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Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four





Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.
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Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either
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entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts
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(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.
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The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.
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Ch. 7: Software Engineering

The Relational Database Model The Relational Database Model
The relational database model is the theoretical concept upon which the
relational database systems are founded. Database systems are environments
for data management, and among them the relational kind are the most
popular. In this section we will try to determine how much of this popularity
is due to their data management capabilities, and how much to our mechanistic
delusions. What we will find is that, like the other mechanistic software
theories, the relational database model is a pseudoscience; that it is worthless
as a programming concept; and that the relational systems became practical
only after annulling their relational features, and after reinstating – in a more
complicated form, and under new names – the traditional data management
principles.

The relational model belongs to the class of theories that promise us
higher levels of abstraction than those offered by the traditional programming
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languages. Based on these theories, elaborate development systems are created
and promoted. But instead of being abandoned when the idea of higher levels
proves to be a fantasy, these systems undergo a series of “improvements.” And
the improvements, it turns out, consist in the addition of low-level capabilities;
that is, precisely those features we had in the traditional languages, and which
these systems were meant to supersede. So, in the end, all we accomplish is
to replace efficient and straightforward languages with slow, complicated,
and expensive development systems. (See “The Delusion of High Levels” in
chapter 6; see also “The Quest for Higher Levels” in the previous section.)

The Promise

The Promise
1 1
The idea of a database management system emerged in the late 1960s, when it
was noticed that programmers had difficulty designing correct file relation-
ships. Individually, the file operations are quite simple: reading a particular
data record, writing a new record or modifying an existing one, and the like.
The difficulty, rather, lies in creating correct combinations of operations.
Applications need many files, and a file may have many records. Moreover,
through the data present in their fields, the records form intricate relationships,
and the file operations must exactly match these relationships if the application
is to run correctly. It is the programmer’s task to specify the iterations and
conditions through which the application will create and use the various
records at run time; and even a small error can have such consequences as
reading or deleting the wrong record, corrupting the data stored in a record,
or slowing down the application by performing unnecessary file operations.

The challenges that programmers face with file operations, thus, are similar
to those they face with any other aspect of the application. So, as is the case
with the other challenges, what they need is expertise: the knowledge and
skills one develops over the years by programming increasingly complex
applications. Programmers have difficulty designing correct and efficient file
operations because they lack this expertise, because our programming culture
prevents them from advancing past the level of novices.

The theories of structured programming and object-oriented programming,
we saw, were invented by the software elite in an effort to obviate the need for
programming expertise. Since programmers had difficulty creating correct
flow-control constructs, restricting them to a few, standard constructs was
seen as the answer; and since they had difficulty creating useful and modifiable
applications, restricting them to ready-made modules was seen as the answer.
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The solution to programming incompetence, in other words, was always
thought to lie, not in encouraging programmers to improve their skills, but in
discovering methods that would eliminate the need for skills; specifically,
methods that would permit inexperienced programmers to accomplish tasks
demanding expertise.

And it was the same ideology that prompted the invention of the relational
database model. If programmers have difficulty designing combinations of file
operations, let us provide these combinations in the form of built-in, high-level
operations. For example, simply by specifying a few parameters, programmers
would be able to read a set of logically related records. In contrast, to read the
same records with the basic file operations, programmers must scan the file
one record at a time, and control this process using iterative and conditional
constructs.

�

Historically, the first database systems (which were based on the so-called
hierarchical and network database models) were seen largely as management
tools: means to take away from programmers the responsibility of designing
and maintaining the application’s database. The software experts hoped that,
by keeping the most important database functions outside the application,
database systems would eliminate our dependence on the skills of program-
mers: the database would become the responsibility of managers or analysts,
and the programmers would simply be told, for each requirement, what
database operations to invoke.

Now, the general trend was already to break down the application into
smaller and smaller parts, in order to match the capabilities of inexperienced
programmers. The trend, in other words, was to prevent programmers from
designing software, and to reduce their work to little more than translating into
a programming language the instructions received from a superior. So what the
first database systems were promising was to reduce database programming to
the same type of work. For all practical purposes, programmers would no
longer need to know anything about the files used by the application, or about
the relations between files. All they would have to do is translate some simple
instructions into the equivalent database operations.

As was the case with the relational model later, attempting to simplify
programming by raising the level of abstraction only made it more compli-
cated. New software concepts, design methodologies, and languages (known
as data definition and data manipulation languages) had to be introduced to
support the hierarchical and network models; and in the end, the high-level
operations turned out to be more difficult than the traditional ones. Database
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systems, thus, were a fraud from the start: they complicated programming
instead of simplifying it, and did not provide any functions that could not
be implemented through the traditional file operations. (In fact, certain file
relationships, easily programmed using file operations, cannot be implemented
at all with the hierarchical and network models.)

When judged from within our corrupt software culture, however, the appeal
of the original promise is understandable. Once we accept the idea that the
highest programming skills we can expect are those attained by an average
person after a few months of practice, replacing programmers with software
devices seems logical. The complexity created by database systems is a small
price to pay, the software experts tell us, for what we gain: successful database
management regardless of the skills of the available personnel. Surely, we
cannot trust a programmer with the task of designing the complex relationships
that make up a database. Besides, with so many programmers working on
the same application, it is impractical to allow each one to modify the file
definitions. A specialist should design the database, and the best way to
separate this task from the programming tasks is with a database management
system.

In reality, the programmer is the best person to design the application’s
database, just as he is the best person to deal with every other aspect of the
application. However, this is true only of experienced, professional program-
mers. Everyone could see that the existing programmers were novices, not
professionals. But instead of giving them the time and opportunity to develop
their skills, the preferred solution was to employ hordes of these novices, and
to create several levels of management – bureaucrats with titles like systems
analyst and project manager – to supervise them.É

As I have already remarked, this ideology – the belief that programming
skills can be replaced with management skills – was already accepted when the
first database systems were being introduced. So the idea of transferring the
responsibility for the application’s database from programmers to managers,
although just as absurd as the attempt to replace the other programming skills,

É Most business applications can be developed and supported by one person. Thus,
working alone and only part-time, I designed, programmed, and maintained several
business systems over the years – the kind of systems for which companies normally employ
teams of programmers and analysts. Few people are aware of the immense inefficiency
created when a number of inexperienced individuals work together on one software
project. The resulting application can become, quite literally, hundreds of times larger than
necessary, and also far more involved. The combination of large teams, incompetence, and
the dependence on development environments and ready-made pieces of software gives rise
to an inefficiency that feeds on itself. In the end, these bureaucrats spend most of their time
solving specious problems, which they themselves keep creating, instead of genuine
software and business problems.
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appeared quite logical. (As it turned out, though, the complexity of the
database systems exceeded the capacity of existing management, and a new
type of software bureaucrat had to be invented – the database administrator.)

And so it is how, from a totally unnecessary tool, database systems became
one of the main preoccupations, and a major contribution to the astronomic
cost of data processing, in most computer installations.

2

2
Although all database models suffer from the same fallacies, it is the relational
model that concerns us, because it was beginning with this model that the
software experts presented the concept of database systems as a scientific
theory. If the earlier systems were promoted as management tools, the rela-
tional systems were also seen as a step in the formalization of application
development. Because the relational model is based on certain mathematical
concepts, the experts were now convinced that the benefits of database systems
had been proved. Accordingly, a manager who refused to adopt this model was
guilty of more than just resisting software progress; he was guilty of rejecting
science.

The relational model is much more ambitious than the earlier ones. What
we are promised is that, if we keep the data in a particular format, and if we
restrict ourselves to a particular type of operations, we will never again have to
deal with low-level entities (indexes, individual records and fields, and the
related iterative and conditional constructs). In addition, the relational model
will eliminate all data inconsistencies. The files are treated now simply as
tables with rows and columns, and all we have to do is select and combine
logical portions of these tables. Any database requirement, we are told, can
be implemented in this fashion – in the same way that any mathematical
expression is, ultimately, a combination of some basic operations.

As they did for the other mechanistic ideas, the software experts failed to
understand why the mathematical background of a theory does not guarantee
its usefulness for application development. Its exact nature only means that a
mechanistic model has been found for one aspect of the application. And
this is a trivial accomplishment: We know that complex phenomena can be
represented as systems of simple hierarchical structures; and we also know that
it is possible to extract any one of these structures and to represent it with a
mechanistic model. Software applications comprise many structures, so it is
not difficult to find exact models if all we want is to represent these structures
individually.

Thus, the theory of structured programming asked us to extract that
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aspect of the application that is its static flow diagram. Since it is possible
to reduce this one aspect to a perfect hierarchy, and hence to represent it
mathematically, the experts believed that the application as a whole can be
represented mathematically. The theory of object-oriented programming
asked us to identify the various aspects of our affairs, and to depict each one
with a hierarchical classification of software entities. The experts believed that
if each aspect is represented with a perfect hierarchy, whole applications can be
developed simply by combining these hierarchies. Finally, the relational
database theory asks us to extract that aspect of the application that is its
database, and to reduce to perfect hierarchies the file relationships. This will
permit us to represent mathematically the database structures, and hence the
database operations.

What a mechanistic software theory does, in the final analysis, is model
structures of a particular type, after separating them from the other structures
that make up the application. So, no matter how successful these theories are
in representing the individual structures, they are worthless as programming
theories, because we cannot develop the application by dealing with each
structure separately. The elements of these structures are the software entities
that make up the application. Thus, since they share their elements, the
structures interact, and we must deal with all of them at the same time. No
theory that represents individual structures can model the whole application
closely enough to be useful as a programming theory.

Like all mechanistic delusions, these theories are very naive. Since we
already know that simple hierarchical structures can be represented mathe-
matically, what these experts perceive as an important discovery is in reality
a predictable achievement. All they are doing is breaking down software
phenomena into smaller and smaller aspects, until they reach aspects that are
simple enough to model with a hierarchical structure; and at that point they
discover a mathematical theory for one of those aspects. But this is not
surprising. The mathematical nature of the theory is a quality possessed by
every hierarchical structure. We knew all along that they would find mathe-
matical theories for the individual aspects. The very reason they separated
the original, complex phenomenon into simpler phenomena is that simple
structures can be represented with mathematical models while complex ones
cannot.

Practitioners, though, must deal with whole applications, not isolated
software phenomena. So, for these theories to have any value, we also need
an exact theory for combining the various aspects – those neat hierarchical
structures – into actual applications. And no such theory exists. The structures
that represent the various aspects of an application are not related mechanisti-
cally, as one within another. They form complex structures.
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The only way to create an application, therefore, is by relying on the non-
mechanistic capabilities of our mind. But then, if we must have the expertise
to deal with complex structures, why do we need theories that break down
applications into simple structures in the first place? The software theorists are
naive, thus, because they underestimate the difficulty of combining the isolated
software structures into actual applications: they believe that we can combine
them mechanistically, when the very reason for separating them was the
impossibility of representing their totality mechanistically.

3

3
Like the other software theories, the delusion of the relational database model
stems from the mechanistic fallacies of reification and abstraction: the belief
that we can extract one aspect (the database structures, in this case) from the
complex phenomenon that is a software application, and the belief that we can
accomplish the same tasks by starting from high levels of abstraction as we can
when starting from the lower levels.

So, as was the case with the ideas of structured programming and object-
oriented programming, two great benefits are believed to emerge from the idea
of a relational database. First, by reducing the application to strict hierarchical
structures we will be able to represent software mathematically. Whether it
is the flow of execution, the representation of a business process, or the
database structures, we will deal with that aspect of the application formally,
and thereby attain perfect, error-free software. Second, when we have strict
hierarchical structures we can treat applications as systems of things within
things. As we do in manufacturing, then, we will be able to use prefabricated
software subassemblies, rather than depend on basic components. Application
development will be easier and faster, since we will start our software projects
from parts of a higher level of complexity – parts that already include other
parts within them.

In the case of the relational model, this is accomplished by moving the low-
level definitions and operations into the database system. All we need to do in
the application is specify a relational operation, and the system will generate a
database structure for us. In other words, not only do we have now a method
that guarantees the correctness of the database, but this method consists of just
a few simple, high-level operations. Instead of having to work with indexes and
individual records, and with iterative and conditional constructs, we only need
to understand now the concept of tables, of rows and columns: by extracting
and combining portions of tables, we can generate all the database structures
that we are likely to need in our applications.
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Like the other software theories, the relational database model was seen as
a critical step in the automation of programming. We only need to follow
certain methods, and to use certain software systems; and because these
methods and systems are based on mathematical concepts, we will end up with
provably correct applications. It is already possible, we are told, to turn pro-
gramming into a formal, routine activity. The concept of software engineering,
if rigorously applied, already offers us the means to create perfect applications
without depending on the skills or experience of individual programmers.
And soon our systems will be powerful enough to eliminate the need for
programmers altogether. Application development will then be completely
automated: by means of sophisticated, interactive environments, managers and
analysts will generate the application directly from the requirements.

�

We discussed the fallacy of high-level starting elements in chapter 6. We saw,
in particular, that even for a simple requirement like file maintenance we
must link the file operations to the other types of operations – display and
calculations, for instance. And consequently, if we want to be able to implement
any file maintenance functions, we must start with the basic file operations and
with the statements of a traditional programming language (see pp. 435–438).

Similarly, we can perhaps replace with a high-level operation the file
operations and the logic needed to read a set of related records, but only for
common requirements: comparing or totaling the values present in certain
fields, displaying or printing these values, specifying some criteria for record
selection or grouping, and the like. High-level operations are useless if what we
need is a combination of file operations and logic peculiar to a particular
requirement: displaying one field when a certain condition occurs and another
field otherwise, performing one calculation for some records and another for
other records, and so forth. Clearly, there is no limit to the number of situations
that may require a particular combination of file operations and business
requirements, so the idea of replacing the basic operations with high-level ones
is absurd.

High-level database operations are useful, thus, if provided in addition to
the basic file operations; that is, if we retain the means to create our own
combinations of file operations, and use the high-level operations only when
they are indeed more effective. But this is not how the relational database
systems are presented. The concept of a database environment is promoted as
a replacement of the basic file operations. We are told that these operations are
no longer necessary, and that we must depend exclusively on the high-level
relational ones.

the promise 669chapter 7



It is easy to tell when starting from higher levels is indeed a practical
alternative: the resulting operations are simple and beneficial. A good example
is the idea of a mathematical function library: a collection of subroutines that
evaluate for us, through built-in algorithms, various mathematical functions.
Thus, simply by calling one of these subroutines, we can determine in the
application such values as the logarithm or the sine of a variable. Because we
seldom need to link the operations that make up these algorithms with the
operations performed in the application, the calculations can be extracted
from the rest of the application and replaced with independent modules –
modules that interact with the application only through their input and output.
And we notice the success of this idea in that the concept of a mathematical
function library has remained practically unchanged over the years. One of the
oldest programming concepts, the mathematical library is as simple and
effective today as it was when first implemented. We didn’t have to continually
“improve” and “enhance” this concept, as we do our database systems.

But the best example of a practical move to higher levels is provided by the
file operations themselves. The basic file operations are usually described as
“low-level,” but they are low-level only relative to the operations promised by
database systems. The basic operations are executed by a file management
system, and, relative to the operations performed internally by that system,
their level is quite high. (The terms “basic file operations” and “file manage-
ment system” will be discussed in greater detail in the next subsection; see
pp. 672–673.) Thus, a simple statement that reads, writes, or deletes a record in
the application becomes, when executed by the file management system, a
complex set of operations involving indexes, buffers, search algorithms, and
disk accesses. But because there are no links between these operations and the
various operations performed by the application, they can be separated from
the application and invoked by means of simple statements.

So, relative to the operations performed internally by the file management
system, the basic file operations constitute in effect a library of file manage-
ment functions, as do the mathematical functions relative to their internal
operations. And, like the mathematical functions, the success of this concept
is seen in the fact that it has remained practically unchanged since the 1960s,
when it was introduced. But, just because we moved successfully from the low
level of buffers and direct disk access to a level where all we need to do is read,
write, and delete data records, it doesn’t follow that we can move to an even
higher level.

It is precisely because no higher levels are possible that the relational
database systems evolved into such complicated environments. Were high-
level database operations a practical idea, their use would be as straightforward
as is the use of mathematical functions or basic file operations. The reason
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these systems became increasingly large and complicated is that, in order to
make them practical, their designers had to add more and more “features.”
These features are perceived as enhancements of the relational concept, but
their real function is to counteract the falsifications of this concept. They may
have new and fancy names, but these are features we always had – in our
programming languages.

Thus, in order to save the relational theory from refutation, the software
pseudoscientists had to incorporate into database systems programming
features: means to define integrity and security checks, to access individual
records, to deal with run-time errors, and so forth. These, obviously, are the
low-level, application-related processes which they had originally hoped to
eliminate through high-level database operations.

So the relational database systems became in the end a fraud: instead of
admitting that the idea of high-level database operations had failed, the
theorists reinstated the low-level capabilities of the traditional programming
languages while making them look like features of a database system. Entire
new languages had to be invented, in order to let programmers perform within
the database system those operations they had been performing all along,
through traditional programming languages, within the application.

The reason for the complexity of the relational systems, thus, is that they
ended up incorporating concepts which belong in the application. Program-
ming problems that are quite easy to solve as part of the application become
awkward and complicated when separated from the application and moved
into a database environment. Besides, the new languages are not as versatile as
the traditional, general-purpose ones: they provide only some of the low-level
elements we need, and only as artificial extensions to the high-level features.
So our work is complicated also by having to solve low-level programming
problems in a high-level environment. Like other development environments,
the relational systems have reversed a basic programming principle: instead
of freely creating high-level elements by combining low-level ones, we are
forced to start with high-level elements, and to treat the low-level ones as
extensions.

The idea of a database system emerged, we recall, not because of any
requirements that could not be implemented with the basic file operations, but
as an answer to the lack of programmers who could use these operations
correctly. So, if what programmers must do now is even more difficult than is
the use of file operations, how can the database systems help them? High-level
database operations cannot replace programming expertise any more than
could the idea of structured programming, or the idea of object-oriented
programming.
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The Basic File Operations

The Basic File Operations
1 1
To appreciate the inanity of the relational model, we must start by examining
the basic file operations; that is, those operations which the relational systems
are attempting to supplant. What I want to show is that these operations
are both necessary and sufficient for implementing database management
requirements, particularly in business applications. Thus, once we recognize
the importance of the basic file operations, we will be in a better position to
understand why the relational systems are fraudulent. For, as we will see, the
only way to make them useful was by enhancing them with precisely those
capabilities provided by the basic file operations; in other words, by restoring
the very features that the database experts had claimed to be unnecessary.

Also, it is important to remember that the basic file operations have been
available to programmers from the start, ever since mass storage devices with
random access became popular. (They are sometimes called ISAM, Indexed
Sequential Access Method.) For example, they have been available through
COBOL (a language specifically designed for business applications) since
about 1970. So these operations have always been well known: COBOL was
always a public language, was implemented on all major computers, and was
adopted by most companies. Thus, in addition to being an introduction to the
basic file operations, this discussion serves to support my claim that the only
motivation for database systems in general, and for the relational systems in
particular, was to find a substitute for the knowledge required of programmers
to use these operations correctly.

�

Before examining the basic file operations, we must take a moment to clarify
this term and the related terms “file operations” and “database operations.”
The basic file operations are a basic set of file management functions. They
formed in the past an integral part of every major operating system, and
were accessible through programming languages. These operations deal with
indexed data files – the most versatile form of data storage; and, in conjunction
with the features provided by the languages themselves, they allow us to use
and to relate these files in any way we like.

“File operations” is a more general term. It refers to the basic file operations,
but also to the various ways in which we combine them, using the flow-
control constructs of a programming language, in order to implement file
management requirements. “Database operations” is an even more general
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term. It refers to the file operations, but in the context of the whole application,
so it usually means combinations of file operations; in particular, combinations
involving several files. The terms “traditional file operations” and “low-level
file operations” refer to any one of the operations defined above.

The term “database” refers to a set of related files; typically, the files used by
a particular application. Hence, the term “database system” ought to mean
any software system that helps us to manage a database.É Through their
propaganda, though, the software elites have created in our minds a strong
association between terms like “database,” “database system,” and “database
management system” (or DBMS) and high-level database operations. And as a
result, most people believe that the only way to manage a database is through
high-level operations; that the current database systems provide indispensable
features; and that it is impossible to implement a serious application without
depending on such a system.

But we must not allow the software charlatans to control our language and
our minds. Since we can implement any database functions through the basic
file operations and a programming language, systems that provide high-level
operations are not at all essential for database management. So we can continue
to use the terms “database” and “database operations” even while rejecting the
notion of a system that restricts us to high-level operations.

Strictly speaking, since the basic file operations permit us to manage a
database, they too form a database system. But it would be confusing to use this
term for the basic operations, now that it is associated with the high-level
operations. Thus, I call the systems that provide basic file operations “file
management systems,” or “file systems” for short. This term is quite appropri-
ate, in fact, seeing that these systems are limited to operations involving
single files; it is we who implement the actual database management, by
combining the operations provided by the file system with those provided by
a programming language.

So I use the term “database,” and terms like “database operations” and
“database management,” to refer to any set of related files – regardless of
whether the files and relations are managed through the high-level operations
of a database system, or through the basic operations of a file system.

The term “database structures” refers to the various hierarchical structures
created by the files that make up the database: related files can be seen as the
levels of a structure, and their records as the elements that make up these levels
(see p. 688). In most applications, the totality of database structures is a
complex structure.

É The term “database system” is used by everyone as an abbreviation of “database
management system.” It is somewhat misleading, though, since it sounds as if it refers to the
database itself.
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2
Two types of files make up the database structures of an application: data files
and index files. The data files contain the actual data, organized as records; the
index files (or indexes, for short) contain the pointers that permit us to access
these records.

The record is the unit that the application typically reads from the file, or
writes to the file. But within each record the data is broken down into fields,
and it is the values present in the individual fields that we normally use in the
application. For example, if each record in the file has 100 bytes, the first field
may take the first 6 bytes, the second one the next 24 bytes, and so on. This is
how the fields reside on disk, and in memory when the record is read from
disk, but in most cases their relative order within the record is immaterial. For,
in the application we assign names to these fields, and we refer to them simply
by their names. Thus, once a record is read into memory, we treat database
fields, for all practical purposes, as we do memory variables.

