreliable, promises of increased savings or efficiency that do not material-
ize. Statistics unchanged since the 1970s show that less than 5 percent of
programming projects result in adequate applications. What these statistics do
not reveal is that even those applications that are adequate when new cannot

32 the software myth introduction

be kept up to date (because badly written and badly maintained), so they must
be replaced after a few years. The statistics also do not reveal that, with
inexperienced programmers, it costs far more than necessary to create even
those applications that are successful. And if we remember also the cost of the
additional hardware needed to run badly written applications, it is safe to say
that, for more than forty years, society has been paying in effect one hundred
dollars for every dollar’s worth of useful software.É

The conclusion ought to be that the mechanistic assumption is wrong:
programming expertise is not the kind of knowledge that can be replaced with
methods or devices, so personal skills and experience remain an important
factor. The answer to the software failures is then simply to recognize that, as
is the case in other difficult professions, to become a proficient programmer
one needs many years of serious education, training, and practice.

In our mechanistic software culture, however, this idea is inadmissible; and
someone who suggests it is accused of clinging to old-fashioned values, of
resisting science and progress. The only accepted answer to the software
failures is that we need, not better programmers, but better theories, method-
ologies, and development aids. If the previous ones failed, we are told, it is
because they did not adhere faithfully enough to the mechanistic ideology; so
the next ones must be even more mechanistic. In other words, the only
permissible solutions to the problem of programming incompetence are those
derived from the mechanistic myth – the same solutions that were tried in the
past, and which cause in fact the incompetence. No matter how many failures
we witness, the mechanistic ideology is never questioned.

The mechanistic software concepts cause incompetence because they are
specifically intended as substitutes for programming expertise. Thus, it is not
surprising that programmers who rely on these substitutes do not advance past
the level of novices: they are expected to remain at this level.

So the incompetence of programmers, and the astronomic cost of software,
are a direct consequence of the mechanistic myth. For the first time, a mecha-
nistic delusion is powerful enough to affect the entire society. Previously, it was
only in universities that individuals could pursue a mechanistic fantasy, in
the guise of research; and the failure of their projects had little effect on
the rest of society. Through software, however, the pursuit of mechanistic
fantasies became possible everywhere. Unlike the mechanistic theories in

É Software expenses, and computing expenses generally, are usually called “technology
investments,” or “technology solutions,” and are seen therefore as an asset (rather than a
liability) regardless of their real value. This is one reason why the enormous cost of software
is not obvious. Deceptive language is an important tool in the marketing of worthless
products and services, as it helps ignorant decision makers to rationalize expenses. (We will
see in chapter 5 how the slogan “technology” is used for this purpose.)

the software myth 33introduction

psychology, sociology, or linguistics, the mechanistic software theories are
not limited to academic research. Being applicable to business computing,
they spread throughout society, and degraded the notions of expertise and
responsibility in business just as mechanistic research had degraded these
notions in universities. Just as the academics perceive their responsibility to be,
not the discovery of useful theories but the pursuit of mechanistic ideas,
programmers perceive their responsibility to be, not the creation of useful
applications but the use of mechanistic software methods.

Millions of individuals are engaged, thus, not in programming but in
the pursuit of mechanistic fantasies. Probably no more than 1 percent of
the programming activities in society represent useful work; that is, work
benefiting society in the way the work of doctors does. We find ourselves today
in this incredible situation because programming is a new profession, without
established standards of expertise. We allowed the software elite to persuade us
that this profession must be based on mechanistic principles, so the standard
of expertise became, simply, expertise in mechanistic software concepts. Had
we tried first the alternative – giving programmers the time and opportunity to
develop the highest knowledge and skills that human beings can attain in this
new profession – we would easily recognize the absurdity of the mechanistic
concepts, and the incompetence of those who restrict themselves to such
concepts. It is only because we take software mechanism as unquestionable
truth that we accept the current programming practices as a normal level of
expertise. And if we consider this level normal, it is natural to accept also the
resulting cost and the failures.

