
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 7: Software Engineering
Sections Introduction, The Fallacy of Software Engineering,

Software Engineering as Pseudoscience

This extract includes the book’s front matter
and part of chapter 7.

Copyright © 2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

These sections include a brief, non-technical history and analysis of
the idea of software engineering and its mechanistic fallacies.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 7: Software Engineering

Introduction Introduction
My task in this chapter is to show that the body of theories and activities
known as software engineering forms in reality a system of belief, a pseudo-
science. This discussion is in many ways a synthesis of everything we learned
in the previous chapters: the model of simple and complex structures, the
two mechanistic fallacies, the nature of software and programming, the
structures that make up software applications, the mechanistic conception of
mind and software, the similarity of software and language, the principles of
demarcation between science and pseudoscience, the incompetence of the
software practitioners, and the corruption of the software elite. There are brief
summaries here, but bear in mind that a good understanding of these topics is
a prerequisite for appreciating the present argument, and its significance.

In chapter 6 we examined the three stages in the spread of mechanistic
software concepts: the domain of programming, the world of business, and
our personal affairs (see pp. 472–477). And we saw that, while the first stage
is now complete, the others are still unfolding. Judged from this perspective,
the present chapter can also be seen as a study of the first stage. Since this
stage involves events that took place in the past, its study can be exact and

478 introduction chapter 7

objective. We can perhaps still delude ourselves about the benefits of software
mechanism in our offices or in our homes, but we cannot in the domain of
programming; for, we can demonstrate the absurdity of the mechanistic
theories, and the resulting incompetence and corruption.

To perform a similar study for the other two stages, we would have to wait
a few decades, until they too were complete. But then, it would be too late: if
we want to prevent the spread of software mechanism in other domains, we
must act now, by applying the lessons of the first stage.

The similarities of the three stages are not accidental. It is, after all, the same
elite that is controlling them, and the same software concepts that are being
promoted. Common to all stages is the promise to replace human minds with
software: with the methods and systems supplied by an authority. And this plan
is futile, because mechanistic concepts can replace only the simple aspects
of human intelligence. The plan, thus, has little to do with enhancing our
capabilities. It is in reality a new form of domination, made possible by our
mechanistic delusions and our increasing dependence on computers.

As we read the present chapter, then, we must do more than just recognize
how the mechanistic ideology has destroyed the programming profession. We
must try to project this phenomenon onto other fields and occupations, and to
imagine what will happen when all of us are reduced, as programmers have
been, to mere bureaucrats.

The programming theories have not eliminated the need for programming
expertise. All they have accomplished is to prevent programmers from devel-
oping this expertise, thereby making software development more complicated,
more expensive, and dependent on the software elite instead of individual
minds. Similarly, the software concepts promoted now for our offices and for
our homes serve only to prevent us from developing knowledge and skills, and
to increase our dependence on the software elite. What we note is an attempt
to reduce all human activities to the simple acts required to operate software
devices. But this is an impossible quest. So, like the programmers, we will end
up with nothing – neither the promised expedients, nor the expertise to
perform those activities on our own.

At that point, society will collapse. A society dominated by a software elite
and a software bureaucracy can exist only because the rest of us are willing to
support them. It is impossible, however, for all of us to be as incompetent and
inefficient in our pursuits as the programmers are now in theirs. For, who
would support the entire society?

introduction 479chapter 7

The Fallacy of Software Engineering The Fallacy of
Software Engineering

1 1
The term software engineering was first used in the late 1960s. It expresses the
view that, in order to be as successful in our programming activities as we are
in our engineering activities, we must emulate the methods of the engineering
disciplines. This view was a response to what became known as the software
crisis: the realization that the available programming skills could not keep up
with the growing demand for software, that application development took too
long, and that most applications were never completed, or were inadequate, or
were impossible to keep up to date.

Clearly, the experts said, a new programming philosophy is needed. They
likened the programmers of that era to the old craftsmen, or artisans, whose
knowledge and skills were not grounded on scientific principles but were
the result of personal experience. Thus, concluded the experts, just as the
traditional fields have advanced since modern engineering principles replaced
the personal skills of craftsmen, the new field of software will advance if we
replace personal programming skills with the software equivalent of the
engineering principles.

So for more than forty years, the imminent transition from software art to
software engineering has been the excuse for every new theory, methodology,
development environment, and database system. Here are just a few out of the
thousands of statements proclaiming this transition: “Software is applying
for full membership in the engineering community. Software has grown in
application breath and technical complexity to the point where it requires more
than handcrafted practices.”É “Software development has often been viewed as
a highly individualistic art. . . . The evolution of software engineering in the
1970s and 1980s came from the realization that software development is better
viewed as an engineering task”Ê “Software engineering is not alone among
the engineering disciplines, but it is the youngster. We can learn a great deal by
studying the history of other engineering disciplines.”Ë “Software development
currently is a craft. . . . Software manufacturing involves transferring the twin

É Walter J. Utz Jr., Software Technology Transitions: Making the Transition to Software
Engineering (Englewood Cliffs, NJ: Prentice Hall, 1992), p. xvii.

Ê Ed Seidewitz and Mike Stark, Reliable Object-Oriented Software: Applying Analysis and
Design (New York: SIGS Books, 1995), p. 4.

Ë Gerald M. Weinberg, Quality Software Management, vol. 1, Systems Thinking (New
York: Dorset House, 1992), p. 295.

480 the fallacy of software engineering chapter 7

disciplines of standard parts and automated manufacture from industrial
manufacturing to software development.”Ì “We must move to an era when
developers design software in the way that electronic engineers design ma-
chines.”Í “Software engineering is modeled on the time-proven techniques,
methods, and controls associated with hardware development.”Î “Calling
programmers ‘software engineers’ emphasizes the parallel between developing
computer programs and developing mechanical or electronic systems. Many
practices that have long been associated with engineering . . . have increasingly
been adopted by data processing professionals.”Ï “We as practitioners must
change. We must change from highly skilled artisans to being software manu-
facturing engineers.”Ð “We now have tools and techniques that enable us to
do true software engineering. . . . With these tools we can build software
factories. . . . We have, working today, the basis for grand-scale engineering of
software.”Ñ

�

The first thing we note in the idea of software engineering is its circularity.
Before formulating programming theories based on engineering principles, we
ought to determine whether software can indeed be developed with the
methods we use to build cars and appliances. There are many human activities,
after all, for which these methods are known to be inadequate. In chapter 2
we saw that, from displaying ordinary behaviour to practising a difficult
profession, our acts are largely intuitive: we use unspecifiable knowledge and
skills, rather than exact methods. This is true because most phenomena we face
are complex; and for complex phenomena, our natural, non-mechanistic
mental capabilities exceed the exact principles of science and engineering.
Thus, whether this new human activity – programming – belongs to one
category or the other is what needs to be determined. When the software
theorists start their argument by claiming that programming must be practised

Ì Stephen G. Schur, The Database Factory: Active Database for Enterprise Computing
(New York: John Wiley and Sons, 1994), p. 9.