The records and fields of a data file reflect the structure and type of the
information stored in the file. In an employee file, for example, there is a record
for each employee, and each record contains such fields as employee number,
name, salary, and year-to-date earnings and deductions; in a sales history file
there is a record for each line in a sales order, with such fields as the customer
and order numbers, date, price, and quantity sold. While in simple cases the
required fields are self-evident, generally it takes some experience to design the
most effective database for a given set of requirements. We must decide what
information should be processed by the application, how to represent this
information, how to distribute it among files, how to index the files, and how to
relate them. Needless to say, it is impossible to predict all future requirements,
so we must be prepared to alter the application’s database structure later: we
may need to add or delete fields, move fields from one file to another, and
create new files or indexes.

We don’t normally access data records directly, but through an index.
Indexes, thus, are service files, means to access the data files. Indexes fulfil two
essential functions: they allow us to identify a specific record, and to scan a
series of records in a specific sequence. It is through keys that indexes perform
these tasks. The key is one of the fields that make up the record, or a set of
several fields. Clearly, if the combination of values present in these fields is
different for each record in the file, each record can be uniquely identified. In
addition, key uniqueness allows us to scan the records in a particular sequence
– the sequence that reflects the current key values – regardless of their actual,
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physical sequence on disk. When the key is one field, the value present in the
field is the value of the key. When the key consists of several fields, the value
of the key is the combination of the field values, in the order in which they
make up the key. The records are scanned, in effect, in a sorted sequence.
For example, if the key is defined as the set of three fields, A, B, and C, the
sorting sequence can be expressed as either “by A by B by C” or “by C within
B within A.”

Note that if we permit duplicate keys – if, that is, some combinations of
values in the key fields are not unique – we will be unable to identify the
individual records within a set of duplicates. Such an index is still useful,
however, if all we need is to scan those records. The scanning sequence within
a set of duplicate records is usually the order in which they were added to the
file. Thus, for scanning too, if we want better control we must ensure key
uniqueness.

An especially useful feature is the capability to create several indexes for the
same data file. This permits us to access the same records in different ways –
scan the file in one sequence or another, or read a record through one key or
another. For example, we may scan a sales history file either by order number
or by product number; or, we may search for a particular sales record through
a key consisting of the customer number and order number, or through a key
consisting of the product number and order date.

Another useful indexing feature is the option of descending keys. The
normal scanning sequence is ascending, from low to high key values; but some
file systems also allow indexes that scan records from high to low key values.
Any one field, or all the fields in the key, can then be either ascending or
descending. Simply by scanning the data file through such an index we can list,
for instance, orders in ascending sequence by customer number, but within
each customer those orders with a higher amount first; or we can list the
sales history by ascending product number, but within each product by
descending date (so those sold most recently come first), and within each date
by ascending customer number. A related indexing feature, useful in its own
right but also as an alternative to descending keys, is the capability to scan
records backward.

In addition to indexed data files, most file management systems support
two other types of files, relative and sequential. These files provide simpler
record access, and are useful for data that does not require an elaborate
indexing scheme. In relative data files, we access a record by specifying its
relative position in the file (first, second, third, etc.). These files are useful,
therefore, in situations where the individual records cannot, or need not, be
identified by the values present in their fields (to store the entries of a large
table, for instance). Sequential data files are organized as a series of consecutive
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records, which can only be accessed sequentially, starting from the beginning.
These files are useful in situations where we don’t need to access individual
records directly, and where we normally read the whole file anyway (to store
data that has no specific structure, for instance). Text data, too, is usually stored
in sequential files. I will not discuss further the relative and sequential files. It
is the indexed data files that interest us, because it is only their operations that
the relational database systems are attempting to replace with high-level
operations.

�

File systems provide at least two types of fields, alphanumeric (or alpha, for
short) and numeric. And, since these types are the same as the memory
variables supported by most high-level languages (COBOL, in particular),
database fields and memory variables can be used together, and in the same
manner, in the application. In alphanumeric fields, data is stored as character
symbols, so these fields are useful for names, addresses, descriptions, notes,
identifiers, and the like. When these fields are part of an indexing key, the
scanning sequence is alphabetical. In numeric fields, the data is stored as
numeric values, so these fields can be used directly in calculations. Numeric
fields are useful for any data that can be expressed as a numeric value:
quantities, dollar amounts, codes, and the like. When these fields are part of an
indexing key, the scanning sequence is determined by the numeric value.

Some file systems provide additional field types. Date fields, for instance,
are useful for storing dates. In the absence of date fields, we must store dates in
numeric fields, as six- or eight-digit values representing the combination of the
month, day, and year; alternatively, we can store dates as values representing
the number of days elapsed since some arbitrary, distant date in the past. (The
latter method is preferable, as it simplifies date calculations, comparisons, and
indexing.) Another field type is the binary field, used to store such data as text,
graphics, and sound; that is, data which can be in any format whatsoever
(hence “binary,” or raw), and which may require many thousands of bytes.
(Because of its large size, this data is stored in separate files, and only pointers
to it are kept in the field itself.)

3

3
Now that we have examined the structure of indexed data files, let us review
the basic file operations. Six operations, combined with the iterative and
conditional constructs of high-level languages, are all we need in order to use
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indexed data files. I will first describe these operations, and then show how
they are combined with language features to implement various requirements.
The names I use for the basic operations are taken from COBOL. (There may
be some small variations in the way these operations are implemented in a
particular file system, or in a particular version of COBOL; for example, in the
way multiple indexes or duplicate keys are supported.)

The following terms are used in the description of the file operations: The
current index is the index file specified in the operation. File is a data file;
although the file actually specified in the operation is an index file, the record
read or written belongs to the data file (we always access a data file through one
of its indexes). Record area is a storage area – the portion of memory where the
fields that make up the record are specified; each file has its own record area,
and this area is accessed by both the file system and the application (the
application treats the fields as ordinary memory variables). Key is the field or
set of fields, within the record area, that was defined as the key of a particular
index; the current key is the key that was defined for the current index. The
record pointer is an indicator maintained by the file system to identify the next
record in the scanning sequence established by a particular index; each index
has its own pointer, and the current pointer is the pointer corresponding to the
current index.

WRITE: A new record is added to the file. Typically, the data in this record
consists of the values previously placed by the application into the fields that
make up the file’s record area. The values present in the fields that make up the
current key will become the new record’s key in the current index. If the file
has additional indexes, the values in their respective key fields will become
the keys in those indexes. All indexes are updated together: following this
operation, the new record can be accessed either through the current index or
through another index. If one of the file’s indexes does not permit duplicate
keys and the new record would cause such a condition, the operation is
aborted and the system returns an error code (so that the application can take
appropriate action).

REWRITE: The data in the record area replaces the data in the record cur-
rently in the file. Typically, the application read previously the record into the
record area through the current index, and modified some of the fields. The
record is identified by the current key, so the fields that make up this key
should not be modified. If there are other indexes, the fields that make up their
keys may be modified, and REWRITE will update those indexes to reflect the
change. REWRITE, however, can also be used without first reading the existing
record: the application must place some values in all the fields, and REWRITE

functions then like WRITE, except that it replaces an existing record. In either
case, if no record is found with the current key, or if one of the file’s indexes
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does not permit duplicate keys and the modified record would cause such a
condition, the operation is aborted and the system returns an error code.

DELETE: The record identified by the current key is removed from the
file. Only the values present in the current key fields are important for the
operation; the rest of the record area is ignored. The application, therefore, can
delete a record either by reading it first into the record area (through any one of
its indexes) or just by placing the appropriate values into the current key fields.
If no record is found with the current key, the system returns an error code.

READ: The record identified by the current key is read into the record area.
The current index can be any one of the file’s indexes, and only the values
present in the current key fields are important for the operation. Following this
operation, the fields in the record area contain the values present in that record
in the file. If no record is found with the current key, the system returns an
error code.

START: The current pointer is positioned at the record identified by the
current key. The current index can be any one of the file’s indexes, and only
the values present in the current key fields are important for the operation. The
specification for the operation includes a relation like equal, greater, or greater
or equal, so the application need not indicate a valid key; the record identified
is simply the first one, in the scanning sequence of the current index, whose
key satisfies the condition specified (for example, the first one whose key is
greater than the values present in the current key fields). If no record in the file
satisfies that condition, the system returns an error code.

READ NEXT: The record identified by the current pointer is read into the
record area. This operation, in conjunction with START, makes the file scanning
feature available to the application. The application must first perform a START

for the current index, in order to set the current pointer at the first record in
the series of records to be scanned. (To indicate the first record in the file, null
values are typically placed in the key fields, and the condition greater is
specified.) READ NEXT will then read that record and advance the pointer to the
next record in the scanning sequence of the current index. The subsequent
READ NEXT will read the record indicated by the pointer’s new position and
advance the pointer to the next record, and so on. Through this process, then,
the application can read a series of consecutive records without having to know
their keys.Ê Typically, READ NEXT is part of a loop, and the application knows
when the last record in the series is reached by checking a certain condition
(for example, whether the key exceeds a particular value). If the pointer was
already positioned past the last record in the file (the end-of-file condition), the

Ê Since no search is involved, it is not only simpler but also faster to read a record in this
fashion, than by specifying its key. Thus, even when the keys are known, it is more efficient
to read consecutive records with READ NEXT than with READ.
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system returns an error code. (Simply checking for this code after each READ

NEXT is how applications typically handle the situation where the last record in
the series is also the last one in the file.)

�

These six operations form the minimal practical set of file operations: the set
of operations that are both necessary and sufficient for using indexed data files
in serious applications.Ë I will demonstrate now, with a few examples, how the
basic file operations are used in conjunction with other types of operations to
implement typical requirements. Again, I am describing COBOL constructs
and statements, but the implementation would be very similar in other high-
level languages.

A common requirement involves the display of data from a particular
record: the user identifies the record by entering the value of its key (customer
number, part number, invoice number, and the like), and the application
responds by retrieving that record and displaying some of its fields. When the
key consists of several fields, the user must enter several values. To implement
this operation in the application, all we need is a READ: we place the values
entered by the user into the current key fields, perform the READ, and then
display for the user various fields from the record area. If, however, the system
returns an error code, we display a message such as “record not found.”

If the user wants to modify some of the fields in a particular record, we start
by performing a READ and displaying the current values, as before; but then we
allow the user to enter the new values, place them in the appropriate fields in
the record area, and perform a REWRITE. And if what the user wants is to delete
a particular record, we usually start with a READ, display some of the fields to
allow the user to confirm it is the right record, and then perform a DELETE.

Lastly, to add a record, we display blank fields and allow the user to enter
their actual values. (In a new record, some fields may have null values, or some
default values; so these fields may be left out, or just displayed, or displayed
with the option to modify them.) The user must also enter the value of the
key fields, to identify the new record. We then perform a WRITE, and the
system will add this record to the file. If, however, it returns an error code, we
display a message such as “duplicate key” to tell the user why the record
could not be added.

Ë I will not discuss here the various support operations – opening and closing files,
locking and unlocking records in multiuser applications, and the like. Since there is little
difference between these operations in file systems and in database systems, they have no
bearing on my argument. Many of these operations can be performed automatically, in fact,
in both types of systems.
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Examples of this type of record access are found in the file maintenance
operations – those operations that permit the user to add, delete, and modify
records in the database. And, clearly, any maintenance requirement can be
implemented through the basic file operations: any file, record, and field in the
database can be read, displayed, or modified. If we must restrict this freedom
(permit only a range of values for a certain field, permit the addition or
deletion of a record only under certain conditions, etc.), all we have to do is add
appropriate checks; then, if the checks fail, we bypass the file operation and
display a message.

So far I have discussed the interactive access of individual records, but the
basic file operations are used in the same way when the user is not directly
involved. Thus, if we need to know at some point in the application the
quantity on hand for a certain part, we place the part number in the key field,
perform a READ, and then get the value from the quantity field; if we want to
add a new transaction to the sales history file, we place the appropriate values
in the key fields (customer number, invoice number, etc.) and in the non-key
fields (date, price, quantity, etc.), and perform a WRITE; if we want to update a
customer’s balance, we place the customer number in the key field, perform a
READ, calculate the new value, place it in the balance field, and then perform
a REWRITE. Again, any conceivable requirement can be implemented through
the basic file operations.

�

Accessing individual records, as described above, is one way of using indexed
data files. The other way is by scanning records, an operation accomplished
with an iterative construct based on START and READ NEXT. This construct,
which may be called the basic file scanning loop, is used every time we read a
series of records sequentially through an index. The best way to illustrate this
loop is with a simple example (see figure 7-13). The loop here is designed to
read the PART file in ascending part number sequence. The indexing key, P-KEY,
consists of one field, P-NUM (part number). START positions the record pointer
so that the first record read has a part number no less than P1, and the

Figure 7-13

  MOVE P1 TO P−NUM START PART KEY>=P−KEY INVALID GO TO L4.

L3. READ PART NEXT END GO TO L4. IF P−NUM>P2 GO TO L4.

  IF P−QTY<Q1 GO TO L3.

  [various operations]
  GO TO L3.

L4.
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condition >P2 terminates the loop at the first record with a part number
greater than P2. The loop will read, therefore, only the range of records, P1

through P2, inclusive.Ì In addition, within this range, the loop selects only
those records where the quantity field, P-QTY, is no less than a certain value, Q1.
The operations following the selection conditions will be performed for every
record that satisfies these conditions. The labels L3 and L4 delimit the loop.Í

We rarely perform the same operations with all the records in a file, so the
selection of records is a common requirement in file scanning. The previous
example illustrates the two selection methods – based on key fields, and on
non-key fields. The method based on key fields is preferable when what we
select is a range of records, as the records left out don’t even have to be read.
This can greatly reduce the processing time, especially if the file is large and the
range selected is relatively small. In contrast, when the selection is based on
non-key fields, each record in the file must be read. This is true because the
value of non-key fields is unrelated to the record’s position in the scanning
sequence, so the only way to know what the values are is by reading the
record. The two methods are often combined in the same loop, as illustrated
in the example.

It should be obvious that these two selection methods are completely
general, and can satisfy any requirement. For example, if the range must
include all the records in the file, we specify null values for the key fields in
START and omit the test for the end of the range. The loop also deals correctly
with the case where no records should be selected (because there are none in
the specified range, or because the selection based on non-key fields excludes
all those in the range). It must be noted that the selection conditions can be as
complex as we need: they can involve several fields, or fields from other files
(by reading in the loop records from those files), or a combination of fields,
memory variables, and constants. A complex condition can be formulated
either as one complex IF statement or as several consecutive IF statements. And,

Ì Note the END clause in READ NEXT, specifying the action to take if the end of the file is
reached before P2. (INVALID and END are the abbreviated forms of the COBOL keywords
INVALID KEY and AT END. Similarly, GO TO can be abbreviated in COBOL as GO.)

Í It is evident from this example that the most effective way to implement the basic file
scanning loop in COBOL is with GO TO jumps. This demonstrates again the absurdity of
the claim that GOTO is harmful and must be avoided (the delusion we discussed under
structured programming). Modifying this loop to avoid the GOTOs renders the simple
operations of file scanning and record selection complicated and abstruse; yet this is exactly
what the experts have been advocating since 1970. It is quite likely that the complexity
engendered by the delusions of structured programming contributed to the difficulty
programmers had in using file operations, and was a factor in the evolution of database
systems: because they tried to avoid the complications created by one pseudoscience,
programmers must now deal with the greater complications created by another.

the basic file operations 681chapter 7



in addition to the conditions that affect all the operations in the loop, we can
have conditions within the loop; any portion of the loop, therefore, can be
restricted to certain records.

Let us see now how the basic file scanning loop is used to implement various
file operations. In a typical file listing, or query, or report, the scanning
sequence and the record selection criteria specified by the user become the
index and the selection conditions for the scanning loop. And within the loop,
for each record selected, we show certain fields and perhaps accumulate their
values. Typically, one line is printed or displayed for each record, and the totals
are shown at the end. When the indexing key consists of several fields, their
value will change hierarchically, one within another, in the sorting sequence of
the index; thus, we can have various levels of subtotals by noting within the
loop when the value of these fields changes. In an orders file, for instance, if
the key consists of order number within customer number, and if we need the
quantity and amount subtotals for the orders belonging to each customer, we
must show and then clear these subtotals every time the customer number
changes.

Another use of the scanning loop is for modifying records. The reading and
selection are performed as before, but here we modify the value stored in
certain fields; then we perform a REWRITE (at the end of the loop, typically).
This is useful when we must modify a series of records according to some
common logic. Not all the selected records need to be modified, of course; we
can perform some calculations and display the results for all the records in a
given range, for instance, but modify only those where the fields satisfy a
certain condition. Rather than modify records, we can use the scanning loop
to delete certain records; in this case we perform a DELETE at the end of the loop.

An interesting use of indexed data files is for sorting. If, for instance, we
need a listing of certain values in a particular scanning sequence (values
derived from files or from calculations), we create a temporary data file where
the indexing key is the combination of fields for that scanning sequence, while
the non-key fields are the other values to be listed. All we have to do then is
perform a WRITE to add a record to the temporary file for each entry required
in the listing. The system will build for us the appropriate index, and, once
complete, we can scan the temporary file in the usual manner. Similarly, if we
need to scan a portion of a data file in a certain sequence, but only occasionally,
then instead of having a permanent index for that sequence we create a
temporary data file that is a subset of the main data file: we read the main data
file in a loop through one of its indexes, and for each selected record we copy
the required fields to the record of the temporary file and perform a WRITE.

If we want to analyze certain fields in a data file according to the value
present in some other fields (total the quantity by territory, total various
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amounts by the combination of territory and category, etc.), we must create a
temporary data file where the indexing key is the field or combination of
fields by which we want to group the records (the analysis fields in the main
data file), while the non-key fields are the values to be totaled (the analyzed
fields). We read the main file in a loop, and, for each record, we copy the
analysis values and the analyzed values to the respective fields in the record of
the temporary file. We then perform a WRITE for this file and check the return
code. If the system indicates that the record already exists, it means this
is not the first time that combination of key values was encountered; the
response then is to perform a READ, add the analyzed values to the respective
fields, and perform a REWRITE. In other words, we create a new record in the
temporary file only the first time a particular combination of analysis values is
encountered, and update that record on subsequent occasions. At the end, the
temporary file will contain one record for each unique combination of analysis
values. This concept is illustrated in figure 7-14.

In this example, a certain quantity in the CUSTOMER file is analyzed by
territory for the customers in the range C1 through C2. SORTFL is the temporary
file, and SR-RECORD is its record area. The simplicity of this operation is due to
the fact that much of the logic is implicit in the READ, WRITE, and REWRITE.

4

4
One of the most important uses of the file scanning loop is to relate files.
If we nest the scanning loop of one file within that of another, a logical
relationship is created between the two files. From a programming standpoint,
the nesting of file scanning loops is no different from the nesting of any
iterative constructs: the whole series of iterations through the inner loop is
repeated for every iteration through the outer loop. In the inner loop we can
use fields from both files; any operation, therefore, including the record
selection conditions, can depend on the record currently read in the outer loop.

Figure 7-14

  MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

  MOVE C−TER TO SR−TER MOVE C−QTY TO SR−QTY.

  WRITE SR−RECORD INVALID READ SORTFL

    ADD C−QTY TO SR−QTY REWRITE SR−RECORD.

  GO TO L3.

L4.
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Figure 7-15 illustrates this concept. The outer loop scans the CUSTOMER file
and selects the range of customer numbers C1 through C2. The indexing key,
C-KEY, consists of one field, C-NUM (customer number). Within this loop, in
addition to any other operations performed for each customer record, we
include a loop that scans the ORDERS file. The indexing key here, O-KEY, consists
of two fields, O-CUS (customer number) and O-ORD (order number), in this
sorting sequence. Thus, to restrict the inner loop to the orders belonging to one
customer, we select only the range of records where the customer number
equals the one currently read in the outer loop, while allowing the order
number to be any value. (Note that the terminating condition, “IF O-CUS

NOT=C-NUM,” could be replaced with “IF O-CUS>C-NUM,” since the first O-CUS read
that is not equal to C-NUM is necessarily greater than it.) The inner loop here
selects all the orders for the customer read in the outer loop; but we could have
additional selection conditions, based on non-key fields, as in figure 7-13 (for
example, to select only orders in a certain date range, or over a certain amount).

Although most file relations involve only two files, the idea of loop nesting
can be used to relate hierarchically any number of files, simply by increasing
the number of nesting levels. Thus, by nesting a third loop within the second
one and using the same logic, the third file will be related to the second in
the same way that the second is related to the first. With two files, we saw, the
second file’s key consists of two fields, and the range selected includes the
records where the first field equals the first file’s key. With three files, the third
file’s key must have three fields, and the range will include the records where
the first two fields equal the second file’s key. (The keys may have additional
fields; two and three are the minimum needed to implement this logic.)

To illustrate this concept, figure 7-16 adds to the previous example a loop to
scan the LINES file (the individual item lines associated with each order).

Figure 7-15

  MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

  [various operations]
  MOVE C−NUM TO O−CUS MOVE 0 TO O−ORD.

  START ORDERS KEY>O−KEY INVALID GO TO L34.

L33. READ ORDERS NEXT END GO TO L34. IF O−CUS NOT=C−NUM GO TO L34.

  [various operations]
  GO TO L33.

L34.

  [various operations]
  GO TO L3.

L4.
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If ORDERS has fields like customer number, order number, date, and total
amount, which apply to the whole order, LINES has fields like item number,
quantity, and price, which are different for each line. Its indexing key consists
of customer number, order number, and line number, in this sorting sequence.
And the third loop isolates the lines belonging to a particular order by selecting
the range of records where the customer and order numbers equal those of the
order currently read in the second loop, while the line number is any value.
Another example of a third nesting level is a transaction file, where each record
is an invoice, payment, or adjustment pertaining to an order, and the indexing
key consists of customer number, order number, and transaction number.Î

Î Note, in figures 7-13 to 7-16, the numbering system used for labels in order to make the
jumps self-explanatory (as discussed under the GO TO delusion, pp. 621–624).