Also, with so many programmers around, new types of supervisors had to
be created: more and more employees were turned into software bureaucrats –
project managers, systems analysts, database administrators – to oversee
the hordes of programmers who, everyone agreed, could not be trusted to
develop applications on their own. Again, no one questioned this logic. If the
programmers were deemed incompetent and irresponsible, the answer should
have been to improve their training. Instead, it was decided to adopt, for
software development, the assembly-line methods used in manufacturing;
namely, to treat programmers as unskilled workers, and to develop applications
by relying on management expertise rather than programming expertise.

So for every few programmers there was now a manager, and for every few
managers a higher manager. But the manufacturing methods are inadequate
for programming, because software applications are not neat hierarchical
structures of subassemblies. Consequently, turning software development into
factory-type work did not solve the problem of programming incompetence.
It only increased the software bureaucracy, and hence the cost of software, and
the failures. (Sociological studies of the programming profession, conducted

34 the software myth introduction

in the 1970s, show that the main goal of corporate management was not so
much to improve programming practices, as to repress the programmers’
attitudes and expectations. For example, the theory of structured programming
was promoted as the means to turn programming into an exact activity,
and programmers into skilled professionals, while its true purpose was the
opposite: to deskill programmers; specifically, to eliminate the need and
opportunity for programmers to make important decisions, and to give
management complete control over their work.Ê)

Finally, as the benefits expected from mechanistic software concepts are not
materializing, new types of bureaucrats must be constantly invented as a
solution to the incompetence of programmers. Thus, companies have now
employees with absurd titles like architect, systems integrator, data analyst,
business intelligence analyst, and report developer. While justified by invoking
the growing complexity of business computing, and the growing importance
of information technology, the task of these new bureaucrats is in reality to do
what programmers should be doing; that is, create and maintain business
applications. What masks this fact is that, instead of programming, they try to
accomplish the same thing through various end-user tools, or by putting
together ready-made pieces of software. But the idea that we can create useful
applications in this fashion is based on the same delusions as the idea that
programming expertise can be replaced with methods and aids. So it only adds
to the complexity of business computing, while the real problems remain
unsolved. This is interpreted, though, as a need for even more of the new
bureaucrats, in a process that feeds on itself.

�

A major role in the spread of the software bureaucracy is played by the
organizations that create the knowledge substitutes – the software companies.
These companies form the elite, of course. But in addition to propagating the
mechanistic software ideology, they function as employers; and in this capacity,
they are turning millions of additional workers into software bureaucrats.

Ê See Philip Kraft, Programmers and Managers: The Routinization of Computer Program-
ming in the United States (New York: Springer-Verlag, 1977); see also Joan M. Greenbaum,
In the Name of Efficiency: Management Theory and Shopfloor Practice in Data-Processing
Work (Philadelphia: Temple University Press, 1979). It must be noted, though, that, while
ground-breaking and as important today as they were in the 1970s, these studies treat the
deskilling of programmers as part of the traditional conflict between management and
labour. Their authors were unaware of the fallacies of software mechanism, and that theories
like structured programming do not, in fact, work. Thus, the delusion that programmers
must be a kind of factory workers – because programming is a kind of manufacturing –
constitutes a sociological phenomenon that has yet to be studied.

the software myth 35introduction

From just a handful in the 1960s, the software companies have grown in
number and in size to become an important part of the economy. And they
accomplished this simply by invoking the myth of software mechanism. For,
their software and services can be justified only if we accept unquestioningly
the mechanistic ideology. Thus, only if we agree that software development is
a form of manufacturing will we accept the resulting incompetence, and hence
the aids and substitutes supplied by these companies as the answer. Or, putting
this in reverse, if we had professional programmers instead of the current
practitioners, less than 1 percent of the software supplied by these companies
would be needed at all.

What this means is that countless organizations, while operating as legiti-
mate businesses under the banner “technology,” are actually engaged in the
making and marketing of mechanistic software fantasies. So their employees,
no matter how good they may be in these activities – programming, research,
management, administration, selling – are not performing work that is truly
useful. They belong, therefore, to the software bureaucracy.