Í James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), p. 40.

Î Roger S. Pressman, Software Engineering: A Practitioner’s Approach (New York:
McGraw-Hill, 1982), p. 15.

Ï L. Wayne Horn and Gary M. Gleason, Advanced Structured COBOL: Batch and
Interactive (Boston: Boyd and Fraser, 1985), pp. 2–3.

Ð Sally Shlaer, “A Vision,” in Wisdom of the Gurus: A Vision for Object Technology, ed.
Charles F. Bowman (New York: SIGS Books, 1996), p. 222.

Ñ James Martin, An Information Systems Manifesto (Englewood Cliffs, NJ: Prentice Hall,
1984), p. 37.

the fallacy of software engineering 481chapter 7

as an engineering activity, they start by assuming the very fact which they are
supposed to prove.

While evident in each one of the foregoing quotations, the circularity is even
better illustrated by the following passage: “This book is written with the firm
belief that software development is a science, not an art, and should be
managed as any other engineering project. For our purposes we will define
‘software engineering’ as the practical application of engineering principles
and methods”ÉÈ The author, thus, starts by admitting that the idea of
software engineering is based on a belief. Then, he adds that software develop-
ment should be managed as “any other” engineering project; so he treats as
established fact the belief that it is a form of engineering. Finally, he defines
software engineering as a form of engineering, as if the preceding statements
had demonstrated this relationship.

Here is another example of this question-begging logic: “In this section we
delineate software engineering and the software engineer. . . . The first step in
the delineation is to establish a definition of software engineering – based upon
the premise that software engineering is engineering – that will serve as a
framework upon which we can describe the software engineer.”ÉÉ The authors,
thus, candidly admit that they are assuming that fact which they are supposed
to determine; namely, that software development is a form of engineering.
Then, after citing a number of prior definitions that claim the same thing (also
without proof), and after pointing out that there are actually some important
differences between programming and the work of the engineer, the authors
conclude: “Software engineering, in spite of the abstract nature and complexity
of the product, is obviously a major branch of engineering.”ÉÊ The word
“obviously” is conspicuously out of place, seeing that there is nothing in the
two pages between the first and second quotation to prove that software
development is a form of engineering.

This fallacy – defining a concept in terms of the concept itself – is known as
circular definition. Logically, the theorists ought to start by investigating the
nature of programming, and to adopt the term “software engineering” only
after determining that this activity is indeed a form of engineering. They start,
however, with the wish that programming be like engineering, and their
definition ends up reflecting this wish rather than reality. Invariably, the
theorists start by calling the activity “software engineering,” and then set out
searching for an explanation of this activity! With such question-begging
reasoning, their conclusion that software development is a form of engineering

ÉÈ Ray Turner, Software Engineering Methodology (Reston, VA: Reston, 1984), p. 2.
ÉÉ Randall W. Jensen and Charles C. Tonies, “Introduction,” in Software Engineering, eds.

Randall W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979), p. 9
(italics added). ÉÊ Ibid., p. 11 (italics added).

482 the fallacy of software engineering chapter 7

is not surprising. Nor is it surprising that the same experts who promote the
idea of software engineering also promote absurd theories like structured
programming or object-oriented programming: we can hardly expect individ-
uals who fall victim to an elementary logical fallacy to invent sensible theories.

�

The second thing we note in the idea of software engineering is a distortion of
facts. When the theorists liken the current programmers to the old craftsmen,
they misrepresent both the spirit and the tradition of craftsmanship. The
craftsmen were highly skilled individuals. They developed their knowledge
over many years – years of arduous training as apprentices, followed by years
of practice as journeymen, and further experience as masters. The craftsmen
were true experts, in that they knew everything that could be known in their
time in a particular field. Another way to describe their expertise is by saying
that they were expected to attain the highest level of proficiency that human
minds can attain in a given domain.

When likening programmers to craftsmen, the software theorists imply that
the knowledge and experience that programmers have in their domain is
similar to the knowledge and experience that craftsmen had in theirs; they
imply that programmers know everything that can be known in the domain of
software, that they have attained the utmost that human minds can attain in
the art of programming. But is this true?

Let us recall what kind of “craftsman” was the programmer of the 1960s and
1970s – the period when this comparison was first enunciated. The typical
worker employed by a company to develop software applications had no
knowledge whatever of computers, or electronics, or engineering, and only
high-school knowledge of such software-related subjects as science, logic, and
mathematics. Nor was he required to have any knowledge of accounting, or
manufacturing, or any other field related to business computing. Most of these
individuals drifted into programming, as a matter of fact, precisely because
they had no skills, so they could find no other job. Moreover, to become
programmers, all they had to do was attend an introductory course, measured
in weeks. (In contrast, the training of engineers, nurses, librarians, social
workers, etc., took years. So, compared with other occupations, programmers
knew nothing. Programming was treated, thus, not as a profession, but as
unskilled labour. This attitude never changed, as we will see throughout the
present chapter. Despite the engineering rhetoric, programmers are perceived
as the counterpart, not of engineers, but of assembly-line workers.)

Not only did programmers lack any real knowledge, but they were pre-
vented from gaining any real experience. Their work was restricted to trivial

the fallacy of software engineering 483chapter 7

programming tasks – to small and isolated pieces of an application – and no
one expected them to ever create and maintain whole business systems. After
a year or two of this type of work, they were considered too skilled to program,
so they were promoted to the position of systems analyst, or project manager,
or some other function that involved little or no programming. Because it was
deemed that their performance was the highest level attainable by an average
person, many such positions were invented in an attempt to turn the challenge
of software development from a reliance on programming skills to a reliance
on management skills; that is, an attempt to create and maintain software
applications through a large organization of incompetents, instead of a small
number of professionals.ÉË

From the beginning, then, the programming career was seen, not as a
lifelong plan – a progression from apprentice to master, from novice to expert
– but as a brief acquaintance with programming on the way to some other
career. Programmers were neither expected nor permitted to expand their
knowledge, or to perform increasingly demanding tasks. Since it was assumed
that dealing with small and isolated programming problems represents the
highest skill needed, and since almost anyone could acquire this skill in a few
months, being a programmer much longer was taken as a sign of failure:
that person, it was concluded, could not advance past the lowly position
of programmer. The programming career ended, in effect, before it even
started. Programming became one of those dubious occupations for which the
measure of success is how soon the practitioner ceases to practise it. Thus, for
a programmer, the measure was how soon he was promoted to a position that
did not involve programming.