Note that in the sections marked “various operations” we can access fields
from all the currently read records: in the outer loop, fields from the current
CUSTOMER record; in the second loop, fields from the current CUSTOMER and
ORDERS records; and in the inner loop, fields from the current CUSTOMER,
ORDERS, and LINES records.

Note also that the sections marked “various operations” may contain
additional file scanning loops; in other words, we can have more than one

Figure 7-16

  MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

  [various operations]
  MOVE C−NUM TO O−CUS MOVE 0 TO O−ORD.

  START ORDERS KEY>O−KEY INVALID GO TO L34.

L33. READ ORDERS NEXT END GO TO L34. IF O−CUS NOT=C−NUM GO TO L34.

  [various operations]
  MOVE O−CUS TO L−CUS MOVE O−ORD TO L−ORD MOVE 0 TO L−LINE.

  START LINES KEY>L−KEY INVALID GO TO L334.

L333. READ LINES NEXT END GO TO L334.

  IF NOT(L−CUS=O−CUS AND L−ORD=O−ORD) GO TO L334.

  [various operations]
  GO TO L333.

L334.

  [various operations]
  GO TO L33.

L34.

  [various operations]
  GO TO L3.

L4.

the basic file operations 685chapter 7



scanning loop at a given nesting level. For instance, by creating two consecutive
third-level loops, we can scan first the lines and then the transactions of the
order read in the second-level loop.

The arrangement where the key used in the outer loop is part of the key
used in the inner loop, as in these examples, is the most common and the most
effective way to relate files, because it permits us to select records through their
key fields (and to read therefore only a range of records). We can also relate
files, though, by using non-key fields to select records (when it is practical to
read the entire file in the inner loop).

Lastly, another way to relate files is by reading within the loop of one file just
one record of another file, with no inner loop at all (or, as a special case,
reading just one record in both files, with no outer loop either). Imagine that
we are scanning an invoice file where the key is the invoice number and one of
the key or non-key fields is the customer number, and that we need some data
from the customer record – the name and address fields, for instance. (This
kind of data is normally stored only in the customer record because, even
though required in many operations, it is the same for all the transactions
pertaining to a particular customer.) So, to get this data, we place the customer
number from the currently read invoice record into the customer key field, and
perform a READ. All the customer fields are then available within the loop, along
with the current invoice fields.

�

The relationship just described, where several records from one file point to
the same record in another file, is called many-to-one relationship. And the
relationship we discussed previously, where one record from the first file
points to several records in the second file (because several records are read in
the inner loop for each record read in the outer loop) is called one-to-many
relationship. These two types of file relationships are the most common, but
the other two, one-to-one and many-to-many, are also important.

We have a one-to-one relationship when the same field is used as a key in
two files. For example, if in addition to the customer file we create a second file
where the indexing key is the customer number (in order to store some of the
customer data separately), then each record in one file corresponds to one
record in the other. And we have a many-to-many relationship when one
record in the first file points to several records in the second one, and at the
same time one record in the second file points to several records in the first
one. (We will study the four types of file relationships in greater detail later; see
pp. 738–741.)

To understand the many-to-many relationship, imagine a factory where a
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number of different products are being built by assembling various parts from
a common inventory. Thus, each product is made from a number of different
parts, and at the same time a part may be used in different products. The
product file has one record for each product, and the key is the product
number. And the part file has one record for each part, and the key is the
part number. We can use these files separately in the usual manner, but to
implement the many-to-many relationship between products and parts we
need an additional file – a service file for storing the cross-references. This file
is a dummy data file that consists of key fields only. It has two indexes: in the
first one the key is the product number and the part number, and in the second
one it is the part number and the product number, in these sorting sequences.
In the service file, therefore, there will be one record for each pair of product
and part that are related in the manufacturing process (far more records,
probably, than there are either products or parts). Now we can scan the product
file in the outer loop, and the service file, through its first index, in the inner
loop; or, we can scan the part file in the outer loop, and the service file, through
its second index, in the inner loop. Then, by selecting in the inner loop a range
of records in the usual manner, we will read in the first case the parts used by
a particular product, and in the second case the products that use a particular
part. What is left is to perform a READ in the inner loop using the part or
product number, respectively, in order to read the actual records.

The Lost Integration

The Lost Integration

The preceding discussion was not meant to be an exhaustive study of indexed
data files. My main intent was to show that any conceivable database require-
ment can be implemented with file operations, and that this is a fairly easy
programming challenge: every one of the examples we examined takes just a
few statements in COBOL. We only need to understand the two ways of using
indexes (reading individual records or scanning a range of records) and the
two ways of selecting records (through key fields or non-key fields). Then,
simply by combining the basic file operations with the other operations
available in a programming language, we can access and relate the files in the
database in any way we like.

So the difficulties encountered by programmers are not caused by the
basic file operations, nor by the selection of records, nor by the file scanning
loops. The difficulties emerge, rather, when we combine file operations, and
when we combine them with the other types of operations required by the
application. The difficulties, in other words, are due to the need to deal with
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interacting software structures. Two kinds of structures, and hence two kinds
of interactions, are generated: one through the file relationships we discussed
earlier (one-to-many, many-to-many, etc.), the other through the links created
between the application’s elements by the file operations.

Regarding the first kind of structures, the file relationships are easy to
understand individually, because we can view them as simple hierarchical
structures. If we depict the nesting of files as a structure, each file can be seen
as a different level of the structure, and its records as the various elements
which make up that level. The relationship between files is then the rela-
tionship between the elements of one level and the next. But, even though
each relationship is hierarchical, most files take part in several relationships,
through different fields. In other words, a record in a certain file can be an
element in several structures at the same time, so these structures interact. The
totality of file relationships in the database is a complex structure.

As for the second kind of structures, we already know that the file opera-
tions give rise to processes based on shared data (see pp. 349–351). So they link
the application’s elements through many structures – one structure for each
field, record, or file that is accessed by several elements. Thus, in addition to
the interactions due to the file relationships, we must cope with the interactions
between the structures generated by file operations. And we must also cope
with the interactions between these structures and the structures formed by
the other types of processes – practices, subroutines, memory variables, etc.
To implement database requirements we must deal with complex software
structures.

When replacing the basic file operations with higher-level operations, what
are the database experts trying to accomplish? All that a database system can
do is replace with a built-in process the two or three statements that constitute
the use of a basic file operation. The experts misinterpret the difficulty that
programmers have in implementing file operations as the problem of dealing
with the relatively low levels. But, as we saw, the difficulty is not due to the
individual file operations, nor to the individual relationships. The difficulty
emerges when we deal with interacting operations and relationships, and with
their interaction with the rest of the application. And these interactions cannot
be eliminated; we must have them in a database system too, if the application
is to do what we want it to do. Even with a database system, then, the difficult
part of database programming remains. The database systems can perhaps
replace the easy challenges – the individual operations; but they cannot
eliminate the difficult part – the need to deal with interacting structures.

What is worse, database systems make the interactions even more complex,
because some of the operations are now in the application while others are in
the database system. The original idea was to have database functions akin to
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the functions provided by a mathematical library; that is, entities of a high level
of abstraction, which interact with the application only through their input and
output. But this is impossible, because database operations must interact with
the rest of the application at a lower level – at the level of fields, variables, and
conditions. Thus, the level of abstraction that a database system can provide
while remaining a practical system is not as high as the one provided by a
mathematical library. We cannot extract, for example, a complete file scanning
loop, with all the operations in the loop, and turn it into a high-level database
function – not if we want to retain the freedom of implementing any scanning
loops and operations.

�

All we needed before was the six basic file operations. The database operations,
and their interaction with the rest of the application, could then be imple-
mented with the same programming languages, and with the same methods
and principles, that we use for the other operations in the application. With a
database system, on the other hand, we need new and complicated principles,
languages, rules, and methods; we must deal with a new kind of operations in
the database system, plus a new kind of operations in the application, the latter
necessary in order to link the application to the database system. So, in the end,
the difficulties faced by programmers in implementing database operations are
even greater than before.

It is easy to see why the basic file operations are both necessary and
sufficient for implementing database operations: for most applications –
business applications, in particular – they are just the right level of abstraction.
The demands imposed by our applications rarely permit us to move to higher
levels, and we rarely need lower ones. An example of lower-level file operations
is the requirement for a kind of fields, indexes, or records that is different from
the one provided by the standard data files. And, in the rare situations where
such a requirement is important, we can implement it in a language like C.
Similarly, in those situations where we can indeed benefit from higher-level
operations, we can create them by means of subroutines in the same language
as the application itself: we design the appropriate combination of basic file
operations and flow-control constructs, store it as a separate module, and
invoke it whenever we need that particular combination.

For the vast majority of applications, however, we need neither lower nor
higher levels, since the level provided by the basic file operations is just right.
This level is similar to the level provided, for general programming require-
ments, by our high-level languages. With the features found in a language like
COBOL, for instance, we can implement any business application. Thus, it
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is no coincidence that, in conjunction with the operations provided by a
programming language, the basic file operations can be used quite naturally to
implement practically all database operations, and also to link these operations
to the other types of operations: iterative constructs are just right for scanning
a data file sequentially through one of its indexes; nested iterations are just
right for relating files hierarchically; conditional constructs are just right for
selecting records; and assignment constructs are just right for moving data
between fields, and between fields and memory variables. It is difficult to find
a single database operation that cannot be easily and naturally implemented
with the constructs found in the traditional languages.

This flexibility is due to the correct level of abstraction of both the basic file
operations and the traditional languages. This level is sufficiently low to make
all conceivable database operations possible, and at the same time sufficiently
high to make them simple and convenient – for an experienced programmer,
at least. We can so easily implement any database requirement using ordinary
features, available in most languages, that it is silly to search for higher-level
operations.

High-level database operations offer no benefits, therefore, for two reasons:
first, because we can so easily implement database requirements using the basic
file operations, and second, because it is impossible to have built-in operations
for all conceivable situations. No matter how many high-level operations we
are offered, and no matter how useful they are, we will always encounter
requirements that cannot be implemented with high-level operations alone.
We cannot give up the lower levels, thus, because we need them to implement
details, and because the links between database operations, and also between
database operations and the other types of operations, occur at the low level of
these details.

So the idea of higher levels is fallacious for database operations in the same
way it is fallacious for the other types of operations. This was also the idea
behind the so-called fourth-generation languages (see pp. 452–453). And, like
the 4GL systems, the relational systems became in the end a fraud.

The theorists start by promising us higher levels. Then, when it becomes
clear that the restriction to high levels is impractical, they restore – in the guise
of enhancements – the low levels. Thus, with 4GL systems we still use such
concepts as conditions, iterations, and assigning values to variables; in other
words, concepts of the same level of abstraction as those found in a traditional
language. It is true that these systems provide some higher-level operations (in
user interface, for instance), but they do not eliminate the lower levels. In any
case, even in those situations where operations of a higher level are indeed
useful, we don’t need these systems; for, we can always provide the higher levels
ourselves, in any language, through subroutines. Similarly, we will see in the
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present section, the relational database systems became practical only after
restoring the low levels; that is, the traditional file management concepts.

In conclusion, the software elites promote ideas like 4GL and relational
databases, not on the basis of any real benefits, but in order to deprive us of the
programming freedom conferred by the traditional languages. Their real
motive is to force us to depend on expensive and complicated development
systems, which they control.

�

I want to stress again that remarkable quality found in the basic file operations,
the fact that they are at the same level of abstraction as the operations provided
by the traditional programming languages. This is why we can so easily link
these operations and implement database requirements. One of the most
successful of all software concepts, this simple feature greatly simplifies both
programming and the resulting applications.

There is a seamless integration of the database and the rest of the application,
for both data and operations. The fields, the record area, and the record keys
function as both database entities and memory variables at the same time.
Database fields can be mixed freely with memory variables in assignments,
calculations, or comparisons. Transferring data between disk and memory is a
logical extension of the data transfers performed in memory. Most statements,
constructs, and methods we use in programming have the same form and
meaning for file operations as they have for the other types of operations;
iterative and conditional constructs, for example, are used in the same way to
scan and select records from a file as they are to scan and select items from an
array or table stored in memory.

Just by learning to use the six basic file operations, then, a programmer
gains the means to design and control databases of any size and complexity.
The most difficult part of this work is handled by the file management system,
and what is left to the programmer is not very different from the challenges he
faces when dealing with any other aspect of the application.

The seamless integration of the database and the application is such an
important feature that, had we not already had it in the traditional file
operations, we could have rightly called its introduction today a breakthrough
in programming techniques. The ignorance of the academics and the practi-
tioners is betrayed, thus, by their lack of appreciation of a feature that has been
widely available (through COBOL, for instance) since the 1960s. Instead of
studying it and learning how to make the most of it, the software experts have
been promoting the relational model, whose express purpose is to eliminate the
integration. In their attempt to simplify programming, they restrict the links
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between files, and between files and the rest of the application, to high levels of
abstraction. But this is an absurd idea, as we saw, because serious applications
require low-level links too.

Then, instead of admitting that the relational model had failed, the experts
proceeded to reestablish the low-level links. For, in order to make the relational
model practical, they had to restore the integration – the very quality that the
relational model had tried to eliminate. But the only way to provide the low
levels and the integration now, as part of a database system, is through a series
of artificial enhancements. When examined, the new features turn out to be
nothing but particular instances of the important quality of integration:
they are means to link the database to the rest of the application in specific
situations. What is the very nature of the traditional file operations, and in
effect just one simple feature, is now being restored by annulling the relational
principles and replacing them with a multitude of complicated features. Each
new feature is, in reality, a substitute for a particular high-level software
element (a particular database function) that can no longer be implemented
naturally, by combining lower-level elements.

Like all development systems that promise a higher level of abstraction, the
relational systems became increasingly large and complicated because they
attempted to replace with built-in operations the infinity of alternatives that we
need at high levels but can no longer create by starting from low levels. Recall
the analogy of software with language: If we had to express ourselves through
ready-made sentences, instead of creating our own starting with words, we
would end up depending on systems that become increasingly large and
complicated as they attempt to provide all necessary sentences. But even with
thousands of sentences, we would be unable to express all possible ideas. So we
would spend more and more time trying to communicate through these
systems, even while being restricted to a fraction of the ideas that can be
expressed by combining words.

Thus, the endless problems engendered by relational database systems, and
the astronomic cost of using them, are due to the ongoing effort to overcome
the restrictions imposed by the relational model. They are due, in the end,
to the software experts, who not only failed to understand why this model is
worthless, but continued to promote it while its claims were being falsified.

The relational model became a pseudoscience when the experts decided to
“enhance” it, which they did by turning its falsifications into features (see
“Popper’s Principles of Demarcation” in chapter 3); specifically, by restoring the
traditional data management concepts. It is impossible, however, to restore
the seamless integration we had before. So all we have in the end is some
complicated and inefficient database systems that are struggling to emulate the
simple, straightforward file systems.
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The Theory

The Theory
1 1
To understand the relational delusions, we must start with a brief review of
formal logic – that branch of mathematics upon which the relational model is
said to be founded.

Formal logic is treated as a branch of mathematics because its exact princi-
ples and its deductive methods are similar to those of traditional mathematics.
For this reason, it is also called mathematical logic. But, whereas algebra and
calculus deal with numerical values, and geometry with lines and planes, logic
deals with truth values: assertions that can be either True or False. As in other
branches of mathematics, the elements and formulas of logic are expressed
as variables – abstract entities that stand for a large number of particular
instances. Thus, we normally use symbols like x and y, rather than actual
assertions. This is why formal logic is also known as symbolic logic.

The oldest system of formal logic is syllogistics. Created by Aristotle in the
fourth century BC, and further developed over time, syllogistic logic is based
on propositions of the form “all S are P,” “no S is P,” “some S are P,” and “some
S are not P.” (Examples: all fishes are swimmers, some buildings are tall, some
people are not nice.) These propositions consist of two terms (the subject S and
the predicate P) and a quantifier (all, some, none). The propositions assert,
therefore, that a certain thing, or a class of things, possess a certain attribute.
Additional flexibility is attained by permitting negative terms: “all S are not-P,”
“some not-S are P,” and so on. A syllogism consists of three such propositions:
two are premises, and the third one is the conclusion. The premises are related
through one of their terms, and the conclusion uses the other two terms.
(Example: Some A are B, all A are C, therefore some C are B.)

Clearly, many combinations of propositions are possible, but not all consti-
tute valid syllogisms. A syllogism is valid if the conclusion follows by logical
necessity from the two premises, as in the classic inference “All men are
mortal, Socrates is a man, therefore Socrates is mortal.” An example of invalid
syllogisms is “Some dogs are vicious, this animal is not a dog, therefore this
animal is not vicious” (even if the two premises are true, the conclusion can be
either true or false).É

The study of syllogisms involves the classification of the various combina-
tions of propositions, their logical relationships and transformations, and the
methods for determining their validity. It should be obvious that, if we can

É In syllogisms, a reference to an individual entity is interpreted as a class of things that
comprises only one element, and therefore implies the quantifier all.
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reduce an argument to a structure of propositions consisting of subjects
and predicates, syllogistic logic allows us to determine formally whether a
particular statement can or cannot be inferred from certain premises. In
other words, if we know that the two premises are true, we can determine
whether the conclusion is true or false strictly from the structure of the three
propositions; we don’t have to concern ourselves with the meaning of the terms
that make them up.

Syllogistic logic is seen today as only one of the many systems comprising
the field of formal logic. Modern logic, born in the nineteenth century,
attempts to extend beyond the capabilities of syllogistics the range of discourse
and the types of phenomena that can be represented formally. The benefits of
a formal representation are well known: as with traditional mathematics, it
allows us to build increasingly large and complex entities that are guaranteed
to be valid – simply by combining hierarchically, level after level, entities whose
validity is already established. Conversely, if confronted with an expression too
complex to understand directly, we can determine its validity by reducing it to
simpler entities, one level at a time, until we reach entities known to be valid.
Formal logic, thus, permits us to apply the deductive methods of mathematics
to any type of phenomena.

We also know what are the limitations of formal logic. We can reduce a phe-
nomenon to an exact representation only when its links to other phenomena
are weak enough to be ignored. If we recall the concept of simple and complex
structures, logic systems allow us to create only simple structures; so they are
useful only for phenomena that can be studied in isolation. While common in
the natural sciences, this is rare for phenomena involving human minds and
societies. In chapter 4, for example, we saw the attempts made by scientists to
represent knowledge by means of logic systems. These attempts fail because the
entities that make up knowledge are connected in many ways, not just through
the hierarchical relations recognized by a particular logic system. These
entities can only be represented, therefore, with a complex structure. To this
day, few scientists are ready to admit that most human phenomena cannot be
reduced to an exact, formal model. So they keep inventing one mechanistic
theory after another, hoping to represent mathematically such phenomena as
intelligence, language, and software.

�

Although differing in complexity and versatility, the modern systems of logic
have a lot in common. To create a system of logic, we start by defining its
basic entities – those entities that act as starting elements in the hierarchical
structures created with that system: objects, propositions, etc. Logical variables
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(single letters, usually) are used to represent these entities in definitions and
expressions. Next, we define a set of logical operations – the means of creating
the elements of one level by combining those from the lower level. We also
need some rules of inference – principles that justify the various transformations
performed when moving from one level to the next. These rules serve, in effect,
to restrict the use of operations to those cases where the new element can be
derived from the others only through logical deduction. (For example, the rule
known as modus ponens states that, if we know that whenever p is true q is also
true, then if p is found to be true we must conclude that q is true.) Lastly, we
agree on a number of axioms. Axioms are assumptions taken to be valid by
convention, and which can be employed therefore in logical expressions just as
we do premises. (A common axiom, for example, is the assertion that any
entity is identical to the negation of its negation.) The theorems of a logic
system are the various assertions that can be proved deductively within the
system by manipulating expressions. Clearly, increasingly complex expressions
and theorems can be constructed by combining elements hierarchically, on
higher and higher levels of abstraction.Ê

Despite their formality, there is considerable freedom in designing a logic
system. For example, what is a rule in one system may be an axiom in another,
and what is a theorem may be a rule. What matters is only that the system be
consistent. A system is consistent when no contradictions can arise between the
expressions derived by means of its operations, rules, and axioms. That is, if we
can show that a certain expression or theorem is true, we should not be able to
show in the same system, through a different deduction, that it is false. Another
quality found in a correct logic system is that of independence: every one of its
axioms and rules is necessary, and none can be derived from the others. To put
this differently, if any one of them were omitted, we would no longer be able to
determine the truth or falsity of some expressions or theorems.

The chief difference between logic systems, then, is in their basic entities,
and in the way these entities are combined to create correct expressions
(what is known as well-formed formulas). And, once we reach a hierarchical
level where expressions can only yield truth values, True or False, the same
operations can be used to manipulate them in any logic system. The starting
elements themselves may be entities restricted to truth values, but many
systems have starting elements of other types. In syllogistic logic, we saw, the

Ê Note that, when used with the simple structures created with logic systems, the
term “complexity” is employed here (as it always is when discussing simple structures)
to indicate the shift to a higher level within a structure, or to a structure with more
levels. (The levels of complexity in a simple structure are its levels of abstraction.) So
don’t confuse this complexity with the complexity of complex structures, which is due
to the interaction of structures.
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starting elements are subjects and predicates (things and attributes), and only
their combinations are propositions that can be true or false.

The most common logical operations, thus, are those that manipulate truth
values. And among them, the best known are conjunction, disjunction, and
negation (AND, OR, and NOT). Only conjunction and negation are usually
defined as basic operations, though, since disjunction can be expressed in
terms of them: A OR B is equivalent to NOT(NOT A AND NOT B). Additional
operations (equivalence, implication, etc.) can be similarly defined in terms of
conjunction and negation, or by combining previously defined operations.
A truth function is an expression involving operands that have truth values, so
its result is also a truth value. This result can then act as operand in other
expressions.

One way of determining the result of a truth function is with truth tables.
A truth table has a column for each operand used by the function, and a
row for each possible combination of truth values (hence, two rows for one
operand, four for two operands, eight for three operands, etc.). A final column
depicts the truth value of the result, and there may be additional columns for
intermediate results. (Figure 4-2, p. 330, illustrates the concept of truth tables.)