The programmers who work for these companies hold a special place in the
bureaucracy. They are, in general, better prepared and more experienced than
the application programmers. But if their job is to develop the useless systems
sold by the software companies, their talents are wasted. These systems may
appear impressive to their users, but they cannot replace good applications, nor
the expertise needed to create good applications. So, if these systems cannot
be a substitute for expertise, the work of those who create them is just as
senseless as the work of those who use them. We are witnessing, therefore, this
absurd situation: our better programmers are employed to create, not the
custom applications that society needs, but some generic applications, or some
substitutes for the knowledge required to create custom applications. Instead
of helping to eradicate the software bureaucracy, our universities prepare
programmers for the software companies, thereby adding to the bureaucracy.
For, by catering to the needs of software bureaucrats, the system programmers
are reduced to bureaucrats themselves.

�

A different kind of software companies are the enterprises run by the indi-
viduals known as industry experts, or gurus. Unlike the regular software
companies, the gurus earn their fame personally – as theorists, lecturers, and
writers. Their role, however, is similar: to promote the ideology of software
mechanism. So they are part of the elite. Also like the software companies, their
existence is predicated on widespread programming incompetence and an
ever-growing bureaucracy.

36 the software myth introduction

Although they seldom have any real programming experience (that is,
personally creating and maintaining serious business applications), the gurus
confidently write papers and books on programming, publish newsletters,
invent theories and methodologies, lecture, teach courses, and provide consult-
ing services. Their popularity – the fact that programmers, analysts, and
managers seek their advice – demonstrates, thus, the ignorance that pervades
the world of programming. To appreciate the absurdity of this situation,
imagine a similar situation in medicine: individuals known to have no medical
training, and who never performed any surgery, would write and lecture on
operating procedures; and real surgeons, from real hospitals, would read their
books, attend their courses, and follow their methods.

While unthinkable in other professions, we accept this situation as a logical
part of our programming culture. The reason it seems logical is that it can be
justified by pointing to the software myth: if what we perceive as programming
expertise is familiarity with theories, methodologies, and software devices, it is
only natural to respect, and to seek the advice of, those who know the most in
this area. So the gurus are popular because they always promote the latest
programming fads – which, at any given time, are what ignorant practitioners
believe to be the cure for their current difficulties.

�

Programming was only the first profession to be destroyed by the software
myth. Once we agreed to treat programmers as mere bureaucrats, instead of
insisting that they become proficient and responsible workers, the spread of
the software bureaucracy was inevitable. Every aspect of the degradation that
is currently occurring in other professions can be traced to the incompetence
of programmers. For, as we increasingly depend on computers and need more
and more software applications, if the programmers are unreliable we must
find other means to develop these applications. We already saw how new types
of managers, and new types of software workers, were invented to deal with the
problem of programming incompetence. This did not help, however. So the
problem spread beyond the data-processing departments, and is now affecting
the activities of software users.

Little by little, to help users perform the work that should have been
performed by programmers, various software aids have been introduced. They
vary from simple programming environments derived from database or
spreadsheet systems (which promise users the power to implement their own
applications) to ready-made applications (which promise users the power to
eliminate programming altogether). These aids, however, are grounded on the
same mechanistic principles as the development aids offered to programmers,

the software myth 37introduction

so they suffer from the same fallacies. If the substitutes for expertise cannot
help programmers, we can hardly expect them to help amateurs, to create
useful applications.

Workers everywhere, thus, are spending more and more of their time doing
what only programmers had been doing before: pursuing mechanistic software
fantasies. Increasingly, those who depend on computers must modify the way
they work so as to fit within the mechanistic software ideology: they must
depend on the inferior applications developed by inexperienced programmers,
or on the childish applications they are developing themselves, or on the
generic, inadequate applications supplied by software companies. The world of
business is being degraded to match the world of programming: other workers
are becoming as inefficient in their occupations as programmers are in theirs;
like the programmers, they are wasting more and more of their time dealing
with specious, software-related problems.