The notion of craftsmanship entailed, of course, more than just knowledge
and experience. It was the craftsman’s devotion to his vocation, his professional
pride, and a profound sense of responsibility, that were just as important for
his success. By perceiving programming as a brief phase on their way to
some other occupation, it was impossible for programmers to develop the
same qualities. Thus, even more than the lack of adequate knowledge and
experience, it is the lack of these qualities that became the chief characteristic
of our programming culture.

ÉË While the whole world was mesmerized by the software propaganda, which was
portraying programmers as talented professionals, the few sociologists who conducted their
own research on this subject had no difficulty discovering the reality: the systematic
deskilling of programmers and the bureaucratization of this profession. The following two
works stand out (see also the related discussion and note 2 in “The Software Myth”
in the introductory chapter, pp. 34–35): Philip Kraft, Programmers and Managers: The
Routinization of Computer Programming in the United States (New York: Springer-Verlag,
1977); Joan M. Greenbaum, In the Name of Efficiency: Management Theory and Shopfloor
Practice in Data-Processing Work (Philadelphia: Temple University Press, 1979).

484 the fallacy of software engineering chapter 7

So the occupation of programming became a haven for mediocre individu-
als, and for individuals with a bureaucratic mind. Someone who previously
could do nothing useful could now hold a glamorous and well-paid position
after just a few weeks of training – a position, moreover, demanding only the
mechanical production of a few lines of software per day. Actually, it soon
became irrelevant whether these lines worked at all, since the inadequacy of
applications was accepted as a normal state of affairs. All that was required of
programmers, in reality, was to conform to the prescripts laid down by the
software elite. It is not too much to say that most business applications have
been created by individuals who are not programmers at all – individuals
who are not even apprentices, because they are not preparing to become
programmers, but, on the contrary, are looking forward to the day when they
will no longer have to program.

In conclusion, if we were to define the typical programmer, we could
describe him or her as the exact opposite of a craftsman. Since the notion of
craftsmanship is well understood, the software theorists must have been aware
of this contradiction when they formulated their idea of software engineering.
Everyone could see that programmers had no real knowledge or experience –
and, besides, were not expected to improve – while the craftsmen attained the
utmost knowledge and experience that an individual could attain. So why did
the theorists liken programmers to craftsmen? Why did they base the idea of
software engineering on a transition from craftsmanship to engineering, when
it was obvious that programmers were not at all like the old craftsmen?

The answer is that the theorists held the principles of software mechanism
as unquestionable truth. They noticed that the programming practices were
both non-mechanistic and unsatisfactory, and concluded that the only way to
improve them was by making them mechanistic. This question-begging
logic prevented them from noticing that they were making contradictory
observations; namely, that programmers were incompetent, and that they were
like the old craftsmen. Both observations seemed to suggest the idea of
software engineering as solution, when in fact the theorists had accepted that
idea implicitly to begin with. The alternative solution – a culture where
programmers can become true software craftsmen – was never considered.

Barry Boehm,ÉÌ in a paper considered a landmark in the history of software
engineering, manages to avoid the comparison of programmers to craftsmen
only by following an even more absurd line of logic. He notes the mediocrity
of programmers, and concludes that the purpose of software engineering must

ÉÌ Barry W. Boehm, “Software Engineering,” in Milestones in Software Evolution, eds. Paul
W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society Press, ©1990 IEEE)
– paper originally published in IEEE Transactions on Computers C-25, no. 12 (1976):
1226-1241.

the fallacy of software engineering 485chapter 7

be, not to create a body of skilled and responsible professionals, but on the
contrary, to develop techniques whereby even incompetent workers can create
useful software: “For example, a recent survey of 14 installations in one large
organization produced the following profile of its ‘average coder’: 2 years
college-level education, 2 years software experience, familiarity with 2 pro-
gramming languages and 2 applications, and generally introverted, sloppy,
inflexible, ‘in over his head,’ and undermanaged. Given the continuing increase
in demand for software personnel, one should not assume that this typical
profile will improve much. This has strong implications for effective software
engineering technology which, like effective software, must be well-matched
to the people who must use it.”ÉÍ

Boehm, evidently, doesn’t think that we ought to determine first whether
programming is, in fact, the kind of skill that can be replaced with hordes of
incompetents trained to follow some simple methods. Note also his idea of
what “effective” software generally must do: not help people to develop their
minds, but keep them at their current, mediocre level. This remark betrays the
paternalism characteristic of the software elite: human beings are seen strictly
as operators of software devices – devices which they, the experts, are going to
design. Thus, the “easy-to-use” software environments upon which our work
increasingly depends today, both as programmers and as users, are, clearly, the
realization of this totalitarian vision.

2

2
The absurdities we have just examined are the type of fallacies one should
indeed expect to find in a mechanistic culture like ours. But we cannot simply
dismiss them. For, if we are to understand how the pseudoscience of software
engineering grew out of the mechanistic ideology, we must start by studying
this distortion of the notions of programming and craftsmanship.

The theorists who promoted the idea of software engineering had, in fact,
very little programming experience. They were mostly academics, so their
knowledge was limited to textbook cases: small and isolated programming
problems, which can be depicted with neat diagrams and implemented by way
of rules and methods. Their knowledge was limited, in other words, to software
phenomena simple enough to represent with exact, mechanistic models. A few
of these theorists were mathematicians, so their preference for formal and
complete explanations is understandable.

And indeed, some valuable contributions were made by theorists in the

ÉÍ Ibid., p. 67 n. 3.

486 the fallacy of software engineering chapter 7

1950s and 1960s, when the field of software was new, and useful mechanistic
concepts were relatively easy to come by: various algorithms (methods to sort
tables and files, for instance) and the principles of programming languages and
compilers are examples of these contributions.