Another characteristic common to all logic systems is that the validity
of their low-level elements, and of their axioms and premises, cannot be
determined from within the system. A logic system only guarantees that, if
certain expressions are known to be true or false, then the truth or falsity of
other expressions – derived from the original ones strictly through the rules
and operations permitted by the system – can be determined with certainty. It
cannot verify for us whether the expressions we start with are true or not.

For example, a premise like “A is larger than B” could be used with numbers
in one application and with animals in another. In either case, it would be
true in some instances and false in others. But within the logic system, this
statement appears simply as a symbol, say, S; and it is handled the same way
regardless of what A and B stand for, or whether the statement is false while
believed to be true. It is our responsibility to ensure that it is true – by means
external to the system – before using it as premise in a particular application.

Logic systems, then, are only concerned with the form and structure of
elements and expressions, not with their interpretation. Needless to say,
though, both aspects are important in actual applications. If all we want is that
the conclusion be sound logically, its correct deduction from premises is
indeed sufficient. But for the system to be of practical value, the deduction and
the premises must be correct.

Thus, along with their limitation to simple, isolated phenomena, their
dependence on what is usually just an informal verification of premises and
starting elements reduces considerably the usefulness of formal logic systems
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in real-world applications. The delusions of the relational database model, for
instance, stem from overlooking the severity of these limitations, as we will
soon see.

�

The simplest system of logic is the one known as propositional calculus. The
basic elements in this system are whole propositions, and expressions are
formed by combining propositions through logical operations, as described
earlier. Although expressions of any complexity can be formed in this manner,
this system is handicapped by its inability to analyze the individual proposi-
tions. For example, if two propositions comprise subject and predicate, as
in syllogisms, the system cannot distinguish between the case where the
propositions share their subject or predicate, and the case where they are
unrelated. The chief quality of propositional calculus is its simplicity, so it is the
system of choice in applications where the elements can be treated as either
atomic entities or logical expressions built from these entities. The Boolean
logic system, upon which digital circuits and many software concepts are
founded, is a type of propositional calculus.

A more versatile system of logic, and the one that served as inspiration for
the relational database model, is predicate calculus. The basic elements in this
system are subjects and predicates, as in syllogistic logic, but a predicate can be
shared by several subjects in one proposition. A predicate, in other words, is
seen as an attribute that can be possessed by one, two, three, or generally n
different elements. And when possessed by more than one, it serves not only
as attribute, but also to relate them. Each set of n elements related through a
predicate is known as an n-tuple (or tuple, for short).

An expression like P(x,y,z) – which says that the elements x, y, and z are
related and form a 3-tuple through the predicate P – is a basic proposition in
predicate calculus. Since the elements are represented with variables, the
expression stands for any number of such tuples. Each element has its own
domain of permissible values, and when we substitute actual values for the
three variables, the relationship will generally hold for some combinations of
values but not for others. So the expression will be true for some tuples and
false for others. The totality of tuples that share a particular predicate (or,
usually, just those for which the expression is true) is called a relation.

An example of a relation is the sets of three integers, a, b, and c, each one
selected perhaps from a different range of values, and fulfilling the condition
that a is greater than b and b is greater than c. An expression like G(a,b,c),
representing this relationship, is then true for some sets of values and false for
others. Another example is the sets of five men, p, c, b, n, and g, who could
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have been selected from various domains to act as crews in WWII B-25
bombers: pilot, co-pilot, bombardier, navigator, and gunner. An expression
like B(p,c,b,n,g), representing this relationship, is true only for those sets of men
that formed actual crews.

Basic propositions can be combined by means of logical operations, in
the usual manner, to form more complex propositions. Thus, we can form
relations that are a logical function of other relations. Take, for example, these
two relations: P(x,y) as the sets of two elements, x and y, related through P; and
Q(y,z) as the sets of two elements, y and z, related through Q. The expression
P(x,y) AND Q(y,z) may then be defined to mean, depending on the application,
either the sets of two elements common to P and Q, or the sets of three
elements, x, y, and z, for which both relations hold. Similarly, the expression
P(x,y) OR Q(y,z) may be defined to mean either the sets of two elements that
exist in either relation (excluding duplicates), or the sets of three elements for
which either relation holds.

Additional flexibility can be achieved in expressions by binding each
variable with the universal quantifier ∀ (which says that the relation holds for
all instances of that variable) or with the existential quantifier ∃ (which says
that the relation holds at least for some instances of that variable). These
quantifiers become then part of the expression, and participate in operations
and transformations, much like operators. Thus, if ∀ is applied to both x and
y in the expression R(x,y), the expression is true only if the relation R holds
for all possible pairs of values of x and y; but if ∃ is applied to x and y, the
expression is true even if the relation holds for just one pair of values.

�

This brief review will suffice for our purpose, to assess the mathematical merits
of the relational database model. It is worth mentioning, though, that many
other systems of logic have been designed. The system we have just examined,
for example, is called first-order predicate calculus, and is only the simplest of
the predicate calculi. (In higher-order systems, the quantified variables and
the predicates can themselves be logical expressions.) Some logic systems
include special axioms, rules, and operations to deal with such imprecise
concepts as necessity, possibility, and contingency, which lie outside the
scope of propositional and predicate calculi. Other systems attempt to deal
with propositions whose truth value changes over time, and some systems
even attempt to reduce to logic such moral issues as belief, obligation, and
responsibility.

As I have already stated, the motivation for these systems is to bring
phenomena involving minds and societies into the range of phenomena that
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can be represented with formal, mechanistic methods. And they have had very
little success, because few human phenomena are simple enough to be reduced
to a mechanistic representation.

Programming phenomena are largely human phenomena. So the relational
model is, ultimately, an example of the attempts to find a mechanistic model
for phenomena that are, in fact, too complex to represent mechanistically.
Thus, apart from our interest in the theories of software engineering as
pseudosciences in their own right, their analysis complements our study of
mechanistic delusions, and serves to remind us of the degradation of the idea
of research. We saw in chapters 3 and 4 the childish attempts made by some of
our most famous scientists to represent behaviour, intelligence, and language
with diagrams, or formulas, or logic. And the same fallacy is committed with
software theories: the mechanists discover a model that explains isolated
aspects of a complex phenomenon, and they interpret this trivial success as
evidence that their theory is valid, and hence worth pursuing.

So, by invoking the official definition of science – which is simply the
pursuit of mechanistic ideas, whether useful or not – academics can now spend
their entire career developing worthless theories. Merely because mechanism
works in fields like physics or chemistry, they feel justified to seek mechanistic
explanations in psychology, or sociology, or linguistics, or economics, or
programming. Then, because of our mechanistic culture, we admire and
respect them, and regard their activities as serious research – even as we see
that their theories never work, and that they resort to deception in order to
defend them.

2

2
Let us see now how predicate calculus was adapted for database work. The
inventor of the relational model is E. F. Codd, who presented his ideas in a
series of papers starting in 1969.Ë We are not concerned here with the evolution
of the model in the first few years, or with the specific contributions made by
individual researchers, but only with the relational database ideas in general.
And, in fact, apart from a few refinements, the theory presented by Codd in
his original papers depicts quite accurately what became in the end the formal
relational model. In 1981, Codd received the prestigious Turing award for his
invention.

Ë The first paper was published in 1969 (as an IBM document), but it was only the second
one, published the following year, that was widely read: E. F. Codd, “A Relational Model of
Data for Large Shared Data Banks,” Communications of the ACM 13, no. 6 (1970): 377–387.
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Recall the organization of data files as records, and fields within records. To
represent a file by means of predicate calculus, the fields are seen as the basic
elements of a logic system, and the records as tuples – sets of n elements, where
n is the number of fields in a record. Each field can possess a value from a
domain of permissible values. Thus, if the field is a part number, the domain
is all valid part numbers; if a vendor name, the names of all possible vendors;
if a quantity, all numeric values that are valid quantities; and so on. Generally,
some combinations of values exist as actual records in the file, and others do
not; and, by convention, the relationship that links these fields holds only for
those combinations that exist. In other words, an expression representing this
relationship is deemed to yield the value True when the tuple actually exists in
the file, and the value False otherwise. As in logic, the totality of tuples (i.e.,
records) in the file is called a relation.

To define an employee file with four fields, for instance, we would use a
logical expression like E(a,b,c,d), where a is the employee number, b the name,
c the hourly rate, and d the number of hours worked. E stands then for the
predicate that relates the four fields. E says, in effect, that each set of four
values, taken from the respective domains of permissible values (all possible
employee numbers, names, rates, and hours), are related in such a way that they
represent a potential employee. The expression is true for the sets that actually
exist in the file, and false for the others.

To this basic system, which matches the system of predicate calculus, a
number of features were added in order to make the relational model suitable
for database work. One feature is the idea of field names. In predicate calculus,
the elements are identified by their relative position within the tuple, but this
is impractical for database fields. Fields, therefore, are given names (QUANTITY,
VENDOR-NO, INVOICE-DATE, etc.); we can then refer to them by their name, so
their relative position within the physical record (as they are stored on disk, for
example) is immaterial. These names are sometimes described as a special
tuple that exists in every file but does not take part in operations; its function
is similar to the top row in a typical table – the row that contains the column
headers.

Another feature is the idea of a key: one field in the record is designated as
key, and its value in each record must be unique within the file; alternatively,
the key can consist of several fields, and then their combined values must be
unique. The key, therefore, can be used to identify a specific record within the
file, or to order the records in a logical sequence (so the actual sequence of
records, as they are stored on disk or as they were added to the file, is irrelevant
to the application). It is often useful to have several keys for the same record;
in this case, one is designated as the primary key, and the others are called
candidate keys. Lastly, in order to relate files, a field (or a group of fields) can
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be designated as a foreign key. This type of key is used to identify the records
of another file, where that field usually functions as the primary key. The
customer number in an invoice file, for example, is a foreign key that relates
the invoice file to the customer file, where the customer number is the primary
key. The values stored in a foreign key need not be unique in each record; thus,
we can have several invoices with the same customer number.

�

It should be obvious, if you recall our discussion of indexed data files and the
basic file operations, that the relational concepts we have examined so far are
identical to the traditional data file concepts. The only difference is in the use
of terms like “relation” and “tuple” instead of the terms traditionally associated
with data files. The relational theory is rich in new terminology. Thus, in
addition to the concepts and terms taken from logic, we are told that files are
best perceived as tables: the rows of these tables are then the records, and the
columns are the fields. Also, the term attribute is often used for columns. So
the accepted relational terms are tables and relations, rows and tuples, columns
and attributes.Ì

While tables still resemble the traditional data files, the way we access them
is entirely different. The traditional file operations are based on indexes, and
are used through the flow-control constructs of a programming language. The
relational operations, on the other hand, are defined in the manner of logical
operations. In predicate calculus, we saw, operations like AND and OR take
relations as operands and produce a new relation; similarly, the relational
operations take tables as operands and produce a new table.

In predicate calculus, the tuples in the resulting relation consist of variables
that were elements in the tuples of the original relations. When the same values
that made up the tuples of the original relations are substituted for the variables
of the new tuples, the expression that represents the new relation may be true
for some combinations and false for others; and the new relation is defined as
those tuples for which the expression is true.

Similarly, the operations in the relational model are defined in such a
manner that the columns of the resulting table are selected from among the
columns of the original tables. Then, depending on the operation and the
values present in the rows of the original tables, only some of the rows are
retained in the new table. In other words, each operation has its own definition

Ì Generally, tables, rows, and columns are considered informal terms, while relations,
tuples, and attributes are the formal ones. Since the entities described by these terms are
identical to the traditional files, records, and fields, I am using both the new and the
traditional terms in the discussion of relational databases.
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of truth and falsity, and if we represent the rows with a logical expression, the
new table is defined as those rows containing combinations of values for
which the expression is true. For example, if we represent a customer table as
C(a,b,c,d) and an orders table as O(a,e,f) (where the lower-case letters stand for
columns, and a is the customer number), a particular operation could be
defined as follows: create a new table R(a,b,e), whose rows are those pairs of
rows from the customer and orders tables where a has the same value in both.
The expression R(a,b,e) is said in this case to be true for these rows (i.e., where
the customer matches the invoice) and false for the others. This expression –
that is, the new table – can then be combined with others in further operations.

There are five basic operations: The UNION of tables A and B is a table
containing the rows present in either A or B or both (A and B must have the
same number of columns, and rows common to A and B appear only once in
the new table). The DIFFERENCE of tables A and B is a table containing those
rows present in A but not in B (A and B must have the same number of
columns). SELECTION takes one table, A, and produces a new table containing
only those rows from A for which an expression involving one of the columns
is evaluated as true (for example, only those rows where the value in a given
column is greater than zero). PROJECTION takes one table, A, and produces a
new table containing all the rows from A, but only some of its columns. The
PRODUCT of tables A and B is a table whose columns are the columns of A plus
those of B, and whose rows are every combination of rows from A and B; each
row, thus, is built by taking a row from A and extending it with a row from B
(so, for example, if A has 10 rows and B has 20 rows, the new table will have
200 rows).

Additional operations may be necessary in practice, but they can always be
expressed as a combination of the five basic ones. For example, to reduce a
table to only some of its rows and columns, we perform first a SELECTION to
retain the specified rows, and then a PROJECTION on the resulting table to retain
the specified columns. (Note that the order in which we perform these two
operations is immaterial.) Most database systems, in line with their promise to
give us higher levels of abstraction, provide some of the most common
combinations in the form of built-in operations.

PRODUCT, in particular, is rarely useful on its own, and is normally employed
as just the first step in a series of operations. JOIN, for instance, consists of
PRODUCT followed by SELECTION and then by PROJECTION. JOIN selects from all
the combinations of rows in tables A and B those rows where a particular
column in A stands in a certain relationship to a particular column in B. Most
often, JOIN is used to combine two tables on the basis of equality of values. For
example, the JOIN of a customer table and an invoice table based on the
customer number (present in both) will result in a table that has the combined
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customer and invoice columns, but (through SELECTION) only the rows where
the customer number was the same in both tables. JOIN, thus, will match
invoices and customers: it will have one row for each invoice, and each row will
include the customer columns in addition to the invoice columns. (The
PROJECTION in the last step serves to eliminate one of the two columns contain-
ing the customer number, since they are identical.) JOIN can be performed on
key columns as well as non-key columns, and its chief use is to relate files.

For most operations and combinations of operations, we can understand
intuitively how the resulting table is derived from the original ones. It is
possible, though, to define these operations formally, as transformations
based on the operations of formal logic. There are several ways to do it: the
relational algebra describes them as operations on tables, as we just saw;
the relational calculus – of which there are two versions, tuple calculus and
domain calculus – describes them with logical expressions similar to those
used in predicate calculus. The operations are the same; only the way they
are described differs.

The value of the relational model is due to expressing the data in the
resulting table as a logical expression of the data in the original tables. Thus, if
the original data is correct, the final data will also be correct. When permitted
to combine records and fields at will – with the traditional file operations, for
instance – a programmer may make mistakes and generate files that do not
reflect correctly the original data, or generate files containing inconsistent
data. This cannot happen with a relational database. Because we are restricted
to operations on whole tables, and because the relational operations introduce
no spurious dependencies between fields, we can be certain that the final
table will express the same data and relationships as the tables we start
with. In a database query, for instance, no matter how many operations and
combinations of tables are involved, the final entities are guaranteed to be the
same as the original ones – only arranged differently. It is impossible, in fact,
to generate wrong or inconsistent data if we restrict ourselves to the relational
operations.

The relational model permits us to implement any database requirements
that we are likely to encounter in applications. The restriction to whole tables
is not really a handicap, because any portion of a table – any subset of rows and
columns – is itself, in effect, a table. We can even isolate a single row (with
appropriate SELECTIONs), and that row is treated as a table and can be used in
further operations. Even one column of that row can be isolated (with a
PROJECTION), and that single element still is, as far as the relational operations
are concerned, a table.

Note that the resulting table need not be a real entity. When using SELECTION
to answer a query, for example, the database system may simply display the
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selected rows, without actually creating a table. Generally, to perform a series
of operations, the system may create some intermediate tables or use only the
original ones, and may employ indexes or other expedients. But we don’t
have to concern ourselves with these details, because a good system will
automatically discover the most effective alternative. All we need to do is
specify, through the relational algebra or calculus, the original tables and the
desired operations.

What we gain with the restriction to tables, then, is simplicity and accuracy:
all we need now is a few operations, which are founded on formal logic and
can be safely combined into more complex ones. Just as importantly, these
operations permit us to view the data from a higher level of abstraction: we no
longer need to access individual records, as in the traditional file systems; nor
do we need file scanning loops, or intricate conditions to select records and to
relate files. Whether our requirements involve single tables, or combinations
of tables, or portions of tables, or just one row or column, all we need now is
the high-level relational operations. Thus, a relational database is said to be
“tables and nothing but tables.”

3

3
It is not enough for the database operations to conform to a logic system. The
relational theory also requires that the data be stored in a logical format.
Specifically, the fields that make up the individual tuples must be simple,
indivisible entities, with no unnecessary dependency between them. Tables
that adhere to this format are said to be normalized, and the process of
bringing them to this format is called normalization. There are several levels of
normalization, each one a more stringent enforcement of these principles. The
levels are known as first normal form, second normal form, third normal form,
etc., and are abbreviated as 1NF, 2NF, 3NF, etc.

The fundamental requirement is 1NF. For a table to be in first normal form,
each field must be a simple entity – a single, atomic value. In traditional data
files, a field may consist of a series of values, or a multidimensional array of
values, or a hierarchical structure of values. A twelve-month transaction
history, for example, can be stored in one field of a customer record as an array
of twelve rows by three columns – month, quantity, and amount. The relational
model prohibits this format: data that comprises a set of related values must be
stored in a separate table, where each value has its own column. Thus, to reduce
the customer table just described to 1NF, we must create a separate table for the
transaction history. The columns in this table will be the customer number,
month, quantity, and amount, and the key will be the combination of customer
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number and month. For each row in the customer table there will be twelve
rows in the transaction history table.

It should be obvious why the first normal form is so important. The
relational operations expect to find tuples, and cannot process multiple values
– data stored, in effect, as tuples within tuples. To deal with this format we need
a more complex database model, and operations that can process more than
just rows and columns.

The other normal forms deal with the problem of field dependency; specifi-
cally, the dependency of one field on another within a tuple. Since such a
relationship is likely to cause data redundancy and inconsistencies, the only
type of relationship permitted between fields within a tuple is the obvious
dependency of the tuple’s fields on the tuple’s unique key. All other field
relationships must be implemented by moving the fields to other tables and
linking the tables logically.

An example of misplaced dependency is a customer orders table where the
key is the combination of customer number and order number, and the other
fields are the customer name and address, and the order date, quantity, and
amount. All these fields depend on the customer number; but, whereas order-
specific data like quantity and amount must indeed be included in each
order, fixed customer data like name and address must not. This design is
wrong because, while a customer’s name and address are the same for all his
orders, we repeat them in every order. The faulty design, thus, will cause data
redundancy. Worse still, it will cause various inconsistencies (“anomalies,” in
relational terminology) when we run the application: first, if a customer’s name
or address changes, we may have to update not one but several rows – all his
outstanding orders; second, we can store a customer’s name and address in the
database only if that customer has at least one outstanding order.

The solution, of course, is to store the name and address in a separate table,
where the key is the customer number and there is only one row per customer.
From the order rows we can then access the appropriate name and address by
using the customer number as link. The process of normalization, thus,
consists in creating two tables from one. In general, we eliminate a misplaced
dependency by increasing the number of tables: we extract the fields with
repeated values and place them in a separate table, where we discard the
duplicate rows; then we choose a field (or a combination of fields) with unique
values to act as a key for the new table and as a link to the original one.

The redundancy and inconsistencies were caused, obviously, by an incorrect
design – a design that did not match the application’s requirements: the name
and address are the same for all orders, and yet we repeated them in every
order. With the fields in a separate table, the design matches the requirements,
and consequently there is no redundancy or inconsistency.
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The normalization theory, however, describes the problem of incorrect
design as a problem of misplaced dependency: the name and address depended
on only a portion of the key (the customer number), instead of depending on
the whole key (the combination of customer and order numbers), as do the
order date, quantity, and amount. And we correct this dependency by placing
the name and address in a separate table – a table where the customer number
is the whole key. Clearly, what we do is the same as before, match the design to
the requirements; but the normalization theory describes this process as the
elimination of misplaced dependencies.

Few people would design a database with the kind of redundancy we have
just examined. The theorists, nevertheless, treat the subject of normalization
very seriously. Various types of field dependencies are defined and studied in
great detail, along with the steps required to eliminate them. Thus, five types
were discovered, each one more rare and more subtle. Tables, we saw, are
already in first normal form when their fields are single elements. Then, after
eliminating one type of dependency, they are in second normal form (2NF).
After eliminating a second type, they are in third normal form (3NF). This
is followed by a level known as Boyce/Codd normal form (BCNF), and
then by the fourth and fifth normal forms (4NF and 5NF). When in fifth
normal form, tables are in the ultimate relational format, devoid of any
misplaced dependencies. Very few databases, however, require all five levels of
normalization. If an application is not complicated, tables will likely be in their
highest possible normal form after just one or two levels, simply because there
are no other dependencies. In any case, many experts consider 3NF or BCNF
adequate, and don’t even mention 4NF and 5NF.

The second and higher normal forms are in reality very similar, and their
differences need not concern us here. The reason for having several types of
normalization and a numbering system is largely historical: while the first
normal form was described by Codd in his original papers, the others were
incorporated into the relational theory later – as they were discovered, one by
one. (More specifically, the higher normal forms became necessary when
the relational model was expanded to include updating operations.) Thus, it
is worth noting that the theorists needed several years, and innumerable
papers and conferences, to discover what an experienced programmer could
have told them from the beginning. For, the problems caused by misplaced
dependencies, as well as their solutions, are identical in relational databases
and in databases created with traditional data files; only the attempt to treat
these problems formally is new. We will return to this subject later, in our
discussion of the relational delusions.
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The Contradictions

The Contradictions
1 1
To summarize, the relational model is an attempt to turn database program-
ming, as well as database use, into an exact, formal activity. Since data records
resemble the so-called tuples of predicate calculus, and since they can be
manipulated with operations resembling logical operations, the theorists
concluded that the rigour and exactness of mathematical logic can now be
attained in database work. All we have to do is restrict the files and records to
a certain format, and restrict the operations to a high level of abstraction; we
have then a mathematical guarantee that the answers to queries will reflect
accurately the data and relationships present in the database.