But we perceive this as a normal state of affairs, as an inevitable evolution of
office work and business management. Because we believe that the only way to
benefit from software is through the mechanistic ideology, we are now happy
to adopt this ideology in our own work. As software users, we forget that the
very reason we are preoccupied with software problems instead of our real
problems is the incompetence and inefficiency caused by the mechanistic
ideology in programming. So, by adopting the same ideology, we end up
replicating the incompetence and inefficiency in other types of work. In other
words, we become software bureaucrats ourselves.

�

Thus, because we do not have a true programming profession, workers with no
knowledge of programming, or computers, or engineering, or science are
increasingly involved in the design and creation of software applications. And,
lacking the necessary skills, they are turning to the knowledge substitutes
offered by the software companies – which substitutes address now all people,
not just programmers. So, as millions of amateurs are joining the millions of
inexperienced practitioners, the field of application development is becoming
very similar to the field of consumer goods. A vast network of distribution and
retail was set up to serve these software consumers, and a comprehensive
system of public relations, marketing, and advertising has emerged to promote
the knowledge substitutes: books, periodicals, brochures, catalogues, news-
letters, trade shows, conventions, courses, seminars, and online sources.

The similarity to consumer goods is clearly seen in the editorial and
advertising styles: childish publication covers; abundance of inane terms like
“powerful,” “easily,” “solution,” and “technology”; the use of testimonials to

38 the software myth introduction

demonstrate the benefits of a product; prices like $99.99; and so on. Thus, while
discussing programming, business, efficiency, or productivity, the promotion
of the software devices resembles the promotion of cosmetics, fitness gadgets,
or money-making schemes. Also similar to consumer advertising are the
deceptive claims; in particular, promising ignorant people the ability to
perform a difficult task simply by buying something. The software market,
thus, is now about the same as the traditional consumer market: charlatans
selling useless things to dupes.

Again, to appreciate the absurdity of this situation, all we have to do is
compare the field of programming with a field like medicine. There is no
equivalent, in medicine, of this transformation of a difficult profession into a
consumer market. We don’t find any advertisers or retailers offering knowledge
substitutes to lay people and inexperienced practitioners who are asked to
replace the professionals.

This transformation, then, has forced countless additional workers to join
the software bureaucracy. For, if what they help to sell is based on the idea that
software devices can replace expertise, and if this idea stems from the belief in
software mechanism, all those involved in marketing the knowledge substitutes
are engaged in senseless activities.

�

Finally, let us recall that it is precisely those institutions which ought to
encourage rationality – our universities – that beget the software delusions.
Because they teach and promote only mechanistic software concepts, the
universities are, ultimately, responsible for the widespread programming
incompetence and the resulting corruption.

In the same category are the many associations and institutes that represent
the world of programming. The ACM and the IEEE Computer Society, in
particular – the oldest and most important – are not at all the scientific and
educational organizations they appear to be. For, while promoting profession-
alism in the use of computers, and excellence in programming, their idea
of professionalism and excellence is simply adherence to the mechanistic
ideology. Thus, because they advocate the same concepts as the universities
and the software companies, these organizations serve the interests of the elite,
not society.

If this sounds improbable, consider their record: They praise every pro-
gramming novelty, without seriously verifying it or confirming its usefulness.
At any given time, they proselytize the latest programming “revolution,” urging
practitioners to join it: being familiar with the current software concepts, they
tell us, is essential for advancement. In particular, they endorsed the three

the software myth 39introduction

pseudoscientific theories we examine in chapter 7, and conferred awards
on scientists who upheld them. As we will see, not only are these theories
fallacious and worthless, but the scientists used dishonest means to defend
them; for example, they claimed that the theories benefit from the rigour and
precision of mathematics, while this is easily shown to be untrue. Thus, instead
of exposing the software frauds, the ACM and the IEEE Computer Society help
to propagate them.