The importance of the mechanistic concepts is undeniable; they form, in
fact, the foundation of the discipline of programming. Mechanistic models,
however, can represent only simple, isolated phenomena. And consequently,
mechanistic software concepts form only a small part of programming knowl-
edge. The most important part is the complex knowledge, the capacity to deal
with many software phenomena simultaneously; and complex knowledge can
only develop in a mind, through personal experience. We need complex
programming knowledge because the phenomena we want to represent in
software – our personal, social, and business affairs – are themselves complex.
Restricted to mechanistic concepts, we can correctly represent in software only
phenomena that can be isolated from the others.

So it was not so much the search for mechanistic theories that was wrong,
as the belief that all programming problems are mechanistic. The theorists had
no doubt that there would be future advances in programming concepts, and
that these advances would be of the same nature as those of the past. They
believed that the field of software would eventually be like mathematics:
nothing but neat and exact definitions, methods, and theories.

This conviction is clearly expressed by Richard Linger et al.,ÉÎ who refer to
it as a “rediscovery” of the value of mathematics in software development. They
note that the early interest in mathematical ideas faded as software applications
increased in complexity, that the pragmatic aspects of programming seem
more important than its mathematical roots. But they believe this decline in
formal programming methods to be just a temporary neglect, due to our
failure to appreciate their value: “Thus, although it may seem surprising, the
rediscovery of software as a form of mathematics in a deep and literal sense
is just beginning to penetrate university research and teaching, as well as
industry and government practices. . . . Of course, software is a special form of
mathematics”ÉÏ

The authors continue their argument by citing approvingly the following
statement made by E. W. Dijkstra (the best-known advocate of “structured
programming”): “As soon as programming emerges as a battle against unmas-
tered complexity, it is quite natural that one turns to that mental discipline
whose main purpose has been for centuries to apply effective structuring to

ÉÎ Richard C. Linger, Harlan D. Mills, and Bernard I. Witt, Structured Programming:
Theory and Practice (Reading, MA: Addison-Wesley, 1979), pp. vii–viii.

ÉÏ Ibid., p. viii (italics added).

the fallacy of software engineering 487chapter 7

otherwise unmastered complexity. That mental discipline is more or less
familiar to all of us, it is called Mathematics. If we take the existence of the
impressive body of Mathematics as the experimental evidence for the opinion
that for the human mind the mathematical method is indeed the most effective
way to come to grips with complexity, we have no choice any longer: we should
reshape our field of programming in such a way that, the mathematician’s
methods become equally applicable to our programming problems, for there are
no other means.”ÉÐ

The delusion of software mechanism is clearly seen in these claims. What
these theorists see as complexity is not at all the real complexity of software –
the complexity found in the phenomena I call complex structures, or systems
of interacting structures. They consider “complex,” systems that are in fact
simple structures, although perhaps very large structures. They praise the
ability of mathematics to master this “complexity”; and indeed, mechanistic
methods can handle simple structures, no matter how large. But it is not this
kind of complexity that is the real problem of programming. The theorists fail
to see that it is quite easy to deal with this kind of complexity, and it is easy
precisely because we have the formal, exact tools of mathematics to master it.
The reason why practitioners neglect the mathematics and continue to rely on
informal methods is that, unlike the professors with their neat textbook
examples, they must deal with the real complexity of the world if they are to
represent the world accurately in software. And to master that complexity, the
formal methods of mathematics are insufficient.

Note the last, emphasized sentence, in each of the two quotations above.
These confident assertions clearly illustrate the morbidity of the mechanistic
obsession. The theorists say that software is, “of course,” a form of mathematics,
but they don’t feel there is a need to prove this claim. Then, they assert just as
confidently that “we should reshape” programming to agree with this claim,
treating now an unproven notion as established fact. In other words, since
the mechanistic theories do not seem to reflect the reality of programming,
we must modify reality to conform to the theories: we must restrict our
software pursuits to what can be explained mechanistically. Instead of trying
to understand the true nature of software and programming, as real scientists
would, these theorists believe their task is simply to enforce the mechanistic
doctrine. The idea that software and programming can be represented mathe-
matically is their delusion; but they see it as their professional duty to make us
all program and use computers in this limited, mechanistic fashion.

Thus, although it was evident from the beginning that the mechanistic
concepts are useful only in isolated situations – only when we can extract a

ÉÐ E. W. Dijkstra, “On a Methodology of Design,” quoted ibid. (italics added).

488 the fallacy of software engineering chapter 7

particular software structure, or aspect, from the complex whole – the theorists
insisted that the difficulty of programming large and complex applications can
be reduced to the easier challenge of programming small pieces of software.
They believed that applications can be “built” as we build cars and appliances;
that is, as a combination of modules, each module made up of smaller ones,
and so on, down to some small bits of software that are easy to program. If each
module is kept independent of the others, if they are related strictly as a
hierarchical structure, the methods that work with small bits of software –
rules, diagrams, mathematics – must hold for modules of any size. The entire
application can then be built, one level at a time, with skills no greater than
those required to program the smallest parts. All that programmers need to
know, therefore, is how to handle isolated bits of software.

So the idea of software engineering is based, neither on personal experience,
nor on a sensible hypothesis, but merely on the mechanistic dogma: on the
belief that any phenomenon can be modeled through reductionism and
atomism.

�

By the mid-1960s, most software concepts that are mechanistic and also
practical had been discovered. But the theorists could not accept the fact that
the easy and dramatic advances were a thing of the past, that we could
not expect further improvements in programming productivity simply by
adopting a new method or principle. They were convinced that similar
advances would take place in the future, that there exist many other mechanis-
tic concepts, all waiting to be discovered. To pick just one example, they
noticed the increase in programming productivity achieved when moving
from low-level to high-level languages, and concluded that other languages
would soon be invented with even higher levels of abstraction, so the same
increase in productivity would be repeated again and again. (The notion
of “generations” of languages, still with us today, reflects this fantasy; see
pp. 452–453.)