From the start, then, the relational theory was grounded on the curious
principle that only some aspects of the database need to be covered by the
formal, mathematical model; the others can remain informal. This principle is
sometimes expressed with the statement that certain aspects lie within the
scope of the formal model, while others are outside its scope. Thus, if we call
“relational model” the whole body of relational principles and features, the
“formal relational model” constitutes only a small part of it.

Within the scope of the formal model lie, as we just saw, the format of files
and records, the concept of queries, and the use of high-level query operations.
The theorists recognize, of course, that there is a lot more to databases and
applications. So, while asking us to treat these aspects formally, they expect
us to deal with the other aspects of the database informally: by relying on
traditional programming methods and on personal skills.

In particular, operations that update the database – adding and deleting
records, modifying the data in fields, creating and deleting files – cannot be
treated formally, and therefore lie outside the scope of the formal model. Note
that this is a necessary consequence of the model’s mathematical foundation:
predicate calculus is concerned with the logical expressions that use the tuples
of a given relation, not with the way the tuples became part of that relation, or
with the way the elements of these tuples acquired their current value. Thus, if
the updating of tuples and relations lies outside the scope of predicate calculus,
it must also be left out of the formal relational model.

Data normalization, too, is largely informal. Only the first normal form,
which deals with the record format, is part of the formal model. The second
and higher normal forms are only needed in order to prevent redundancy
and inconsistencies when updating the files; thus, if the updating operations
are informal, so must be the normalization. In any case, the process of
normalization entails an interpretation of the application’s requirements:
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whether or not a certain field depends on another can be determined only from
the way we intend to use them in the application, something that no formal
system can know.

Another aspect of the database that cannot be formalized concerns data
integrity – the countless rules that ensure the validity of the updating operations
within the context of a particular application. Again, what is valid in one case
may be invalid in another, and only we can decide how to interpret the result
of a certain operation.

Lastly, the formal model does not include the means we use to specify the
query and updating operations. These means – a set of commands, or a
database language – can only be used informally. As is the case with any
programming language, we can define with precision the commands or
statements themselves, but not their effect when combined to perform a
particular task in a given application.

In conclusion, the updating operations, the normalization process, the
integrity rules, and the database language, even though needed in any applica-
tion that uses relational databases, lie outside the scope of the formal relational
model. So they can be no more formal or exact than they are in applications
using traditional data files.

What, then, is the meaning of the relational model? What is the point,
for instance, of including in the formal model the query operations while
excluding the updating operations? Clearly, the two types of operations
are equally important in an application. What is the value of a model that
guarantees correct answers to queries while being unable to guarantee the
correctness of the data upon which the queries are based?

The theorists acknowledge that the formal model is insufficient, that we
must depend on some informal operations too, but they fail to appreciate the
implication: if we must deal with certain aspects of the database by relying
largely on personal knowledge, the inexactness of this method will annul the
exactness of those aspects treated formally. The result of a process cannot be
more exact than the least exact of its parts. The answer to a query may well
be mathematically derivable from the original data, but this quality of the
relational model has little value if we cannot prove that the original data is
correct to begin with.

�

We just saw how, in order to attain a practical relational model, the theorists
were compelled to separate it into a formal and an informal part. But this is
not all. There is one aspect of the database that is considered to lie, not only
outside the scope of the formal model, but outside the scope of the relational
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model altogether: the actual, physical implementation of the database and
operations.

Like the logic system that inspired it, the relational model is a mathematical,
and hence abstract, concept. This limitation, however, is interpreted by the
theorists as a quality: thanks to its abstract nature, they say, we no longer need
to be concerned with such issues as the system’s performance (the time required
to execute the database operations). In general, the independence of the
logical database structures from their physical implementation permits us to
access the data from a higher level of abstraction. Here are some statements
expressing this view: “The ideas of the relational model apply at the external
and conceptual levels of the system, not the internal level. To put this another
way, the relational model represents a database system at a level of abstraction
that is somewhat removed from the details of the underlying machine.”É

“The eight relational operators express functionality without concern for
(or knowledge of) technical implementation. An obvious benefit is that
relational users apply relational operators without concern for storage and
access techniques.”Ê “The aim of the relational model is to represent logically
all relationships, and hence alleviate the user from physical implementation
details.”Ë “The relational data model removes the details of storage structure
and access strategy from the user interface.”Ì

The operations of a mathematical system are assumed to occur instantane-
ously; we don’t think of addition or multiplication, for instance, as physical
processes that may take some time. Similarly, the high-level operations of the
relational model – selection, projection, join, and the rest – are assumed to be
executed instantaneously by the database system. Incredibly, while presenting
the relational model as the foundation of practical database systems, the
theorists insisted that the subject of performance lies outside the scope of
the model. Everyone knew, of course, that the application’s performance is
limited by the speed of the computer’s processor, and that databases rely on
physical devices like disk drives, which impose additional speed limits on data
access. Nevertheless, the claim that it is possible to design real databases
without having to concern ourselves with their performance was received with
enthusiasm. All we need to do, promised the theorists, is specify the relational

É C. J. Date, An Introduction to Database Systems, 6th ed. (Reading, MA: Addison-
Wesley, 1995), p. 98.

Ê Candace C. Fleming and Barbara von Halle, Handbook of Relational Database Design
(Reading, MA: Addison-Wesley, 1989), p. 38.

Ë M. Papazoglou and W. Valder, Relational Database Management: A Systems Program-
ming Approach (Hemel Hempstead, UK: Prentice Hall, 1989), p. 30.

Ì Ken S. Brathwaite, Relational Databases: Concepts, Design, and Administration (New
York: McGraw-Hill, 1991), p. 26.
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operations, just as we do in mathematics. The database system will analyze the
request, determine the most efficient implementation, and then execute the
necessary low-level operations.

Separating the performance issue from the relational model is just as
illogical as separating the updating operations from the query operations. It
shouldn’t come as a surprise, therefore, that the relational database systems
have proved to be incurably slow, and that, in addition, their users have
remained as preoccupied with the performance issue as those who use the
traditional file operations.

It is absurd to expect the database system itself to know what is the
most efficient implementation of a high-level request. It is absurd because
most requests do not depend on database structures alone, but also on such
other structures (i.e., aspects) of the application as its various processes
(see pp. 345–346). To discover the most efficient implementation we must link,
therefore, the database structures with the other structures that make up the
application. These links, moreover, occur usually at the low level of database
fields, memory variables, and individual statements; so the only way to
implement them is through traditional programming means.

The inefficiency caused by the lack of low-level links, then, was the main
reason for the continued preoccupation with the performance issue. And this
inefficiency was also the reason for annulling, in the end, two fundamental
relational principles: the restriction to normalized files, and the restriction to
high-level operations.

�

We know, of course, why the theorists separated the relational model into
formal and informal aspects: because this is the only way to attain a precise,
mechanistic representation of the database and the database operations. If we
want to represent an indeterministic phenomenon with a deterministic theory,
we must exclude from the phenomenon those aspects that prevent such a
representation.

Thus, we can start with any phenomenon, no matter how complex, and
invent an exact theory – a mathematical model – that depicts what we wish
the phenomenon to be. Then, we match the phenomenon to the theory by
eliminating, one by one, those aspects that contradict the theory – by branding
them as “informal” parts of the phenomenon. If we eliminate enough aspects,
we are certain to reduce the phenomenon eventually to a version that is simple
enough to match the theory.

But this is a trivial accomplishment – we knew all along that it could be
done. It is impossible, in fact, to fail in this project, if we place no limit on the
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number of aspects that we are willing to eliminate. Mechanistic projects of this
nature are, therefore, intrinsically pseudoscientific. This is true because the
concept of separating the phenomenon into aspects that are, and aspects that
are not, within the scope of the model is unfalsifiable: since we are free at any
moment to exclude any number of additional aspects in order to make the
model work, there is no condition under which we can say that a mechanistic
model cannot be found.

The issue, then, is not whether we can find a mathematical model for
the phenomenon of a database, as this is always possible by simplifying the
phenomenon. Rather, the issue is whether, by the time we simplify the phe-
nomenon sufficiently to have an exact model, such a model is still meaningful.
It is quite easy to discover mathematical models for individual aspects of
software phenomena. The theorists happened to discover a database model
grounded on predicate calculus, but with a little imagination we could find
any number of other models. The real challenge, again, is not to discover a
mathematical model by simplifying the phenomenon, but to discover a useful
model for the original, complex phenomenon.

So, like all mechanistic delusions, the relational model failed because its
mathematical foundation is insignificant: we can represent mathematically
only a small fraction of the concepts involved in programming and using a
database. If we were to rely on the original relational model, we would perhaps
enjoy the promised benefits, but only with small and simple databases; we
would be unable to develop the kind of databases we need in real applications.

Having failed as a practical concept, the relational model was rescued by
expanding its informal aspects – precisely those aspects that had been excluded
from the formal, mathematical model. The early works discuss in detail the
formal model, including the various types of query operations, but mention
only briefly the informal aspects – the updating operations, the integrity
and performance problems, and the database language.Í These aspects are
presented merely as miscellaneous features needed to support the formal
model in actual applications. In the end, however, it is precisely these features
(the database language, in particular) that became the main concern of
relational database systems, while the formal model declined in importance
and became practically irrelevant.

Specifically, the restriction to normalized files and the restriction to high-
level operations were both lifted; and no one, of course, is using databases
through mathematical logic. Today’s relational systems are promoted by
praising the power of their programming language (usually SQL), the power of

Í See, for example, Codd’s original paper, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, no. 6 (1970): 377–387. The other informal
aspect (the second and higher normal forms) is not mentioned at all.
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certain features described as integrity functions (but whose true role is to
bypass the limitations of the high-level operations), and the power of a variety
of new data formats and low-level file operations. In other words, while the
power of the original model was said to derive from its formal, mathematical
foundation, the power of what is seen today as the relational model derives
entirely from informal concepts – concepts that are practically identical to the
traditional ones. We will analyze this degradation in “The Third Delusion.”

2

2
When studying the relational model and its evolution from a mechanistic
fantasy to a pseudoscience, we can distinguish three major delusions. These
delusions are summarized below; then, in the following subsections, we will
study them in detail.

The first delusion is the belief that the relational model’s mathematical
background is an important quality. It is true that the model is grounded upon
certain mathematical principles, and that these principles guarantee the
soundness of certain database operations. But this quality constitutes an
insignificant part of the phenomenon of a database: we can ground a database
on mathematics only after limiting the data to a certain format, after separating
the database from the rest of the application, and after restricting its use
to queries expressed through high-level operations. Important aspects –
the operations that modify the database, and the links to the rest of the
application’s logic – are not included in the mathematical model. Thus, we must
deal with the most difficult aspects of database programming informally, just
as we do when using the traditional file operations.

The second delusion is the belief that the principles of normalization are
an essential part of the relational theory. In reality, data normalization is a
totally useless concept, even within the relational model. It is a contrived
theory that attempts to eliminate data redundancy and inconsistencies by
identifying misplaced field dependencies. But misplaced dependencies occur
only in an incorrectly designed database. So, in order to justify the need
for normalization, the theorists ignore the application’s requirements and
deliberately create an incorrect database; then, they use normalization to
convert it into a correct one. The theorists also delude themselves when
claiming that they have turned database design into a formal, exact procedure.
All they do, in fact, is discuss formally their invention, the various types of field
dependencies; the design problem itself has remained as informal as before.

The third delusion emerged when the relational model was found to
be impractical. In order to reduce them to a mathematical representation,
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the database format, relationships, and operations were simplified so much
that very few actual requirements could be implemented. Consequently, the
theorists were compelled to “enhance” the model. And this consisted in
restoring, one by one, those features that had been eliminated in the first two
delusions in order to attain the exact, formal representation. By the time
the model was versatile enough to be practical, there was nothing left of the
preciseness of the original theory, not even in that narrow domain where the
database operations had indeed been mathematical. The third delusion, thus,
is in the belief that the original restrictions are not really necessary; in other
words, the belief that we can enjoy the benefits of an exact theory without
having to adhere to its principles.

Historically, the first two delusions can be said to make up the original idea,
while the third one emerged when trying to implement that idea. The first two
are a manifestation of the mechanistic fallacies; that is, attempting to represent
a complex phenomenon with simple structures. And the third one is the
consequence of this attempt. Since the only way to save a fallacious theory from
refutation is by making it a pseudoscience, the software experts rescued the
relational model by turning its falsifications into what they describe as new
relational features. But what they are doing is merely to restore those features
which they had eliminated previously in order to make the theory mechanistic.
So, if the first two delusions demonstrate the naivety of the software experts,
the third one demonstrates their dishonesty: they continue to praise the
benefits of the relational model even while annulling the relational concepts
and replacing them with the traditional ones.

�

The relational database theory is an excellent example of what I have called the
new pseudosciences. Even better than structured programming or object-
oriented programming, it can serve as a model of the modern mechanistic
delusions.

Recall how these delusions evolve. The scientists start by noticing one aspect
of a complex phenomenon; so they extract, from the system of structures that
make up the phenomenon, the structure depicting that one aspect. Then,
they enthusiastically announce a formal, mathematical theory based on this
structure alone – claiming, in effect, that a complex structure can be reduced
to a simple one. A further benefit of having only one structure, they say, is that
we can choose our starting elements from higher levels of abstraction – an
expedient that makes it even easier to represent the phenomenon.

But the theory does not represent the phenomenon accurately enough to be
useful. So, instead of trying to understand the reason for its failure, the

the contradictions 713chapter 7



scientists decide to “improve” it: they suppress the falsifications by reinstating,
in the guise of new features, the very features they had previously excluded –
features that must indeed be excluded if we seek a mechanistic theory. The
purpose of the new features, thus, is to restore some of the original structures,
and the links between them. In the end, the theory becomes useful only when
enough of the old features are reinstated to allow us to represent the entire
complex phenomenon again; that is, when we are allowed to represent it
informally, the way we always did. The scientists, though, continue to praise
the exact, mechanistic qualities of their theory – even as everyone can see that
what made the theory useful is the annulment of these qualities, and their
replacement with complex, indeterministic ones.

The First Delusion

The First Delusion
1 1
The first delusion is the belief in the mathematical merits of the relational
model. For more than thirty years, we have been hearing the claim that the
relational model is based on mathematical logic, and therefore relational
databases benefit from the rigour and precision of mathematics. Although few
people actually understand the connection between databases and mathemat-
ics, no one doubts this claim. After all, the mathematical benefits are being
praised, not just by the vendors of relational systems, but also by university
professors, database experts, and professional computer associations. In this
subsection I want to show, however, that the claim is a fraud: relational
databases do not benefit at all from mathematical logic.

�

Mathematical systems, which include logic systems, are artificial models
invented by us in order to represent with precision various aspects of the world.
It is not difficult to invent a mathematical system (see pp. 694–695). Essentially,
we define its basic elements, the operations that combine elements from
one level of complexity to the next, the rules that control the use of these
operations, and the axioms (those assumptions taken by convention to be
valid assertions). We can then build increasingly complex expressions and
theorems by combining elements on higher and higher levels. For the system
to be useful mathematically, it must be consistent: no contradictions should
be possible between the expressions or the theorems derived within the
system. The basic elements vary with the system: numerical values for the
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classical mathematical systems, or subjects, predicates, and propositions for
the logic systems.

The more elaborate the system, the more complex its elements and opera-
tions. Differential calculus, for example, is more complex than arithmetic or
algebra. Since mathematical systems are simple hierarchical structures, a
higher complexity means only that the system can have more levels, and more
intricate elements at the higher levels, within one structure. While still a simple
structure, though, a more elaborate system allows us to represent more difficult
phenomena.

To use a mathematical system as model, we start by translating the entities
and processes that constitute the phenomenon into the entities and operations
permitted by the system. Once this is accomplished, we can study the phe-
nomenon by working strictly with the mathematical concepts. We create
expressions and higher-level elements, manipulate them in various ways, and
finally translate the results back into real entities and processes. With this
method, we can explain and predict events that may be difficult or impossible
to study directly.

A classic example of a mathematical model is Newton’s theory of gravitation:
if we represent with mathematical entities and operations the bodies that make
up the solar system, their state at a given instant, and the natural laws that
govern their motion, we can determine with accuracy their position at any
other instant in the past or in the future. Clearly, it would be impossible to
accomplish this without a mathematical model.

Imagine now a trivial system, a small subset of traditional mathematics: the
basic elements in this system are integers, and the only operations are addition
and subtraction. Thus, since expressions are limited to these two operations,
the most complex elements possible are still integers. And, even though
the system permits any number of levels and hence increasingly complex
expressions, because of its simplicity it is unlikely that we will ever need more
than a few levels. Nevertheless, while simple, this system is not without
practical applications; we can employ it, for example, to create accounting
models (if we agree to use only whole dollars). The chief difference between it
and the mathematical systems of science and engineering is that the latter
reach much higher levels, and much more complex elements and operations.É

Turning now to the relational model, we find a modification of the logic
system known as predicate calculus. To this system, features like record keys
and field names were added in order to adapt it for database work. The simplest

É It is worth stressing again that the term “complexity,” when used with the simple
structures of mathematical and logic systems, refers to levels of complexity (also known as
levels of abstraction), and it must not be confused with the complexity of complex structures
(which is due to the interaction of several simple structures).
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elements in the relational model are the fields – called now columns, or
attributes. Fields are combined to form records – called now rows, or tuples;
and records are combined to form files – called now tables, or relations.
Relations can then be combined into expressions by means of standard logical
operations (AND, OR, and NOT) and some new, more complex operations (UNION,
DIFFERENCE, SELECTION, PROJECTION, and PRODUCT). Relations can be combined
in this manner to form increasingly high levels, but the result is still a relation.
Relations, thus, are the most complex elements in a relational system. Although
more intricate than our system of integers and two operations, it is still very
simple – far simpler than the mathematical systems employed in science and
engineering.

And herein lies the explanation for the first delusion, why the mathematical
background of the relational model is irrelevant. It is true that the relational
entities and operations can be defined rigorously, with the same methods
and notation we use in mathematics. But this preciseness is specious. The
relational definitions resemble perhaps the definitions found in the traditional
mathematical systems, but, because the relational model is such a simple
system, its formality is superfluous, even silly.

The operations of a mathematical system, and the rules that govern the use
of these operations, determine how the elements that make up one level are
combined to form the elements of the next level. These combinations become
the theorems and expressions possible in the system, and, ultimately, the
mathematical representation of a phenomenon when the system is used as
model. A formal definition of entities, operations, and rules is important in the
traditional systems, therefore, because this formality is our only guarantee that
the theorems and expressions remain valid as we move to higher levels of
complexity. But if in a relational system all we have is some simple elements
and operations – some simple transformations of one file into another, or of
two files into one – and if we rarely need more than a few levels, the formality
is hardly necessary. The concept of files, records, and fields is so simple that we
can accomplish the same tasks using nothing more than personal skills.

�

Let us divide the use of a mathematical system into two parts, translation
and manipulation. The translation is the work required to convert into a
mathematical representation the entities and processes that make up the
phenomenon, and to convert the mathematical entities back into real entities
and processes. The manipulation is the work performed within the system,
with the mathematical entities alone.

When praising the power of mathematics, it is the manipulation that we
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have in mind, not the translation. The translation – an effort to represent a
complex world with a neat, artificial system – is necessarily informal, and
cannot benefit from the exactness of the mathematical system itself. Thus,
there is no way to guarantee that we selected the right system and operations to
model a particular phenomenon, or represented the phenomenon accurately,
or interpreted the results correctly. All we have to guide us in the translation is
our skills.

To take a simple example, we can use mathematics to model the relationship
between the speed of a car and the distance traveled in a period of time. All we
need to do is represent these entities with appropriate values, perform the
operation of multiplication or division, and then translate the result back into
an actual entity. So, if we know the car’s speed, the mathematical model lets
us predict the distance it will travel in a given period of time, or the time
required to travel a given distance. But mathematics cannot verify for us that
we employ the formulas correctly. It cannot stop us, for instance, from using
an incorrect speed, or from measuring the speed in miles per hour and the
distance in kilometers. We praise the power of mathematics to predict the
distance or time, but, in reality, mathematics only guarantees that the higher-
level element (the result) is indeed the product or quotient of the two elements
we started with.

No mathematical system can also be a substitute for the expertise required
to use it. Although no less important than the system itself, the work involved
in using it – particularly the translation from real entities into mathematical
ones and back – is largely informal, and hence open to errors despite the
exactness of the system.

In relational systems, we saw earlier, this problem led to the separation
between the formal and the informal aspects – those aspects deemed to be
within, and those deemed to be outside, the scope of the formal model.
The formal aspects, we see now, correspond to the manipulation, while the
informal ones form the translation. The manipulation includes the definition
of fields and tuples, and the query operations. And the translation includes
everything else: the updating operations, the normalization, the integrity rules,
and the database language. This separation is artificial, of course, since all
aspects of the database are equally important. But it is inevitable if we want to
have a mathematical model: if we must exclude from the model any database
aspect that is too complex to treat formally, that aspect is bound to end up as
part of the translation, where we can deal with it informally.

This limitation – the need to treat the translation informally – is inherent
in all mathematical systems. No matter how rigorous and exact is the manip-
ulation, we depend largely on personal skills when selecting a particular
system for a given phenomenon, and when translating the real entities into
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mathematical ones. And the relational model is no different. What makes
it silly, then, is not this limitation, which is universal, but the fact that it
consists almost entirely of the informal translation. In the end, what is for the
traditional mathematical systems the ultimate purpose – the formal, exact
manipulation – plays in relational systems an insignificant part.