What these organizations are saying, then, is exactly what every software
guru and every software company is saying. So, if they promote the same values
as the commercial enterprises, they are not responsible organizations. Like the
universities, their aim is not science and education, but propaganda and
indoctrination. They may be sincere when using terms like “professionalism”
and “expertise,” but if they equate these terms with software mechanism, what
they do in reality is turn programmers into bureaucrats, and help the elite to
exploit society.

5

5
The foregoing analysis has shown that our mechanistic software culture is
indeed a social phenomenon that is causing the spread of a bureaucracy, and
hence the spread of totalitarianism. Every one of the activities we analyzed can
be justified only through the software myth – or through another activity,
which in its turn can be justified only through the myth or through another
activity, and so on. The programmers, the managers, the academics, the
gurus, the publishers, the advertisers, the retailers, the employees of software
companies, and increasingly every computer user – their software-related
activities seem logical only if we blindly accept the myth. As soon as we
question the myth, we recognize these activities as what they actually are: the
pursuit of mechanistic fantasies.

So the expansion of software-related activities that we are witnessing is not
the expansion of some useful preoccupations, but the expansion of delusions.
It is not a process of collective progress in a new field of knowledge – what our
software-related affairs should have been – but a process of degradation:
more and more people are shifting their attention from their former, serious
concerns, to some senseless pursuits.

In chapter 8 we will study the link between the mechanistic ideology and the
notion of individual responsibility; and we will see that a mechanistic culture
leads inevitably to a society where people are no longer considered responsible
for their acts. The road from mechanism to irresponsibility is short. The belief
in mechanism tempts us to neglect the natural capabilities of our minds, and

40 the software myth introduction

to rely instead on inferior substitutes: rather than acquiring knowledge, we
acquire devices that promise to replace the need for knowledge. We accomplish
by means of devices less than we could with our own minds, and the devices
may even be wrong or harmful, but no one blames us. Our responsibility,
everyone agrees, is limited to knowing how to operate the devices.

Today, the incompetence and irresponsibility are obvious in our software-
related activities, because these activities are dominated by mechanistic beliefs.
But if we continue to embrace software mechanism, we should expect the
incompetence and irresponsibility to spread to other fields of knowledge, and
to other professions, as our dependence on computers is growing.

A society where all activities are as inefficient as are our software-related
activities cannot actually exist. We can afford perhaps to have a few million
people engaged in mechanistic fantasies, in the same way that we can afford to
have an entertainment industry, and to spend a portion of our time with idle
amusements. But we cannot, all of us, devote ourselves to the pursuit of
fantasies. Thus, if the spread of software mechanism is causing an ever-
growing number of people to cease performing useful work and to pursue
fantasies instead, it is safe to predict that, at some point in the future, our
society will collapse.

To avert this, we must learn all we can from the past: we must study the
harm that has already been caused by software mechanism, in the domain of
programming. In programming we have been trying for more than forty years
to find substitutes for expertise, so we have enough evidence to demonstrate
the absurdity of this idea, and the dishonesty of those who advocate it.

Despite its failure in programming, it is the same idea – replacing minds
with software – that is now being promoted in other domains. And it is the
same myth, software mechanism, that is invoked as justification, and the same
elites that are perpetrating the fraud. So, in a few years, we should expect to see
in other domains the same corruption we see today in programming, the
same incompetence and irresponsibility. One by one, all workers will be
reduced, as programmers have been, to software bureaucrats. As it has been in
programming, the notion of expertise will be redefined everywhere to mean
expertise in the use of substitutes for expertise. As programmers are today, we
will all be restricted to the methods and devices supplied by an elite, and
prevented from developing our minds.

Thus, if we understand how the mechanistic delusions have caused the
incompetence and irresponsibility found today in the domain of programming,
we will be able perhaps to prevent the spread of these delusions, and the
resulting corruption, in other domains.

the software myth 41introduction

	Software and Mind
	Disclaimer
	Contents
	Preface
	Introduction: Belief and Software
	The Software Myth
	1
	2
	3
	4
	5