To make matters worse, just when major improvements in programming
concepts ceased, advances in computer hardware made larger applications
possible. Moreover, continually decreasing hardware costs permitted more
companies to use computers, so we needed more applications. This situation
was called the software crisis. The theorists watched with envy the advances in
hardware, which continued year after year while programming productivity
stagnated, and interpreted this discrepancy as further evidence that program-
ming must be practised like engineering: if engineering concepts are successful
in improving the computers themselves, they must be useful for software too.

the fallacy of software engineering 489chapter 7

The so-called software crisis, thus, was in reality the crisis of software
mechanism: what happened when the mechanistic principles reached the limit
of their usefulness. The crisis was brought about by the software theorists,
when they declared that programming is a mechanistic activity. This led to the
belief that anyone can practise programming, simply by following certain
methods. So the theorists founded the culture of programming incompetence,
which eventually caused the crisis. They recognized the crisis, but not its roots
– the fallacy of software mechanism. They aggravated the crisis, thus, by
claiming that its solution was to treat programming as a form of engineering,
which made programming even more mechanistic. Software mechanism
became a dogma, and all that practitioners were permitted to know from then
on was mechanistic principles.

Deprived of the opportunity to develop complex knowledge, our skills
remain at a mechanistic level – the level of novices. Craftsmanship – the highest
level of knowledge and skills – is attained by using the mind’s capacity for
complex structures, while mechanistic thinking entails only simple structures.
So what the theorists are promoting through their ideas is not an intellectual
advance, but a reversal: from complex to mechanistic thinking, from expertise
to mediocrity, from a culture that creates skilled masters to one that keeps
programmers as permanent novices.

The software crisis was never resolved, of course, but we no longer notice it.
We no longer see as a crisis the inefficiency of programmers, or the astronomic
amounts of money spent on software, or the $100-million failures. We are no
longer surprised that applications are inadequate, or that they cannot be kept
up to date and must be perpetually replaced; we are regularly replacing now, in
fact, not just our applications but our entire computing environments. We
don’t question the need for society to support a large software bureaucracy.
And we don’t see that it is the incompetence of programmers, and the inade-
quacy of their applications, that increasingly force other members of society to
waste their time with spurious, software-related activities. What was once a
crisis in a small section of society has become a normal way of life for the entire
society.

The software crisis can also be described as the struggle to create useful
applications in a programming culture that permits only mechanistic thinking;
specifically, the struggle to represent with simple software structures the
complex phenomena that make up our affairs. It is not too much to say that
whatever useful software we have had was developed, not by means of, but in
spite of, the principles of software engineering; it was developed through
craftsmanship, and while fighting the restrictions imposed by our corrupt
programming culture. Had we followed the teachings of the software theorists,
we would have no useful applications today.

490 the fallacy of software engineering chapter 7

3

3
The software theorists, we saw, distorted both the notion of craftsmanship and
the notion of programming to fit their mechanistic fantasies. They decided
arbitrarily that programming is like engineering, because they had already
decided that future advances in programming principles were possible, and
that these advances would be, like those of the past, mechanistic. They likened
incompetent programmers to craftsmen because they saw the evolution
of practitioners from craftsmen to engineers as a necessary part of these
advances. The analogy – an absurdity – became then the central part of the idea
of software engineering. Mesmerized by the prospect of building software
applications as successfully as engineers build physical structures, no one
noticed the falsity of the comparison. Everyone accepted it as a logical con-
clusion reached from the idea of software engineering, even as software
engineering itself was only a wish, a fantasy.

The theorists claimed that programming, if practised as craftsmanship,
cannot improve beyond the level attained by an average programmer. But they
made this statement without knowing what real software craftsmanship is.
They saw programmers as craftsmen while programmers lacked the very
qualities that distinguished the old craftsmen. Programming, as a matter of
fact, is one of those vocations that can benefit greatly from the spirit of
craftsmanship – from personal skills and experience – because it requires
complex knowledge. If we are to liken programmers to the old craftsmen, we
should draw the correct conclusion; namely, that programmers too must have
the highest possible education, training, and experience. (And it is probably
even more difficult to attain the highest level of expertise in the field of
programming than it was in the old fields.)

Had we allowed programmers to develop their skills over many years,
to perform varied and increasingly demanding tasks, and to work in ways
that enhance their minds, rather than waste their time with worthless concepts
– in other words, had we created a programming culture in the spirit of
craftsmanship – we would have had today a true programming profession.
We would then realize that what programmers must accomplish has little
to do with engineering; that mechanistic knowledge (including subjects
like mathematics and engineering), crucial though it is, is the easy part of
programming expertise; that it is the unspecifiable kind of knowledge (what we
recognize as personal skills and experience) that is the most difficult and the
most important part.

The software theorists note the higher levels of knowledge attained by

the fallacy of software engineering 491chapter 7

certain individuals, but they cannot explain this performance mechanistically;
so they brand it as “art” and reject it as unreliable. We could always find
exceptional programmers; but instead of interpreting their superior perform-
ance as evidence that it is possible to attain higher levels of programming skills,
instead of admitting that the traditional process of skill acquisition is the best
preparation for programmers, the mechanists concluded the opposite: that we
must avoid these individuals, because they rely on personal knowledge rather
than exact theories.

�

Distorting the notions of craftsmanship and programming, however, was not
enough. In order to make software mechanism plausible, and to appropriate
the term “engineering” for their own activities, the software theorists had to
distort the notion of engineering itself. Thus, they praise the principles of
engineering, and claim that they are turning programming into a similar
activity, while their ideas are, in fact, childish imitations of the engineering
principles.

It is easy for the software theorists to delude themselves, since they know
even less about engineering than they know about programming. They praise
the power and precision of mathematics; and, indeed, the real engineering
disciplines are grounded upon exact and difficult mathematical concepts.
Their theories, on the other hand – when not plain stupid – are little more than
informal pieces of advice. Far from having a solid mathematical foundation,
the software theories resemble the arguments found in self-help books or in
cookbooks more than they do engineering principles. The few theories that are
indeed mathematical have no practical value, so they are ignored, or are made
useful by being downgraded to informal methods. The most common form of
deception, we will see, is to promote a formal theory by means of contrived,
oversimplified case studies, while employing in actual applications only the
downgraded, informal variant. Thus, whereas real engineering is a practical
pursuit, software engineering works only with trivial, artificial examples.

The software theorists also misrepresent engineering when they point
to the neat hierarchical structures – components, modules, prefabricated
subassemblies – as that ideal form of design and construction that program-
ming is to emulate. Because they know so little about engineering, all they see
in it is what they wish programming to become, what they believe to be
the answer to all programming problems, as if the concept of hierarchical
structures were all there is to engineering. They ignore the creativity, the skills,
the contribution of exceptional minds; that is, the non-mechanistic aspects of
engineering, which are just as important as the formal principles and methods.