2

2
Recall the predicate calculus system, the logical foundation of the relational
model. A logical expression like P(x,y,z) describes the tuples of elements x, y,
and z related through predicate P. When we substitute actual values for the
three elements, the expression will be evaluated as True for some tuples and
False for others. We retain then, usually, the set of tuples for which the
expression is true (a relation); and, using logical operations, we combine it
with other sets, which are based on different predicates and elements. Such a
combination is an expression that describes a new set of tuples – a set that
relates in a different and perhaps more complex way the elements of the
original tuples. The new set may then be combined with others, and so on, to
create higher levels of complexity.

Like all logic systems, predicate calculus is concerned with the structure of
variables and expressions, not their meaning. All it can guarantee is that, if we
restrict ourselves to combinations based on the operations permitted by the
system, the result of each combination will be correct within the definition of
the system. Thus, if we know that the tuples in the original sets are true, we can
determine with certainty, level after level, whether those in the resulting sets
are true or false.Ê The system guarantees the validity of the manipulation, but
the translation remains our responsibility: it is up to us to determine – by
means external to the system – whether the tuples we start with are true or
false, and whether the expressions that define the tuples, along with the
operations that combine them from one level to the next, match the relations
between the entities we want to model in that system. A logic system, in the
end, is only a tool. It is up to us to judge whether it is the right tool in a given
situation, and to use it correctly.

The fallacy, thus, lies in the belief that if the database model resembles a
logic system, database work will become an exact, mathematical activity. In
reality, this new tool is inappropriate for database programming, because the

Ê Strictly speaking, it is not the tuples that are true or false, but the result of the logical
expression that defines the tuples; the more accurate description, though, would make these
sentences too complicated.
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database structures are closely linked to the other structures that make up the
application. Mathematical and logic systems can only model phenomena that
can be represented with a simple structure. So their ability to model database
structures has little value if these structures must interact with others.

Like the predicate calculus system, a relational system guarantees only that
the sets of tuples generated from the previous ones, as we move from one
level to the next, are correct within the system’s definition. The elements are
now fields, the tuples are records, the sets of tuples are files, and the logical
expressions depict combinations of files or portions of files. The database and
the relational operations can be represented, therefore, with the same formality
and preciseness we enjoy in predicate calculus. An expression like F(a,b,c)
defines a file by stating that the fields a, b, and c are related through the
predicate F. When actual values are stored in these fields, the expression will
be true for some tuples (i.e., records) and false for others; and the actual file
consists of those tuples that are true.

In other words, we use simply the existence of the tuple to determine the
truth or falsity of the expression that defines the tuple: a tuple is deemed “true”
if it currently exists as a record in the file, and “false” if it does not. Thus, the
definition of truth and falsity in a relational database is merely a convention.
The convention states in effect that the data in the original files is valid by
default, simply because the records present in the file are deemed to be
“true.” The absurdity of this convention is the root of the relational model’s
mathematical delusion, as we will see in a moment.

The relational operations are designed to create a new set of tuples from one
or two existing sets; that is, to create a new file by selecting and combining
records (or portions of records) from one or two existing files. So, if we
restrict ourselves to the relational operations, the validity of the existing data
guarantees the validity of the combinations: since the original records are true
by default, the records in the new file will also be true. The new file can then
be combined with others to create a higher level of complexity, and so on. No
matter how we use the relational operations, we can be sure that the final result
will reflect the data we started with. There can be no false records in the
resulting files, because there were no false records in the original ones.

�

It should now be obvious why logic systems are inappropriate as database
models. A logic system like predicate calculus cannot control the addition and
deletion of tuples in the original sets, nor the modification of their elements.
All it can do is create new sets of tuples from existing ones; that is, read the
original data. And if predicate calculus is limited to reading its data, so must
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be the relational model. With a database, the limitation to reading is, of course,
the limitation to queries. So the fact that the relational model is limited to
queries follows necessarily from its logical grounding. In general-purpose
applications, though, adding, deleting, and modifying records are as important
as queries. It is absurd, therefore, to ground a database system on predicate
calculus.

The great weakness of the relational model, then, is the need to ensure by
informal means that the original tuples are true. Since it is the truth or falsity
of each tuple that determines whether it can be a record in the file, what is
merely the truth value of a logical expression in predicate calculus becomes the
critical issue of data integrity in a relational system. This means that, before we
add a new record to a file, we must ensure somehow that the record is true;
similarly, when we modify the data in an existing record, we must ensure that
it continues to be true; and before we delete a record, we must ensure that it is
indeed false.

But the only way to perform these validity checks is by accessing the tuples
from outside the relational model, with traditional programming methods.
The software theorists underrate the significance of this weakness: they
casually say that the database modifications and the associated integrity issue
lie outside the scope of the formal model, as if this limitation were just a minor
implementation detail.

Clearly, what the model offers us – the assurance that the files resulting from
relational operations are correct if the original ones are – is meaningful only if
we can be sure that the data in the database is correct at all times. But the values
stored in database fields are not right or wrong in an absolute sense. Their
validity can only be assessed within the context of the running application; that
is, by performing certain operations that link the database structures with
some of the other structures that make up the application. The database is one
aspect of a complex structure, and the validation process cannot be represented
with a formal, mechanistic model.

So, if the validation is an informal, error-prone process, how can anyone
claim that the relational model guarantees the correctness of the resulting files?
All it can guarantee is that the data in the resulting files reflects accurately the
data in the original ones. Consequently, the validity of the resulting data can
be no more certain than the validity of the original data. And ascertaining that
validity is no different in a relational system than it is for traditional data files.
Thus, since the ultimate precision of a system is limited by its least precise part,
the belief that a relational database is more precise than a traditional one is a
delusion.

Here are some of the mistakes that can be committed in applications based
on a relational system – mistakes that would not be detected by the system:
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adding a new record that has invalid values in fields like address, phone
number, price, or part description; placing invalid values in the fields of an
existing record; retrieving a part record using the vendor number as part
number (record keys for parts, vendors, employees, customers, etc., may well
share a common range of values, so this mistake would not result in an invalid
key, and the wrong record would indeed be retrieved); adding the quantity
purchased to the quantity in stock of a part, instead of subtracting it; deleting
a record that must not, in fact, be deleted – and, generally, omitting a record
that should be in the file (the convention that the records present in the file are
true does not imply that all those not in the file are false, so the model cannot
determine which records are missing).

The reason a relational system does not prevent us from performing
such operations is that, within the relational model, these operations are
perfectly correct. The only way to discover the mistakes is by performing these
operations together with some other operations, which take into account both
the database structures and the other aspects of the application; in particular,
the business rules implemented in the application. In other words, we can only
discover the mistakes by checking the data from outside the model.

It is not surprising, therefore, that the relational model had to be “enhanced”
with informal means that allow us to discover such mistakes. We will study
these enhancements under the third delusion, but it is worth noting at this
point that, despite some new and impressive terminology, what we are doing
with the new features – linking the database structures with the other structures
of the application – is exactly what we had been doing all along, in a much
simpler way, with ordinary programming languages.

3

3
Let us return to the formal model. To explain the relational theory, textbooks
give us page after page of definitions and expressions in mathematical logic.
Yet, as we just saw, this formality and preciseness cannot stop us from commit-
ting outrageous mistakes. No matter how rigorous the relational model is from
a mathematical perspective, the only part that is formal and precise is the
definition of database entities and operations; specifically, how we combine
tuples into files, and files into other files, as we move from one level of
complexity to the next. And these entities and operations are so simple that we
can use them just as effectively without the formal definitions.

Recall the simple system that can handle only integers and two operations,
addition and subtraction. In this system, all that mathematics does is ensure
that the integer of the next level is indeed the sum or difference of the integers
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of the current level. Thus, the formal definitions in such a system offer very
little beyond what we can accomplish using just common sense. For, we can
also add and subtract integers correctly by replacing the formal definitions
with an informal method, and carefully following that method. Because this
system is so simple, the formal and the informal alternatives are equally
practical. Even more importantly, the formal system cannot prevent us from
committing such mistakes as using wrong values when translating an actual
phenomenon into integers, or adding two integers when in fact we ought to
subtract them. Whether we choose the formal system or an informal method,
we must deal with these problems informally.

And the same is true of the relational model. All that mathematics does is
assure us that each operation combines elements just as its definition says. It
assures us, for example, that the selection operation indeed selects the specified
records. Thus, an expression like G(a,b,c) = F(a,b,c) AND a>k defines a selection
operation by saying that the new file G includes those tuples (a,b,c) which
satisfy two conditions: they are true (i.e., are actual records) in file F, and the
element a is greater than a certain value k. This formal definition is very
impressive, but it is also very silly. Because record selection is such a simple
concept, we can easily perform this operation by relying on common sense
alone: we describe informally what we mean by record selection, and then
carefully implement this concept using the basic file operations and a pro-
gramming language (see figure 7-13, p. 680).

All mathematical systems appear silly, of course, if we study only the low
levels. The low-level elements and operations are usually simple enough to
understand intuitively, so the rigour and preciseness of their definition appear
superfluous. But there is a reason for this formality. In serious mathematical
systems there are many levels of complexity. We always start with simple
elements, but we combine them so many times that we end up with very
intricate ones at the higher levels. Since the elements and operations at these
levels can no longer be understood intuitively, the formal definitions are our
only assurance that the system functions correctly.

In a simple system, on the other hand, the elements do not increase in
complexity as we move to higher levels, so there is no benefit in combining
them more than a few times. With a simple system, therefore, we rarely create
more than a few levels, and we can only model simple phenomena. In the
system of integers and two operations, for instance, the sum or difference of
two integers is still an integer. And there aren’t many applications where all we
need is to add or subtract integers while repeating these operations endlessly,
level after level. Applications that require many levels also require an increase
in the complexity of elements and operations.

In the relational model, too, the same type of elements (tuples and files) and
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the same type of operations (SELECTION, UNION, PRODUCT, etc.) are found at both
the lowest and the highest levels. And as a result, there is no benefit in
combining elements more than a few times. Thus, few requirements involve
more than three or four files, or more than three or four operations, in the
creation of a new file. It is difficult to imagine a situation where we have
to perform a series of a dozen selections, products, and projections, each
operation starting with the result of the previous ones.

The software theorists claim that the relational model offers benefits similar
to those of the traditional mathematical systems, but this is not true. In science
and engineering we start with simple elements like integers, and simple
operations like addition, but after many levels we end up with such concepts as
calculus and analytic geometry. The complexity of the elements, as well as the
complexity of the operations, keeps increasing as we move to higher levels.
With the traditional mathematical systems, therefore, we derive important
benefits when adding levels; in particular, the higher complexity permits us to
model more complex phenomena. Evidence of these benefits is also found in
that the formality and preciseness are now critical: unlike the selection of
records in a database, we can hardly replace concepts like differential equations
with methods based on common sense alone.

In the relational model, it is the restriction to high-level operations that
prevents us from using more than a few levels. Software applications do have
many levels of complexity, starting with simple entities like statements and
database fields, and ending with the logic of a whole business system. But these
are not the levels of a simple structure. Unlike mathematical systems, which
can be represented with one structure, software applications comprise many
structures – structures that must share their elements if they are to model our
affairs accurately. And it is often low-level elements like statements and
database fields that must be shared.

Among these structures are also the database structures, but with a rela-
tional system the lowest-level elements that can be shared are the files. If we
take the fields, records, and files to be the three lowest levels of a database
structure, the relational operations only permit us to access files. Starting with
files we can then create even higher levels – that is, further files. But the
interactions with the other structures are not as versatile as those we could
create by starting with records and fields. Most interactions, in fact, are now
too awkward or inefficient to be practical.

Thus, we see no benefits in creating more than a few levels of relational
operations, not because we do not need higher levels, but because the restric-
tion to operations on whole files prevents us from creating the combinations
of software entities needed to attain those levels. This is why the original model
was useless, and why the features added later serve mainly to bypass the
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restriction to whole files: they restore the means to link the database structures
to the rest of the application through lower-level elements (through individual
records and fields), thus permitting more alternatives at the high levels.

4

4
With any mathematical system, we must perform the translation in order to
attain the precise format required for the manipulation. But in itself the
translation is a detriment: not only does it constitute additional work, but its
informality detracts from the exactness of the manipulation. We can justify the
use of a mathematical system, therefore, only if the manipulation confers
significant benefits; that is, if it permits us to perform some important and
difficult tasks. And this is indeed the case for the mathematical systems used
in science and engineering: the manipulation in these systems is very elaborate,
with many levels of complexity, while the translation may be as simple as
converting things like weight, voltage, or time into numerical values.

In a relational system, the opposite is true: the manipulation is trivial, and
it is the translation that ends up very elaborate. In order to have a mathematical
database model, the part that is the manipulation had to be restricted so much
that it involves in the end only trivial mathematics. The most difficult aspects
of database programming – updating operations, integrity rules, the second
and higher normal forms, the database language – were left out of the model
and became part of the translation. They were left out, not because they do not
entail manipulation, but because that manipulation cannot be represented
mathematically.

So the manipulation includes only queries, and the queries permit only
high-level operations on whole files. In any case, these queries are so simple
that they can be implemented without mathematics. The basic file operations,
we saw earlier, allow us to scan and relate files, and to select records and fields.
Thus, the operations permitted by the relational model – selection, union,
product, and the rest – can be easily programmed with ordinary iterative and
conditional constructs.

To deal with those aspects of the database that make up the translation,
and which were left out of the formal model, we need programming skills.
So in the end we use the power of mathematics for the relatively simple
manipulation, which hardly requires a formal system, while depending on
informal programming methods for the difficult tasks.

Unlike the mathematical systems used in science and engineering, then, the
relational model confers no benefits. In the traditional fields, mathematics
permits us to accomplish tasks that are impossible without a formal system; so
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the translation, with its drawbacks, is worthwhile. Relational mathematics,
on the other hand, is so simple that it can be replaced with a few lines of
programming; so the drawbacks of the translation exceed the benefits of the
manipulation. The idea behind the relational model is, therefore, senseless.
What is the point in seeking a formal system for the query operations, if all
the work required to prepare the database for these queries must remain
informal? Since we must continue to depend on programming for the difficult
translation, we may as well use programming also for the relatively simple
manipulation.

The theorists promote the relational model by pointing to its mathematics,
and implying that it provides the same benefits as the models of science and
engineering. But if the relational model uses only trivial mathematics, the
claim is a fraud. In reality, very little of the phenomenon of a database is
amenable to an exact, mechanistic representation. Mathematics is useful for
phenomena where changes are rare. Take the bodies in the solar system,
for instance: we can represent their motion mathematically because their
properties are fixed; so, with only a small investment in the translation, we gain
the great benefits of the manipulation. In the database phenomenon, however,
changes are very common. These changes include adding or deleting records,
and modifying the data stored in fields. Each change produces a slightly
different database – different data, and hence different relationships. No
mathematical system can accurately represent such a changeable phenomenon,
and it is for this reason that the theorists exclude the updating operations from
the formal model.

The relational idea is worthless because we have to leave too much out of
the manipulation in order to represent the database functions mathematically.
What we leave out is far more than what we leave out in the traditional uses of
mathematics. We must leave out of the formal model the database changes
and all the related issues; in particular, the integrity rules and most of the
normalization. These features are in reality as much part of the application as
are the queries. So, for the model to be truly useful, they would have to be
included in the manipulation. Only if we decide that databases are mainly
query systems can we treat issues like updating, integrity, and normalization as
part of the informal translation, rather than the formal manipulation. But
then we must no longer claim that the relational model is useful for general
applications.

�

The fact that so much had to be left out of their formal model ought to have
worried the theorists. This was an opportunity to realize that the relational
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concept is fallacious, that databases cannot be usefully represented with a
mathematical model. Instead, fascinated by the little that could be represented
mathematically, they saw in the relational concept the beginning of a new
science.

But an even greater deficiency than the separation of query operations from
updating operations is the separation of the query operations from the other
operations performed by the application. As we saw, the relational operations
are restricted to manipulating whole files, rather than individual records and
fields, like the traditional file operations. And, while in principle individual
records and fields can be treated as tiny files and accessed with the relational
operations, this method is far too awkward and inefficient to be practical. In
effect, then, the relational model does not permit us to manipulate freely the
low-level database entities. The immediate consequence of this limitation is
that it is impossible to link, at the level of records and fields, the structures
formed by database entities and operations with the structures formed by the
other aspects of the application. And no serious application can be developed
without these links.

Even for query systems, therefore, the relational model cannot be said to
work if the only queries that can be implemented are those possible through
operations on whole files. To be truly useful, a database system must allow us
to manipulate database entities in any conceivable way.

In conclusion, the relational model is indeed a revolution in database
concepts, in that it imparts to database programming the rigour and exactness
of mathematics; but only if we restrict ourselves to queries; and if we restrict
ourselves to queries that can be expressed through certain parameters (so
that the database can be separated from the application and accessed only
through operations performed on whole files); and if we restrict ourselves to
normalized files (although it is possible, in principle, to implement any queries
using normalized files, this is usually too complicated or too slow to be
practical); and if we can ensure that all the operations that modify the database
are performed correctly (so that the data upon which the queries are based is
valid at all times).

Note that these restrictions describe the original model; so this model,
absurd as it is, is in fact optimistic. As no practical uses were found for it,
means had to be provided eventually to link the database structures with the
other structures of the application. And the only way to do this was by
permitting low-level database operations, which bypass the original restric-
tions. But if those restrictions are essential in order to attain an exact model, if
we bypass them we will no longer enjoy the benefits of mathematics, not even
in a narrow range of applications. So those benefits, which were insignificant
in the original model already, were reduced in the end to zero.
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5

5
There is no better way to conclude our discussion of the first delusion than by
showing how the relational model is presented to the public. We just saw that
there are no mathematical benefits in using a relational database. The database
experts, however, promote the relational systems by praising precisely their
mathematical background. Here are some examples: “The mathematical
concept underlying the relational model is the set-theoretic relation.”Ë “The
relational model is founded on the mathematical disciplines of predicate
calculus and set theory.”Ì “The relational data model is based on the well
developed mathematical theory of relations. The rigorous method of designing
a data base (using normalization . . .) gives this model a solid foundation. This
kind of foundation does not exist for the other data models.”Í “The relational
approach is based on the mathematical theory of relations. . . . The results of
relational mathematics can be applied directly to relational data bases, and
hence operations on data can be described with precision.”Î “The relational
model is based on the mathematical notion of a relation. Codd and others have
extended the notion to apply to database design.”Ï “The solid theoretical
foundation guarantees that results of relational requests are well defined and,
therefore, predictable.”Ð “One of the benefits of working with the relational
approach to databases is that it can be couched within the formalism of first-
order predicate logic. As a result a mathematical foundation is available for
dealing with database issues when databases are all relational.”Ñ “The reason we
could define rigorous approaches to relational database design is that the
relational data model rests on a firm mathematical foundation.”ÉÈ “In the

Ë Jeffrey D. Ullman, Principles of Database Systems (Potomac, MD: Computer Science
Press, 1980), p. 73.

Ì Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1161.

Í Shaku Atre, Data Base: Structured Techniques for Design, Performance, and Manage-
ment, 2nd ed. (New York: John Wiley and Sons, 1988), p. 90.

Î James Martin, Computer Data-Base Organization, 2nd ed. (Englewood Cliffs, NJ:
Prentice Hall, 1977), p. 204.

Ï Catherine M. Ricardo, Database Systems: Principles, Design, and Implementation (New
York: Macmillan, 1990), p. 177.

Ð Candace C. Fleming and Barbara von Halle, Handbook of Relational Database Design
(Reading, MA: Addison-Wesley, 1989), p. 32.

Ñ Barry E. Jacobs, Applied Database Logic, vol. 1, Fundamental Database Issues (Engle-
wood Cliffs, NJ: Prentice Hall, 1985), p. 9.

ÉÈ Henry F. Korth and Abraham Silberschatz, Database System Concepts, 2nd ed. (New
York: McGraw-Hill, 1991), p. 209.
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formulation of relational data models, the mathematical theory of relations is
extended logically where required to meet data management objectives. The
mathematical foundation of relational data models permits elegant and concise
definition and deduction of their properties.”ÉÉ

As we saw, it is not difficult to show that the model’s mathematical founda-
tion is irrelevant. Yet no one in the academic world – not the mathematicians,
not the philosophers, not the engineers – ever challenged these claims. Nor did
anyone challenge the other software theories. The computer scientists can
invent any theories, thus, no matter how absurd, confident that the academic
community, the software practitioners, and the rest of society will accept them
unquestioningly.

Most people trust and respect the universities, without realizing that what
the academics are promoting is not ideas that are useful, but ideas that help
them maintain their privileged position even if useless; in particular, the idea
that science means simply the pursuit of mechanistic theories – whether sound
or not, whether useful or not.

Moreover, by fostering the mechanistic ideology, universities make it
possible for the software companies to promote fraudulent concepts. The
mechanistic ideology benefits incompetents and charlatans, therefore, by
making their activities look like serious research, or like legitimate business.

The Second Delusion

The Second Delusion
1 1
The second delusion is the idea of normalization: the belief that, within the
relational model, the problem of database design has been turned into a formal
theory. In reality, the principles of normalization do not constitute an exact
procedure, but one that can only be implemented informally. (The concept of
normalization was introduced earlier; see pp. 704–706.)

The delusion of normalization can be summarized by saying that it is an
attempt to replace the simple process of avoiding incorrect file relationships,
with the complicated process of eliminating them after allowing them into the
database. To justify the need for normalization, the theorists misrepresent the
design problem. Traditionally, we used methods that helped us to create
a correct database, and thereby avoided data inconsistencies. Now we are
expected to ignore those methods, deliberately create an incorrect database,

ÉÉ Dionysios C. Tsichritzis and Frederick H. Lochovsky, Data Models (Englewood Cliffs,
NJ: Prentice Hall, 1982), p. 93.
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discover the consequent problems, and then use normalization to convert the
incorrect database into a correct one.

In the end, it is only this contrived, absurd procedure that the theorists
managed to formalize, not the actual problem of database design. As we will
see presently, even under normalization the correct database structures can
only be discovered informally, by studying the application’s requirements – just
as we do when following the traditional design methods. The concept of
normalization, thus, is a fraud. By inventing pompous terms to describe what
are in fact senseless principles, and by discussing these principles with great
seriousness, the relational experts delude themselves that they have turned
database design into an exact theory.

�

Note that here, in the discussion of the second delusion, I am using the term
“normalization” to refer only to the second and higher normal forms; that is,
to the problem of field dependency. The first normal form (which restricts
fields to single values) is unrelated to the higher ones; it is part of the formal
relational model, and hence part of the first delusion.

Note also that, although the mathematical pretences of the second and
higher normal forms resemble the first delusion, these transformations are not
required at all by the formal model. A database, in other words, does not have
to be normalized in order to satisfy the mathematical restrictions of the formal
model (I will return to this point later). The higher normal forms are only
needed in order to prevent problems that arise when updating the database;
and the updating operations lie outside the scope of the formal model.

Thus, it would be wrong to treat the higher normal forms as part of the first
delusion. Their annulment (the process known as denormalization) does
constitute, however, the same kind of delusion as the annulment of the first
normal form, or the annulment of the other aspects of the relational model. All
annulments, therefore, are discussed under the third delusion.

�

Let us review the concept of normalization – how the relational theorists
present the problem of data inconsistencies, and its solution.

Each piece of information in the database should exist in only one place,
because data that is duplicated may cause various inconsistencies when
records are added, deleted, or modified. The relational theorists call these
inconsistencies “update anomalies.” The unnecessary repetition of data also
wastes storage space, but it is the anomalies that are the main reason for
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normalization. In fact, depending on the size of the duplicated fields and
the number of records involved, normalization sometimes increases storage
requirements. Still, the theorists say, the benefits are so important that we
should normalize our files even at the cost of increased storage space.

It must also be noted that there is always an alternative to normalization: the
inconsistencies can be avoided by performing additional operations in the
application (additional checks and, when required, additional updating).
Normalizing the files is generally a simpler and more efficient solution, but
sometimes those operations are the better alternative. In the relational model,
though, this too is unacceptable: we must always normalize our files.

Duplication, and hence redundancy, occurs when we store some data in
several records in a certain file while that data could be stored in only one
record in another file: repeating customer data like name or address in every
order belonging to that customer, repeating product data like description or
price in every order line with that product, and so on. Clearly, fixed data should
be stored in a separate file – a customer file or a product file, in this case. Only
data specific to an order should be stored in the orders file, and only data
specific to an order line in the order lines file. A field in the orders file will
contain the customer number, and a field in the order lines file will contain the
product number. These fields will serve as links to the customer and product
files. Thus, when processing an order, we can access the customer data by
reading the customer record; and when processing an order line, we can access
the product data by reading the product record. The same is true of an invoice
file, a transaction file, a sales history file, and any other file that needs customer
or product data.

With data separated in this manner, when there is a change in a customer’s
name or address, or in a product’s description or price, we only need to modify
the customer or product record, rather than all the orders for that customer, or
all the order lines with that product. If there were no customer and product
files, an anomaly would occur if we modified the customer data in an order, or
the product data in an order line: any other orders for that customer, or any
other lines with that product, would continue to have the old, and hence
wrong, values. Another anomaly would occur if we had to store data for a
customer that has no outstanding orders, or for a product that is not currently
on order: we would have to create a dummy order just so that we had a place
to store customer or product data.

Data redundancy can also be viewed as the result of a mistaken relationship
between two fields in the same record; specifically, a misplaced dependency of
one field on another. A field should depend only on the field or fields that
make up the record’s key. There is no need for other relationships within a
record; and if such a relationship exists, some data will be redundant. This is
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true because, if one field can be determined from another, its value will be
repeated unnecessarily in all the records where the other field has a particular
value. We only need to specify the dependency between the two fields in one
place. So the correct way to store this information is as a single record, in a
separate file.

Generally, to eliminate the redundancy associated with one misplaced
dependency (the dependency of one or several fields on a given field), we
must create one extra file in the database.É Each level of normalization – the
levels known as second, third, Boyce/Codd, fourth, and fifth normal forms –
is a more stringent implementation of this principle. Each level, that is,
will eliminate a more subtle type of dependency. These types – known as
functional dependency, transitive dependency, multivalued dependency, and
join dependency – differ in the types and combinations of fields that form the
misplaced dependency: a non-key field depending on only some of the fields
that make up the key (instead of depending on the whole key), or a non-key
field depending on another non-key field, or a key field depending on another
key field, or more than two fields depending on one another. The classification
of the normal forms is such that, in addition to being more subtle and more
rare, each level represents a broader category of misplaced dependencies – a
category that includes as a special case the one at the next lower level.

2

2
One aspect of the second delusion is the belief that, because the ideals of
normalization are discussed only with the relational model, they are exclusive
to relational databases. The theorists present the concept of normalization as if
no one had been aware of the problem of data redundancy and inconsistencies
before we had relational databases, and as if the relational model and the
normalization principles were the only way to deal with this problem. They
never mention the fact that this problem and its solution are identical to their
counterparts in databases created with the traditional file operations. And they
are identical because they are concerned with files, records, fields, and keys –
elements that are identical (despite the new terminology) in relational and in
traditional databases. With one type of database or the other, redundancy and
inconsistencies indicate a faulty design, a database that does not match the
application’s requirements. And the solution is to modify the design so as to
satisfy the requirements.

É Several extra files are required when the relationship involves three or more inter-
related fields (the kind of dependency resolved by the fifth normal form).
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The issue of normalization, then, is perceived as an important part of the
relational model while being, for all practical purposes, a separate theory.
It was tacked on to the relational model because it was invented by the
same theorists, but it could be applied to any database model that uses
files, records, fields, and keys. For, what we are asked is simply to replace
the traditional principle of designing a database so as to avoid redundancy
and inconsistencies, with the absurd principle that we must start with a
faulty design and then modify it so as to eliminate the redundancy and
inconsistencies. Thus, nothing stops us from employing this absurd principle
with a traditional database. All we have to do is deliberately create an incorrect
database, and then normalize it in order to eliminate the consequent problems.
The final, correct database would be identical to the one we create now simply
by following the traditional design principle.

It is also worth noting that we can attain the ideals sought by normalization
more effectively with traditional databases than we can with relational ones.
Ironically, while the relational theory makes the problem of redundancy and
inconsistencies look like a new discovery, insists on strict normalization, and
overwhelms us with formality and new terminology, its restriction to high-
level operations often prevents us from solving this problem. And it is with the
traditional file operations, where we don’t even use terms like “normal form,”
that we can more easily deal with it. This is true because those operations are
more versatile and more efficient than JOIN, the operation that combines files
in the relational model. Since the process of normalization separates fields by
creating additional files, we must read and combine more files and more
records later, when accessing the database. And it is when the performance
degradation caused by these additional operations becomes unacceptable
that we must leave some data unnormalized. Thus, since the traditional file
operations permit us to combine files and records more efficiently than does
JOIN, we can afford to separate more fields – and hence attain a higher level of
normalization – in a traditional database than in a relational one.

�

We can appreciate even better why the problem of redundancy and incon-
sistencies is not part of the relational theory by recalling the mathematical
foundation of the relational model, predicate calculus (see pp. 697–698). The
relation described by the logical expression P(x,y,z), for instance, consists
of those tuples of elements x, y, and z that are related through the predicate P.
Specifically, we substitute for the three elements certain values selected from
their respective domains of permissible values, and we retain those combina-
tions of values for which the expression yields True.

732 the relational database model chapter 7



Now, there is nothing in this definition of a relation to prevent two elements
in a tuple from forming an additional relationship. For example, if y depends
on x in such a way that we can always derive its value from that of x, y is in
effect redundant. But this redundancy is harmless; that is, if we combine this
expression with other expressions, the redundancy will be reflected perhaps in
the final result, but it will not cause a logical inconsistency.

The original, formal relational model is similar: even if mistaken, the
dependency of one field on another in a given file does not cause an inconsist-
ency when that file is combined with others through relational operations. The
formal model is concerned only with the structure and combination of files.
Thus, even if there is a misplaced dependency in that file, the consequent
redundancy is harmless. All that will happen is that some fields in the resulting
file will also be related through a misplaced dependency.

The reason we can have misplaced dependencies in predicate calculus and
in the formal relational model is that these systems do not include updating
operations. Predicate calculus is not concerned with the way tuples ended up
in the relation, or the way elements acquired their current value, but only with
the operations that use the tuples. And the formal relational model is not
concerned with the way records are created, deleted, or modified, but only with
the operations that read the records. Thus, since only updating operations can
cause inconsistencies, we need not worry about misplaced dependencies
when we restrict ourselves to the formal model. (The relational theorists
acknowledge this fact by calling the inconsistencies update anomalies.) To
put it differently, if we restrict ourselves to queries, and particularly to queries
expressed through the relational operations, we need not worry about mis-
placed field dependencies.

So the theory of normalization is irrelevant for applications restricted to
the formal model. It is only for the broader model, which includes various
informal aspects, that it has any significance. The original papers mentioned
only briefly the updating operations that would be required in an application,
and the language through which they would be specified.Ê It was assumed that
these operations, along with the problems they might cause and the checks
needed to avoid these problems, would be similar to those used in other
database systems. No one tried to extend the formal model by including, say, a
formal set of updating operations. It was assumed, in other words, that the
exact, formal model would provide all the important database operations. The
updating operations, as well as the operations needed to protect the database
from redundancy and inconsistencies, were seen as a minor issue; so the plan

Ê See, for example, E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM 13, no. 6 (1970): 377–387.
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was to implement them informally, just as they were implemented in other
systems. We find evidence for this interpretation in that the second and higher
normal forms are not mentioned at all in the original papers. The terms
“normal form” and “normalization” in these papers refer only to what is called
now the first normal form.

It was when the theorists turned the formal model – originally meant only
for queries – into the basis of general database systems, that the idea of
normalization had to be extended. By calling the new normal forms “second,”
“third,” etc., the theorists made them look like a natural extension of the first
one, although they are unrelated. While the first one is concerned with
eliminating data structures within fields, the higher ones are concerned with
eliminating misplaced dependencies between fields. The first one is needed in
order to base the formal model on predicate calculus, but the higher ones are
needed only if we perform updating operations. By making the latter look like
an extension of the first one, though, the theorists managed to mask the fact
that the relational model was changing from an exact theory into a collection
of informal concepts. While everyone thought that the precision of the formal
model was being extended to cover all aspects of database work, in reality the
exact opposite was taking place: what had been originally the informal aspects
of the model – the updating operations, the higher normalization, the integrity
rules, the database language – was becoming the actual model, and the formal
part was becoming irrelevant.

One wonders, if the updating operations constitute an informal aspect of
the relational model, why is it so important to formalize the normalization
process? Why do the theorists attempt to reduce the problem of redundancy
and inconsistencies to an exact model, if the problem only concerns the
updating operations, which are informal in any case? The answer is that the
theorists saw in the normalization principles an extension of the original,
formal model. The precision which that model offered for queries, they
thought, can now be extended to the design phase, and to the updating
operations; so we will soon have a mathematical model for the whole database
concept.

As we will see later, the formality of the normalization process is specious.
The theorists are indeed discussing the subject of dependencies in a formal
manner, but, ultimately, we can determine the relationship between two given
fields only by studying and interpreting the application’s requirements; that is,
informally. As is the case with all mechanistic pseudosciences, the relational
theorists noticed a few patterns and regularities (the normal forms and the
field dependencies), and jumped to the conclusion that an exact theory is
possible for the design of file relationships. The same naivety that led earlier to
the belief that the resemblance of records to the tuples of predicate calculus can
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be the basis of a practical database model, led now to the belief that a neat
classification of field dependencies can be the basis of a formal model for
database design.

3

3
When studying the problem of data redundancy and inconsistencies, we
notice a marked discrepancy between the way it is presented by the relational
theorists and its actual difficulty. The theorists discuss this subject with
great seriousness, the way one would discuss the most difficult problems a
programmer can encounter. In reality, this is one of the simplest programming
problems. And it is a problem that does not lend itself to formal treatment, so
an exact theory has no practical value in any case.

It is hard to think of anyone designing a database where the “anomalies” so
seriously discussed by the theorists could occur at all. Even a novice can
recognize the absurdity of storing fixed customer information only in the
invoice records, or repeating fixed product information in every order line
with that product. And if mistakes like these go undetected and end up in the
working application, it is hard to imagine a place where the programmers or
the users fail to understand why customer data is lost when an invoice is paid,
or why two order lines with the same product show different descriptions.
Then, once they understand the problem, it is hard to imagine them failing to
discover the solution; that is, keeping the fixed data in a separate file. To put
this differently, a person incapable of dealing with this simple problem would
be unable to deal with any other programming problem. His applications
wouldn’t work, and those anomalies would be the least of his worries. Thus, it
is highly unlikely that a place can exist at all where the theory of normalization
can confer any benefits.

And indeed, before it was brought into the limelight by the relational
experts, we treated the problem of redundancy and inconsistencies as we did
every other programming problem: we recognized its importance, but we
never tried to explain it with an exact theory, or to solve it with a formal
method. As evidence of its simplicity, we didn’t even think that the process of
solving it needed a special name; it is only for the relational theory that terms
like “normalization” and “normal form” had to be introduced. And for those
of us who have continued to use the traditional database design method, the
attempt to turn this subject into an exact theory has had no significance
whatever. We are treating the problem of redundancy and inconsistencies
exactly as we did thirty or forty years ago, simply because the theory of
normalization is irrelevant.
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Relational database books devote at least one chapter to the subject of
normalization. And the more thorough among them intimidate us with their
formal tone and lengthy explanations, the countless definitions and theorems,
and the new terms and symbols. Thus, if we ignore its content and judge
it solely by its style, the discussion of normalization in a database book
resembles the kind of discussions found in engineering books. Readers new
to the relational theory are impressed by this formality and expect to learn
some important facts. Invariably, though, they find the discussion hard to
follow. Then, when the book illustrates the theory with actual examples of
unnormalized files and their conversion to normalized ones, these readers
react by exclaiming, “But this is how I would have designed the database in the
first place!” So it is only through actual examples that we can comprehend the
theory of normalization at all, and at that point the reason for the earlier
difficulty becomes clear: since we would intuitively create the correct, normal-
ized files to begin with, we struggle to understand what is the problem that the
theory is trying to solve. To most of us it doesn’t even occur – until we read a
relational book – that anyone would design a database by repeating, say, the
customer address fields for each order, or the product description field for each
order line.

The difficulty, then, is not in understanding the principles of database
design, but in understanding the theory of normalization: the attempt to
reduce database design to formal and exact methods. We must make an effort
to understand the normalization problems and their solutions because we
normally don’t think in a way that can create these problems. The problems are
contrived, unreal. They were invented by the theorists, in order to have a reason
for seeking a formal solution.

Typically, the books start by showing us an incorrect design and its draw-
backs. They continue then by showing us how to convert it into a correct
design. But what is the point of this discussion if hardly anyone would even
consider the incorrect alternative? The theorists are defining, classifying, and
explaining in the style of mathematical analysis some implausible situations –
situations we never encounter in real life. With just common sense and a little
practice, we already know how to create correct databases. The normalization
theory, on the other hand, asks us to study some strange problems (the
difference between the second and third normal forms, why we have the so-
called Boyce/Codd normal form between the third and fourth, how to convert
a file from first to second or from second to third, etc.) and to assimilate an
endless list of strange concepts (superkey, dependency preservation, nonloss
decomposition, left-irreducible functional dependency, etc.).

It is the attempt to formalize the problem of field dependency, data redun-
dancy, and data inconsistencies, and the need to fit the incorrect designs into
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the classification of normal forms, that we find hard to understand – not the
actual principles of database design. And when we finally understand the new
concepts, we realize that in practice we never encounter these problems. When
we learn to program we don’t learn two things – how to design incorrect
databases, and how to convert incorrect databases into correct ones; we simply
learn how to design correct ones. Thus, since the problems studied by the
theory of normalization concern mostly the transition from bad to good
design, it is not surprising that the theory is, for all practical purposes,
irrelevant.

4

4
We saw earlier, in “The Basic File Operations,” that the concept of records,
fields, and keys allows us to implement any file relationships we need in our
applications. And we also saw that this concept is identical in traditional and
in relational databases. The difference lies mainly in the new terminology and
in the way the files are used. In traditional databases, we use the basic file
operations through the flow-control constructs of a programming language;
and we specify, through indexes, the individual records. In relational databases,
we use only the high-level relational operations; and, rather than individual
records, we specify whole files or logical portions of files. But in both cases we
must create the same files and fields, and the same relationships, in order to
implement a particular set of requirements.

Thus, although our earlier discussion concerned traditional databases, the
same design principles apply to relational ones. With one type of database
or the other, the traditional principles permit us to create correct – that
is, normalized – databases directly from the application’s requirements. To
appreciate the absurdity of the normalization theory, then, let us review the
traditional design concepts.

The decision we must make when designing a database is what files, fields,
and keys are needed; that is, what data to store in the database, how to
distribute it among files, and how to relate the files, in order to satisfy the
application’s requirements. Thus, since the files depend on the application’s
logic, we usually implement them together with the various parts of the
application. It is the file relationships that pose the greatest challenge. For, if all
we needed were isolated files (a customer file, a product file, a history file, etc.,
with no links between them), designing the database would be trivial, little
more than creating the respective fields.

Files are related through the values present in their fields. Typically, identifi-
ers and codes are used to relate files (product number, invoice number,
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category, etc.). A relationship is established when two files use such a field, and
some records in both files contain the same value in this field.Ë Depending on
how the relationship is used in the application, we may use either key fields or
non-key fields. Often, a combination of several fields, rather than a single field,
is needed to relate files.

And it is the correct choice of relationships that ultimately determines
whether or not there will be redundancy or inconsistencies in the database –
what the theory of normalization is concerned with. The various normal
forms, as we will see shortly, are nothing but a complicated way of expressing
these relationships. In reality, all we have to do is create a database that
correctly represents the application’s requirements; and if we do this, there will
be no redundancy or inconsistencies. In other words, if we understand the
application’s requirements, and if we implement them correctly, we don’t need
a theory of normalization (because we create “normalized” files from the start);
and if we don’t understand the requirements, or fail to implement them
correctly, no theory can help us.

�

Four types of file relationships are possible between two files: one-to-one, one-
to-many, many-to-one, and many-to-many. The terms “one” and “many” refer
to the number of records in the first and second file that are logically linked.

Two files are in a one-to-one relationship when one record in the first file is
related to no more than one record in the second file. Thus, the two files will
have the same number of records when each record in the first one has a
corresponding record in the second one, and they will have a different number
of records when some records in either file have no corresponding records in
the other. Files that are in a one-to-one relationship can always be combined
into a single file, where each record comprises the two corresponding records:
we simply merge their fields, and when there is no corresponding record we
assign null values or default values to the respective fields. For practical
reasons, though, it is sometimes preferable to have two files rather than one.
For example, if a file has many fields but some operations involve only a few,
we may decide to keep these fields in a separate, smaller record, in order to
improve the application’s performance.

An example of one-to-one relationship is an employee file and a special
functions file, with the condition that a function may be performed by only one

Ë Relations based on field equality are the most common, but, strictly speaking, any
values can be used to relate files. With a date field, for example, we can create a relationship
where a record containing a certain date in the first file is logically linked to those records
in the second file where a date is up to one year earlier.
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employee, and an employee may select no more than one function. At some
point in time we may have, say, 80 records in the employee file and 30 records
in the functions file, but only 20 functions actually selected; thus, 60 employees
will have no corresponding function, and 10 functions no corresponding
employee. The two files are linked by adding a function number field to the
employee record, or an employee number field to the function record (or both,
if we need two-way links).

The most common relationship is one-to-many. Two files are in a one-to-
many relationship when one record in the first file (the “one” file) is related to
one, several, or no records in the second file (the “many” file), while each
record in the second file is related to one or no records in the first file. Here are
some examples: customer file and customer orders file (one customer may
have one, several, or no outstanding orders, but each order belongs to one
customer); orders file and order lines file (one order may include one or several
order lines, but each line belongs to one order); employee file and payment
history file (each employee has one record in the history file for each pay
period, but each pay period record belongs to one employee). A one-to-many
relationship is also a many-to-one relationship, when seen from the perspective
of the second file: several orders are related to the same customer, several order
lines to the same order, several pay periods to the same employee.

The one-to-many relationship is implemented by making the “many” file’s
key a combination of both files’ identifying fields. For example, if we make the
key in the orders file the combination of customer number and order number,
we will be able to select for a given customer any one of the corresponding
records in the orders file, and for a given order the single, corresponding record
in the customer file. However, when the relationship is seen as many-to-one
and a direct link is not required from the “one” file to the “many” file, the “one”
file’s identifying field can be just a non-key field in the “many” file. Thus, the
key in the orders file would be just the order number, and we would access the
customer records by including the customer number as a non-key field.

Two files are in a many-to-many relationship when one record in the first
file is related to one, several, or no records in the second file, and at the same
time one record in the second file is related to one, several, or no records in the
first file. To implement such a relationship, we create a service file to act as a
link between the main files. The service file has only key fields, and its key is
simply the combination of the two main keys. For example, if some vendors
supply several products, and certain products are supplied by several vendors,
the vendor and product files form a many-to-many relationship. The key in the
service file is the combination of vendor and product numbers, and we
implement the two-way links between files (vendor to product, and product to
vendor) by providing both sorting sequences: products within vendors, and
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vendors within products. (If using traditional file operations, we accomplish
this by creating two indexes for the service file.) We can then select for a given
vendor the corresponding records in the product file, and for a given product
the corresponding records in the vendor file.

The four types of relationships can be combined to link more than two files.
Thus, a set of several files can form a one-to-one relationship, when any two
files in the set are in a one-to-one relationship. Also, a file can be in two many-
to-many relationships at the same time: with one file through one field, and
with another file through another field.

The most versatile relationship, however, is one-to-many. One way to
combine one-to-many relationships is by having several “many” files share the
“one” file, through the same field or through different fields. The customer file,
for example, can be related through the customer number to both the orders
and the sales history files. One-to-many relationships can also be combined to
form hierarchies of more than two levels, by using the “many” file of one
relationship as the “one” file of another. For example, for each order in the
orders file we can have several lines. We store then the line-related data in an
order lines file, and use the combination of customer, order, and line numbers
as the key. The order records will function, at the same time, as “many” in their
relationship with the customer records, and as “one” in their relationship with
the order lines records. Most applications require a mixture of combinations:
several levels, and several files on each level. Thus, several “many” files may
share the “one” file while acting at the same time as “one” files in other
relationships.