492 the fallacy of software engineering chapter 7

Clearly, without the non-mechanistic aspects there would be no inventions or
innovations, and engineering would only produce neat structures of old things.

The software theorists refuse to acknowledge the informal aspects of
engineering because, if they did, they would have to admit that much of
programming too is informal, non-mechanistic, and dependent on personal
skills and experience. In programming, moreover, our non-mechanistic capa-
bilities are even more important, because, unlike our engineering problems,
nearly all the problems we are addressing through software – our social,
personal, and business affairs – form systems of interacting structures.

In conclusion, the idea of software engineering makes sense only if we agree
to degrade our conceptions of knowledge and skills, of craftsmanship and
engineering, of software and programming, to a level where they can all be
replaced with the mechanistic principles of reductionism and atomism.

�

The early software theorists were trained scientists, as we saw, and made a real
contribution – at least where mechanistic principles are useful. But it would be
wrong to think that all software theorists are true scientists. By upholding the
mechanistic software ideology, the early theorists established a software
culture where incompetents, crackpots, and charlatans could look like experts.

Thus, someone too ignorant to work in the exact sciences, or in the real
engineering disciplines, could now pursue a prestigious career in a software-
related field. Just as the mechanistic software culture had made it possible
for the most ignorant people to become programmers, the same culture
allowed now anyone with good communication skills to become a theorist, a
lecturer, a writer, or a consultant. Individuals with practically no knowledge of
programming, or computers, or science, or engineering became rich and
famous simply by talking and writing about software, as they could hypnotize
programmers and managers with the new jargon. Also, because defining things
as a hierarchical structure was believed to be the answer to all programming
problems, anyone who could draw a hierarchical diagram was inventing a new
theory or methodology based on this idea. Thousands of books, newsletters,
periodicals, shows, and conferences were created to promote these idiocies.

Finally, as the entire society is becoming dependent on software, and hence
on ignorant theorists and practitioners, we are all increasingly preoccupied
with worthless mechanistic ideas. Thus, the ultimate consequence of the
mechanistic software ideology is not just programming incompetence, but a
mass stupidity that the world has not seen since the superstitions of the Dark
Ages. (If you think this is an exaggeration, wait until we study the GOTO

superstition – the most famous tenet of programming science.)

the fallacy of software engineering 493chapter 7

Software Engineering as Pseudoscience Software Engineering
as Pseudoscience

1 1
Let us start with the definition of software engineering. Here are three defini-
tions frequently cited in the software literature: “Software engineering is that
form of engineering that applies the principles of computer science and
mathematics to achieving cost-effective solutions to software problems.”É “The
practical application of scientific knowledge in the design and construction of
computer programs and the associated documentation required to develop,
operate, and maintain them.”Ê “The establishment and use of sound engineer-
ing principles (methods) in order to obtain economically software that is
reliable and works on real machines.”Ë

At first sight, these statements look like a serious depiction of a profession,
or discipline. Their formal tone, however, is specious. They may well describe
a sphere of activities, but there is nothing in these definitions to indicate the
usefulness, or the success, of these activities. In other words, even if they
describe accurately what software practitioners are doing (or ought to be
doing), we cannot tell from the definitions themselves whether these activities
are essential to programming, or whether they are spurious. As we will see in
a moment, an individual can appear perfectly rational in the pursuit of an idea,
and can even display great expertise, while the idea itself is a delusion.

These definitions are correct insofar as they describe the programming
principles recommended by the software theorists. But we have no evidence
that it is possible to develop actual software applications by adhering to
these principles. We saw in the previous section that the very term “software
engineering” constitutes a circular definition, since it was adopted without
determining first whether programming is indeed a form of engineering; it
was adopted because the software theorists wished programming to be like
engineering (see pp. 481–483). And the same circularity is evident in the

É Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1218.

Ê Barry W. Boehm, “Software Engineering,” in Milestones in Software Evolution, eds. Paul
W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society Press, ©1990 IEEE),
p. 54 – paper originally published in IEEE Transactions on Computers C-25, no. 12 (1976):
1226–1241.

Ë F. L. Bauer, quoted in Randall W. Jensen and Charles C. Tonies, “Introduction,” in
Software Engineering, eds. Randall W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ:
Prentice Hall, 1979), p. 9.

494 software engineering as pseudoscience chapter 7

definitions just cited: software engineering is “that form of engineering,” is
“the practical application of scientific knowledge,” is “sound engineering
principles.” In all three cases, the definition merely expresses the unproven idea
that software engineering is a form of engineering.

The definition of software engineering, thus, is not the definition of a
profession or discipline, but the definition of a wish, of a fantasy. The fallacy
committed by the advocates of software engineering is to think that, if it is
possible to define a set of principles and methods so as to formally express a
wish, then we should also be able to practise them and fulfil that wish.Ì

Recall what a pseudoscience is: a system of belief masquerading as scientific
theory. Accordingly, the various principles, methods, and activities known as
software engineering, no matter how rational they may appear when observed
individually, form in reality a pseudoscience.

�

If it is so difficult to distinguish between sensible and fallacious definitions, or
between useful and spurious activities, in the domain of programming, it will
perhaps help to examine first some older and simpler delusions.

Consider superstitions – the idea that the number 13 brings misfortune, for
instance. Once we accept this idea, the behaviour of a person who avoids the
number 13 appears entirely rational and logical. Thus, to determine whether a
particular decision would involve the value 13, that person must perform
correctly some calculations or assessments; so he must do exactly what a
mathematician or engineer would do in that situation. When a person insists
on redesigning a device that happens to have thirteen parts, or kilograms, or
inches, his acts are indistinguishable from those of a person who redesigns that
device in order to improve its performance; in both cases, the changes entail
the application of strict engineering methods, and the acts constitute the
pursuit of a well-defined goal. When the designers of a high-rise building
decide to omit the thirteenth floor, they must adjust carefully their plans to take
into account the discrepancy between levels and floor numbers above the
twelfth floor. And lawyers drawing documents for the units on the high floors
must differentiate between their level, which provides the legal designation,
and the actual floor number. These builders and lawyers, then, perform the
same acts as when solving vital engineering or legal problems.

Ì In “Software Magic” (in the introductory chapter), we studied the similarity between
mechanistic software concepts and primitive magic systems; and we saw that magic systems,
too, entail the formal expression of wishes and the meticulous practice of the rituals believed
to fulfil those wishes.

software engineering as pseudoscience 495chapter 7

Note that the activities performed by believers, and by anyone else affected
by this superstition, are always purposeful, logical, and consistent. Watching
each one of these activities separately, a casual observer has no reason to
suspect that the ultimate objective is simply to avoid the number 13. In fact,
even when we are aware of this objective, we may have no way of recognizing
the uselessness of these activities. Thus, we could formally define these activities
as “the practical application of scientific and engineering knowledge to the
prevention of misfortune.” But, obviously, just because we can define them it
doesn’t mean that they are effective.

Consider also a system of belief like astrology. Astrologers must follow, of
course, the position of the heavenly bodies, and in this activity they behave
just like astronomers. The interpretation of these positions involves various
principles and methods, some of which have been in use for millennia; so in
this activity, too, astrologers must display professional knowledge and skills.
A person who cancels a trip because an astrological calculation deems travel
hazardous is clearly concerned with safety, and acts no differently from a
person who cancels a trip because of bad weather. Astrologers employ certain
principles and methods – tables that relate traits to birth dates, for example –
to assess the personality of people and to explain their behaviour; but psychol-
ogists also use various principles and methods to assess personality and to
explain behaviour.

So, as in the case of superstitions, just by watching each activity separately,
an observer cannot suspect that astrology as a whole is a delusion. Within this
system of belief – once we accept the idea that human beings are affected by the
position of the heavenly bodies – all acts performed by practitioners and
believers appear purposeful, logical, and consistent. A formal definition like
“the practical application of astronomic and mathematical principles to the
prediction of future events” describes accurately these activities. But being
definable doesn’t make these activities sensible. As in the case of superstitions,
their definition is the definition of a wish.

And so it is for software engineering. Recall the definitions cited earlier:
“that form of engineering that applies the principles of computer science and
mathematics to achieving cost-effective solutions to software problems,” etc.
We wish programming to be a form of engineering; but, just because we can
express this wish in a formal definition, it doesn’t follow that the methods and
activities described by this definition form a practical pursuit like traditional
engineering. We note that millions of practitioners follow the mechanistic
theories of software engineering, and each one of these activities appears
purposeful, intelligent, and urgent. But no matter how logical these activities
are when observed separately, the body of activities as a whole can still
constitute a delusion. As we will see in the present chapter, the pseudoscientific

496 software engineering as pseudoscience chapter 7

nature of the mechanistic software theories is easily exposed when we assess
them with the principles of demarcation between science and pseudoscience
(see “Popper’s Principles of Demarcation” in chapter 3).

2

2
Pseudosciences are founded on hypotheses that are treated as unquestionable
truth. (In the theories we have just examined, the hypothesis is that certain
numbers, or the heavenly bodies, influence human affairs.) Scientific theories
also start with a hypothesis, but their authors never stop doubting the hypothe-
sis. Whereas pseudoscientists think their task is to defend their theory, serious
workers know that theories must be tested; and the only effective way to
test a theory is by attacking it: by searching, not for confirmations, but
for falsifications. In empirical science it is impossible to prove a theory, so
confirmations are worthless: no matter how many confirmations we find, we
can never be sure that we have encountered all possible, or even all relevant,
situations. At the same time, just one situation that falsifies the theory is
sufficient, logically, to refute it. The correct approach, therefore, is to accept a
theory not because it can be defended, but because it cannot be refuted; that is,
not because we can confirm it, but because we cannot falsify it.

It is easy to defend a fallacious theory: all we have to do is restrict our
studies to cases that confirm its claims, and ignore those cases that falsify
it. Thus, while a scientific theory is required to pass tests, pseudosciences
appear to work because they avoid tests. If we add to this the practice of
continually expanding the theory (by inventing new principles to cope with the
falsifications, one at a time), it should be obvious that almost any theory can
be made to look good.

A popular pseudoscientific theory becomes a self-perpetuating belief
system, and can reach a point where its validity is taken for granted no matter
how fallacious it is. This is because its very growth is seen by believers, in a
circular thought process, as proof of its validity. Whenever noticing a failure –
a claim that does not materialize, for instance – they calmly dismiss it as a
minor anomaly. They are convinced that an explanation will soon be found, or
that the failure is merely an exception, so they can deal with it by modifying
slightly the theory. They regard the system’s size, its many adherents, the large
number of methods and formulas, the length of time it has been accepted, as a
great logical mass that cannot be shaken by one failure. They forget that the
system’s great mass was reached precisely because they always took its validity
for granted, so they always dismissed its failures – one at a time, just as they are
now dismissing the new one.

software engineering as pseudoscience 497chapter 7

A theory can be seen as a body of provisional conjectures that must be
verified empirically. Any failure, therefore, must be treated as a falsification of
the theory and taken very seriously. If believers commit (out of enthusiasm, for
example) the mistake of regarding any success as confirmation of the theory
while dismissing the failures as unimportant, the system is guaranteed to grow,
no matter how erroneous those conjectures are. The system’s growth and
popularity are then interpreted as evidence of its validity, and each new failure
is dismissed on the strength of this imagined validity, when in fact it is these
very failures that ought to be used to judge its validity. This circularity makes
the theory unfalsifiable: apparently perfect, while in reality worthless.

�

Pseudosciences, thus, may suffer from only one mistaken hypothesis, only one
false assumption. Apart from this mistake, the believers may be completely
logical, so their activities may be indistinguishable from true scientific work.
But if that one assumption is wrong, the system as a whole is nonsensical.

It is this phenomenon – the performance of activities that are perfectly
logical individually even while the body of activities as a whole constitutes a
delusion – that makes pseudosciences so hard to detect, so strikingly like the
real sciences. And this is why the principles of demarcation between science
and pseudoscience are so important. Often, they are the only way to expose an
invalid theory.

Any hypothesis can form the basis of a delusion, and hence a pseudoscience.
So we should not be surprised that the popular mechanistic hypothesis has been
such a rich source of delusions and pseudosciences. Because of their similarity
to the traditional pseudosciences, I have called the delusions engendered by the
mechanistic hypothesis the new pseudosciences (see pp. 201–202). Unlike the
traditional ones, though, the new pseudosciences are pursued by respected
scientists, working in prestigious universities.

Let us recall how a mechanistic delusion turns into a pseudoscience (see
pp. 202–203, 231–233). The scientists start by committing the fallacy of reifi-
cation: they assume that a model based on one isolated structure can provide
a useful approximation of the complex phenomenon, so they extract that
structure from the system of structures that make up the actual phenomenon.
In complex phenomena, however, the links between structures are too strong
to be ignored, so their model does not represent the phenomenon closely
enough to be useful. What we note is that the theory fails to explain certain
events or situations. For example, if the phenomenon the scientists are studying
involves minds and societies, the model fails to explain certain behaviour
patterns, or certain intelligent acts, or certain aspects of culture.

498 software engineering as pseudoscience chapter 7

Their faith in mechanism, though, prevents the scientists from recognizing
these failures as a refutation of the theory. Because they take the possibility of
a mechanistic explanation not as hypothesis but as fact, they think that only a
few falsifying instances will be found, and that their task is to defend the theory:
they search for confirming instances and avoid the falsifying ones; and, when
a falsification cannot be dismissed, they expand the theory to make it explain
that instance too. What they are doing, thus, to save the theory, is turning
falsifications of the theory into new features of the theory. Poor mechanistic
approximations, however, give rise to an infinity of falsifying instances; so they
must expand the theory again and again. This activity is both dishonest and
futile, but they perceive it as research.

A theory can be said to work when it successfully explains and predicts; if it
must be expanded continually because it fails to explain and predict some
events, then, clearly, it does not work. Defending a mechanistic theory looks
like scientific research only if we regard the quest for mechanistic explanations
as an indisputable method of science. Thus, the mechanists end up doing
in the name of science exactly what pseudoscientists do when defending
their theories. When expanding the theory, when making it agree with an
increasingly broad range of situations, what they do in effect is annul, one by
one, its original claims; they make it less and less precise, and eventually render
it worthless (see pp. 223–224).

Since it is the essence of mechanism to break down complex problems
into simpler ones, the mechanistic hypothesis, perhaps more than any other
hypothesis, can make the pursuit of a delusion look like serious research. These
scientists try to solve a complex problem by dividing it into simpler ones, and
then dividing these into simpler ones yet, and so on, in order to reach isolated
problems; finally, they represent the isolated problems with simple structures.
And in both types of activities – dividing problems into simpler ones, and
working with isolated simple structures – their work is indistinguishable from
research in fields like physics, where mechanism is useful. But if the original
phenomenon is non-mechanistic, if it is the result of interacting phenomena,
a model based on isolated structures cannot provide a practical approximation.
So those activities, despite their resemblance to research work, are in fact
fraudulent.

Being worthless as theories, all mechanistic delusions must eventually
come to an end. The scientists, however, learn nothing from these failures.
They remain convinced that the principles of reductionism and atomism
can explain all phenomena, so their next theory is, invariably, another mecha-
nistic delusion. They may be making only one mistake: assuming that any
phenomenon can be separated into simpler ones. But if they accept this notion
unquestioningly, they are bound to turn their theories into pseudosciences.

software engineering as pseudoscience 499chapter 7

3

3
The purpose of this discussion is to show how easy it is for large numbers of
people, even an entire society, to engage in activities that appear intelligent
and logical, while pursuing in fact a delusion; in particular, to show that
the mechanistic software pursuits constitute this type of delusion. Our soft-
ware delusions have evolved from the same mechanistic culture that fosters
delusions in fields like psychology, sociology, and linguistics. But, while these
other delusions are limited to academic research, the software delusions are
affecting the entire society.

Recall how a mechanistic software theory turns into a pseudoscience.
Software applications are systems of interacting structures. The structures that
make up an application are the various aspects of the application. Thus, each
software or business practice, each file with the associated operations, each
subroutine with its calls, each memory variable with its uses, forms a simple
structure. And these structures interact, because they share their elements – the
various software entities that make up the application (see pp. 345–346).

The mechanistic software theories, though, claim that an application can be
programmed by treating these aspects as independent structures, and by
dealing with each structure separately. For example, the theory of structured
programming is founded on the idea that the flow-control operations form an
independent structure; and the database theories are founded on the idea that
the database operations form an independent structure.

Just like the other mechanistic theories, the software theories keep being
falsified. A theory is falsified whenever we see programmers having to override
it, whenever they cannot adhere strictly to its principles. And, just like the
other mechanists, the software mechanists deny that these falsifications
constitute a refutation of the theory: being based on mechanistic principles,
they say, the theory must be correct.

So instead of doubting the theory, instead of severely testing it, the software
mechanists end up defending it. First, they search for confirmations and avoid
the falsifications: they discuss with enthusiasm the few cases that make the
theory look good, while carefully avoiding the many cases where the theory
failed. Second, they never cease “enhancing” the theory: they keep expanding
it by contriving new principles to make it cope with the falsifying situations as
they occur, one at a time.

Ultimately, as we will see in the following sections, all software theories
suffer from the two mechanistic fallacies, reification and abstraction: they
claim that we can treat the various aspects of an application as independent

500 software engineering as pseudoscience chapter 7

structures, so we can develop the application by dealing with these structures
separately; and they claim that we can develop the same applications by
starting from high levels of abstraction as we can by starting from low levels.
The modifications needed later to make a theory practical are then simply a
reversal of these claims; specifically, restoring the capability to link structures
and to deal with low-level entities. In the end, the informal, traditional
programming concepts are reinstated – although in a more complicated way,
under new names, as part of the new theory. So, while relying in fact on these
informal concepts, everyone believes that it is the theory that helps them to
develop applications.

�

Our programming culture has been distinguished by delusions for more than
forty years. These delusions are expressed in thousands of books and papers,
and there is no question of studying them all here. What I want to show rather
is that, despite their variety and their changes over the years, all software
delusions have the same source: the mechanistic ideology. I will limit myself,
therefore, to a discussion of the most famous theories. The theories are
changing, and new ones will probably appear in the future, but this study will
help us to recognize the mechanistic nature of any theory.

In addition to discussing the mechanistic theories and their fallacies, this
study can be seen as a general introduction to the principles and problems that
make up the challenge of software development. So it is also an attempt to
explain in lay terms what is the true nature of software and programming.
Thus, if we understand why the mechanistic ideas are worthless, we can
better appreciate why personal skills and experience are, in the end, the most
important determinant in software development.

software engineering as pseudoscience 501chapter 7

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 7: Software Engineering
	Introduction
	The Fallacy of Software Engineering
	1
	2
	3

	Software Engineering as Pseudoscience
	1
	2
	3