It is also possible for two “one” files to share the “many” file. For example, if
a customer purchases several products and a product is purchased by several
customers, there will be a set of records in the sales history file for each
customer record, and another set for each product record. But these sets will
overlap: each history record will be related at the same time to a certain
customer and to a certain product. Thus, in addition to being the “many” file
for both the customer and the product files, the history file serves to create a
many-to-many relationship between them. (The many-to-many relationship,
we see now, is merely a special case of two one-to-many relationships that
share the “many” file – the case where this file’s sole purpose is to link the
“one” files.)

�

Although the four types of relationships are usually described as file relation-
ships, they are also field relationships. When two files are related as one-to-
one, or one-to-many, or many-to-many, it is through their records that the
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relationship exists: one or several records in one file correspond to one or
several records in the other. But records are made up of fields, so the same
correspondence exists between fields: the relationship between files is reflected
in each pair of fields. Thus, when two files are related as one-to-one, each
field in the first file is in a one-to-one relationship with each field in the second
file; in addition, fields that belong to the same file are in effect in a one-to-one
relationship with one another. When two files are related as one-to-many, each
field in the first file is in a one-to-many relationship with each field in the
second file. And when two files are related as many-to-many, each field in
the first file is in a many-to-many relationship with each field in the second file.

For example, if the product and the orders files are related as one-to-many,
a field like the product description or price in the former will be related as one-
to-many to fields like the order date or quantity in the latter. What this means
in practice is that the same product description or price may be associated with
several order dates and quantities.

We can regard the four types of relationships, therefore, as either file or
field relationships. So, rather than saying that two files are related and the field
relationships reflect the file relationship, we can say that it is the fields that
must be related, and the file relationship will reflect the field relationships. We
design a database by creating relationships that match the requirements. In
some situations we think in terms of file relationships; and once we create the
files, it is obvious to which file each field must be assigned. In other situations
it is better to think in terms of field relationships; and we implement the files
and file links that will allow us to relate those fields as required.

�

Consider this example. We want to store some information about our products,
so we start with a file that contains just the key field, the product number. If
the requirements say that there may be several orders for each product, the
product number is related as one-to-many to the order number. The order
number must be, therefore, in a separate file, so we create an orders file with
two fields: the order number as the key, and the product number as the link to
the product file. Next, we need a product description field, which is always the
same for a given product; it is related as one-to-one, therefore, to the product
number, so we assign it to the product file. We then need an order date field,
which is always the same for a given order; it is related as one-to-one to the
order number, so we assign it to the orders file. (This also relates it as many-
to-one to the product number and description, which is what we want.) Next,
we need an order quantity field; like the date, it is related as one-to-one to the
order number, so we assign it to the orders file.
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This process, clearly, can be continued for each new field. And, since most
requirements reflect common needs, an experienced programmer will easily
design a correct database. Only in unusual situations do we have to analyze
carefully the requirements to determine how to treat a new field.

The foregoing example, while very simple, already demonstrates that it is
the application’s requirements, not some database principles, that determine
what is a correct database. Thus, if the requirements changed and the product
description were permitted to differ from one order to the next, the description
field would have to be in the orders file rather than the product file (because it
would now be related as one-to-one to the order number, date, and quantity,
and as many-to-one to the product number). Similarly, if the requirements
permitted several lines in an order, the product number and quantity would be
related as many-to-one to the order number. So they would be assigned to a
separate file, order lines, where the key is the combination of order number and
line number, and several records correspond to one order record. The order
date, though, would stay in the orders file, because it continues to be related as
one-to-one to the order number.

We know that relationships can be one-to-one, one-to-many (or many-to-
one, if seen in reverse), many-to-many, and combinations of these. So, if we
understand the role that a new field must play in the application, we already
know what relationship to create, and hence to which file to assign it. (Key
fields duplicated in another file in order to relate the two files are treated
differently, of course.) All we need in order to design a correct database is to
study the application’s requirements. Then, we use an appropriate combination
of relationships to represent these requirements. In other words, we create the
database that matches the requirements – one field at a time. Ultimately, if we
understand the requirements, we are bound to create a correct database.

And when we create a correct database, the problem of redundancy and
inconsistencies does not arise. (The only time we must deal with this problem
is when we deliberately introduce redundancy into the database; that is, when
avoiding it would make the application too slow.) This is true because in a
correct database all field relationships reflect actual requirements. Thus, in
the foregoing example we assigned the product description to the product
file because the requirements stated that it was the same for all orders. If
we assigned it to the orders file instead, we would end up with unwanted
duplication: a product’s description would be repeated unnecessarily in each
order that includes the product. The duplication can be explained by noting
that this relationship does not reflect the requirements: the description field
would be related as many-to-one to the fields in the product record, while
the requirements called for a one-to-one relationship. (Alternatively, the
error can be described as a one-to-one relationship with the fields in the
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orders record, while the requirements called for a one-to-many relationship
with these fields.)

The most important lesson from this analysis is that data redundancy and
inconsistencies can only be defined within the context of a particular set of
requirements. So this is not a problem that can be solved by means of a formal
database theory. This is a programming problem, one that can be solved only
by taking into account both the database structures and the other structures
that make up the application. It is the way we plan to use the files that
determines what are the correct relationships. And with correct relationships,
there will be no redundancy or inconsistencies.

A database, then, can be correct only for a specific set of requirements. With
just a small change in requirements, the same database would no longer be
correct. The incorrectness may manifest itself in the form of wrong values or
unnecessarily duplicated values. In the earlier example, storing the description
in the product record is correct if it must be the same in all orders, and wrong
if it must change; conversely, storing it with each order is correct if it must
change, and wrong if it must be the same in all orders. The presence of
redundancy and inconsistencies, therefore, when unintended, is similar to any
other programming error: we neglected the requirements, and consequently
the application malfunctions. The error, in this case, is a discrepancy between
the required file relationships and the actual ones.

It is worth repeating: the concept of file and field relationships applies to
relational databases exactly as it does to traditional ones, because both types
are based on files, records, fields, and keys. Thus, even those programmers who
prefer the relational model can benefit from the traditional design methods.
They too can avoid data redundancy and inconsistencies by creating a correct
database directly from requirements. Even with a relational database system,
therefore, there is no need for a theory of normalization – because, if we create
correct relationships, there is no redundancy or inconsistency to eliminate. As
is the case with the traditional databases, we simply need to understand the
application’s requirements and the four types of relationships.

�

We can appreciate even better the connection between file relationships and
the application’s requirements if we remember that requirements are in effect
rules, or restrictions. Specifically, from all the operations that the application
can perform, and from all possible values that memory variables and database
fields can take, only a few must be permitted if the application is to run
correctly. One type of restrictions concerns the combinations of values that the
database fields will display at run time: how the value of one field depends on
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the value of another. And it is through the four types of file relationships that
we implement these restrictions.

Two fields are related as one-to-one when they can have any combination
of values; that is, when neither field depends on the other. Two fields are related
as one-to-many when one field is restricted to a specific value by a series of
values in the other. (Many-to-one is the same relationship seen in reverse.) And
two fields are related as many-to-many when there are two simultaneous one-
to-many restrictions: one field is restricted by the values of the other, and at the
same time possesses values that restrict the other.

By interpreting the requirements as restrictions, we can explain the problem
of redundancy as follows: we provide for all possible combinations of values in
a situation where only a few can actually occur. If the requirement is for one-
to-many and we place the two fields by mistake in the same file, they will be
related as one-to-one. We provide for any combination of values when, in fact,
the first field will have the same value for a series of values in the second. So
that one value will be repeated unnecessarily every time the second field’s value
is in that series. We only need to specify their relationship once, and yet we do
it several times.

�

There is an obvious correspondence between the various file relationships and
the normal forms of the normalization theory: the relationship that is correct
for a given requirement corresponds to the highest normal form attainable
for that requirement (the one for which the files are deemed to be fully
normalized). The relational theorists avoid the subject of file relationships –
perhaps because this would reveal the shallowness of the normalization theory.
Let us take a moment, though, to study this correspondence.

The first normal form is the highest one attainable when the application’s
requirements place no restriction on the combinations of values that two fields
can take. From the perspective of the normalization theory, this means that
there is no dependency between the two fields; so they can be assigned to the
same file (or to separate files if those files are in a one-to-one relationship).

The second and higher normal forms can be attained when the application’s
requirements place some restrictions on the combinations of values. Because
of these restrictions, the correct relationship is now one-to-many; and if we
create one-to-one instead (by placing the fields in the same file), we will have
a relationship that permits any combinations, while the actual data includes in
fact only some combinations. The normalization theory describes this problem
as a misplaced dependency: the only dependency permitted within a tuple is
that of a non-key field on the field or fields that make up the key. We also note
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the mistake in that the file is only in first normal form, while a higher normal
form is now attainable. The solution is to place its fields in separate files,
thereby creating files that are in second, third, or Boyce/Codd normal form.
(Which form is actually attainable depends on the combination of field types,
key or non-key, that constitutes the misplaced dependency.) In traditional
terms, what we do when using two files instead of one is replace the incorrect
one-to-one relationship with a one-to-many relationship, which is what the
requirements had called for to begin with.

Combinations of these three normal forms correspond to combinations of
one-to-many relationships: two “many” files sharing the same “one” file, or two
“one” files sharing the same “many” file. They also correspond, therefore, to a
many-to-many relationship between two files. The more complicated fourth
and fifth normal forms correspond to various many-to-many relationships
involving three or more files, when some of the two-file relationships are
restricted.

But this correspondence, while perhaps interesting, is irrelevant; for, in
practice we don’t need to know anything about field dependencies, or about
the notion of normal forms. We can create the correct relationships directly
from requirements, as we saw earlier. We don’t have to start with an incorrect,
one-to-one relationship (as the normalization theory says), note the redun-
dancy and inconsistencies, and then try to attain the correct relationship by
discovering misplaced dependencies.

5

5
We are now in a position to explain the fallacies behind the delusion of
normalization. We saw that all we need in order to create correct file rela-
tionships is to understand the application’s requirements. We can avoid
data redundancy and inconsistencies, therefore, simply by implementing
relationships that match the requirements. But, while not especially difficult,
this task demands skills that most programmers lack.

Without exception, the mechanistic software theories attempt to solve the
problem of programming incompetence, not by encouraging programmers to
improve their skills, but by providing substitutes for skills. The relational
theory, in particular, was meant to obviate the need for database programming
skills. Instead of the traditional file operations, which must be used through a
programming language, programmers will only need to understand the high-
level relational operations. Moreover, the mathematical foundation of the
theory will guarantee data correctness: since the relational operations are
as exact as mathematical functions, and since any database requirement
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can be expressed as a combination of these operations, even inexperienced
programmers will create correct database structures.

But, as we saw under the first delusion, the mathematical database model
is a fantasy. To attain such a model, we must restrict it so much that it
loses all practical value. If we divide the use of a mathematical system into
translation (the conversion of the actual phenomenon into its mathematical
representation) and manipulation (the work performed with the mathematical
entities within the system), only the manipulation can be formal and exact. The
translation entails an interpretation of the phenomenon, so it is necessarily
informal. The relational model is senseless because it consists almost entirely
of the translation. The manipulation, while indeed exact, forms a very small
part of the model; and, besides, it is so simple that we can implement the
same operations by relying on common sense alone. The theorists praise the
mathematical benefits of the model, but these benefits can only help us to deal
with a few, simple aspects of database work. Most work, including the most
difficult aspects, lie outside the scope of the formal model. So, in the end, we
need the same programming skills as before.

If the manipulation includes only the little that can be reduced to an exact
representation, every other aspect of database work must become part of the
translation. This includes the design of the database; that is, discovering the
combinations of files and fields that correctly represent the real entities and
the relationships between them. With a traditional database or a relational
one, this is an informal activity: using our knowledge and experience, we
study the application’s requirements and ensure that the database entities and
relationships match the real ones. And if we accomplish this, there will be
no redundancy or inconsistencies. The relational theory never promised
to replace this activity with an exact method; it simply left the issue out of
the formal model (along with such other issues as integrity rules, updating
operations, database language, and database performance).

The relational theory, thus, failed to eliminate the need for programming
skills. Programmers continued to create incorrect database structures, but the
theorists did not recognize this problem – the fact that so much had to be left
out of the formal model – as a falsification of the relational concept. So,
instead of studying the problem, they introduced an additional concept –
the normalization theory. Their attitude, in other words, did not change:
confronted with the evidence that mechanistic theories cannot be a substitute
for expertise, they hoped to contend with the persisting incompetence by
inventing yet another substitute. The second relational delusion (the delusion
of normalization) emerged, therefore, because the theorists refused to face the
first one (the delusion of a formal database model).

The normalization theory differs from the original relational theory in that
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it promises us exact methods for identifying the incorrect file relationships, not
before, but after they are implemented. Rather than invoking the power of
mathematics to prevent a bad design (something that everyone now agrees is
impossible), we are told that the same power can be invoked to correct a bad
design. Clearly, the theorists do not see the absurdity of this idea. For, were it
possible to discover formally the incorrect relationships in an existing database,
we could also discover them formally while designing the database. The
phenomenon is the same in both cases: file relationships that do not match the
application’s requirements.

So the theorists still fail to understand why the original model could not
help us to design correct file relationships. This is not a technical problem that
might be solved with an additional theory, but a fundamental limitation: it is
only through an informal interpretation of the requirements that we can
determine what are the correct relationships. Thus, there is no difference
between determining this while designing the database or after. In both cases,
we must process the database structures together with the other structures that
make up the application; in particular, the business practices reflected in the
application. In both cases, then, we must deal with the complex structure that
is the whole application, and this is something that only minds can do.

�

The normalization theory claims to eliminate the need for expertise by
eliminating the need to design correct databases. Unlike the traditional
design methods, which expect us to create file relationships that match the
requirements, the new method permits us to create relationships that are as
incorrect as we like. To take an extreme case, we can ignore the need for file
relationships altogether: we create a database that consists of just one file, and
assign all the fields to this file, regardless of their actual relationships. We can
do this because the database we create now is only a starting point. By applying
the principles of normalization, we will be able to transform the incorrect
database, step by step, into a correct one.

As we know, files created within the formal model are already in first
normal form. To attain the higher normal forms, we must modify the database
by discovering and eliminating the misplaced field dependencies. And this can
be accomplished, we are told, through the formal methods provided by the
normalization theory. Through one procedure we eliminate one type of
dependency, and thereby convert the files from first to second normal form;
then, through another procedure we eliminate a different type of dependency,
and convert them from second to third normal form; and so on. We continue
this process until we find at a certain level – a level that varies from one
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database to another – that there are no misplaced dependencies left. At
that point, the database is fully normalized. By eliminating all misplaced
dependencies, we eliminated the possibility for any data redundancy or
inconsistencies to emerge later, when the database is used.

The normalization theory, thus, claims to have solved the problem of
programming incompetence by replacing the challenge of designing a correct
database, with an easier challenge: eliminating the errors found in an existing,
incorrect database. This shift, the theorists believe, reduces database design to
a series of simple, mechanical activities. Their naivety is so great that, although
the logic is the same (matching the file relationships to the application’s
requirements), and although the ultimate database is the same, they believe
that the new principles are formal and exact while the old ones are not.

In the end, the problem of design became the problem of dependency: an
elaborate system for defining, analyzing, and classifying the field dependencies
found in a database. Date describes this shift perfectly: “The fact is, the
theory of normalization and related topics – now usually known as dependency
theory – has grown into a very considerable field in its own right, with several
distinct (though of course interrelated) aspects and with a very extensive
literature. Research in the area is continuing, and indeed flourishing.”Ì But
this research is a fraud: the theorists are distorting and complicating the
problem of database design in order to have a reason for seeking an alternative.
The delusion is not so much in the shift from design to dependency, as
in the belief that this shift has turned the problem into a formal theory;
specifically, the belief that we have now exact methods to prevent redundancy
and inconsistencies.

In reality, redundancy, inconsistencies, and misplaced dependencies are
different aspects of the same phenomenon: a discrepancy between the file
relationships and the application’s requirements. Thus, whether we wish to
avoid redundancy and inconsistencies, or to eliminate misplaced dependencies,
the only way to do it is by interpreting the requirements correctly; and this task
cannot be formalized. What the theorists did is add to this task a complicated
system of principles and procedures – the theory of normalization. And it is
only this theory that is formal and exact. Their “research,” then, is merely a
preoccupation with this theory, with the problems they invented themselves.
The real problem – creating a correct database – is as informal as before. So, if
the normalization principles did not replace the original problem, if we
continue to assess dependencies informally, the normalization theory is
fraudulent.

Ì C. J. Date, An Introduction to Database Systems, 6th ed. (Reading, MA: Addison-
Wesley, 1995), p. 337.
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To repeat, dependency is indeed part of the same phenomenon that causes
redundancy and inconsistencies. So the shift from design principles to depend-
ency principles is wrong only because it is unnecessary, because it complicates
the problem without providing any benefits in return. Recalling the earlier
examples, repeating the unchangeable product description in every order
entails redundancy. We can describe this redundancy as the result of an
incorrect relationship: we created a one-to-one relationship between the
description field and fields like order number, when their required relationship
is one-to-many. But we can also describe the redundancy as the result of a
misplaced dependency: the description depends on the part number, which is
not the key in the orders file. Regardless of how we describe the redundancy,
though, it is the incorrect relationship between the product description and the
other fields that is the root of the problem. And in both cases it is this
relationship that must be modified in order to solve the problem.

Generally, with the traditional design concept we create the correct relation-
ships from the start. With the normalization theory, we start by creating one-
to-one relationships – which are usually wrong, because most relationships are
one-to-many or many-to-many; we then search for misplaced dependencies,
which direct us to the incorrect relationships; and finally, we modify the
relationships in order to eliminate those dependencies, and with them the
redundancy and inconsistencies.

But with both the traditional method and the new one, we always reach the
point where we must decide, for a given field, whether it must be in the same
file as some other fields, or in another file. With the traditional method, this
decision is also the design. With the normalization theory, this decision is only
a small part in a long and complicated process. For, now we must also identify
the current normal form, determine the type of dependency between fields
and the higher normal form that would eliminate it, and convert the files to
that normal form.

The decision itself, however, entails the same challenge: interpreting the
application’s requirements correctly. Thus, what is the critical step with both
design methods – discovering the correct relationship between two fields – is
necessarily an informal process. So the formality of the normalization theory
is silly if normalization depends ultimately on an informal process, just like the
traditional method. Before, we made that decision in order to create a correct
file relationship. Now we make it in order to correct an incorrect one. But, if in
the end it is only through our interpretation of the requirements that we can
determine what is the correct relationship, we may as well use the traditional
method, which is so much simpler.

�
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To conclude, there are two stages to the delusion of normalization. The first
stage is the belief that we need a theory of normalization at all; namely,
that preventing redundancy and inconsistencies is a special problem, which
demands a formal theory. This problem, though, is no different from all the
other problems that make up the challenge of programming. Regardless of
which aspect of the application we are dealing with, we must create structures
of software entities that correctly represent the structures of real entities. And
to accomplish this task we must understand the application’s requirements and
the means of implementing them. Moreover, a given requirement usually
affects several aspects of the application, and we cannot deal with them
separately. The database structures, in particular, are always linked to the other
structures that make up the application. Searching for a formal, mechanistic
theory of database design is an absurd and futile quest.

The theorists assume that it is impossible, or very difficult, to design a
correct database directly from requirements; that programmers cannot attain
the necessary expertise, so this task must be replaced with a method which
they can follow mechanically; and that it is possible to discover such a method.
But, quite apart from the fact that no formal method can exist, the traditional
design principles already provide a fairly simple method for creating correct
databases. All we need to do is determine, for each new field, the appropriate
relationship with the existing fields (one-to-one, one-to-many, many-to-one,
or many-to-many). If we do this, we will end up with a correct database – a
database that matches the requirements. And, among the many benefits of a
correct design, there will be no redundancy or inconsistencies.

The second stage in the delusion of normalization is the belief that the body
of principles that make up this theory constitutes indeed a formal solution to
the problem of database design. In reality, the database structures are still based
on the relationships between fields, and we can only determine the correct
relationships by interpreting the requirements; in other words, informally, just
as before. The theorists think that studying field dependencies rather than field
relationships has resulted in a method that is formal and exact, but what is
formal and exact is only the new principles. These principles did not replace
the informal task of understanding the requirements; so that task – upon which
the correctness of the database ultimately depends – has remained unchanged.

If we divide the design process into two parts, formal and informal, the
traditional method is almost entirely informal, while the new one is almost
entirely formal. But this improvement is an illusion. What confuses the
theorists is that the part which they invented, and which is indeed formal,
keeps growing, while the traditional part (understanding the requirements)
remains the same. Recalling an earlier quotation, research in this area is
flourishing. Thus, the more preoccupied they are with the dependency theory,
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the smaller the informal part appears to be. The informal part, after all, consists
simply in determining, for a given field, its relationship with the other fields.
In the end, though, this decision is the only thing that matters – what will make
the database correct or incorrect – with both the traditional method and the
new one. But, while this decision is practically the whole design process with
the traditional method, with the new method it is such a small part that it
goes unnoticed. So the theorists delude themselves that the new method is
entirely formal.

The formal part, thus, did not eliminate the informal one in the new
method; it is additional to it. The formal part, while impressive, is absurd if the
correctness of the database depends ultimately on the small part that is
informal – on the part that, with the traditional method, is the only thing
we need.

So the conclusion must be that the concept of normalization is worthless. It
is an artificial, unnecessary theory. The critical part is still the informal task of
determining what field relationships match the application’s requirements. But
by spending most of their time with formal and complicated procedures, and
only moments with that informal task, the relational enthusiasts can claim that
database design is now an exact science.

We examined earlier the first stage of the delusion of normalization: the
belief that we need some new, formal principles, when in fact the traditional
concepts provide an excellent and relatively simple design method. In the
following pages we examine the second stage: the belief that the principles of
normalization provide indeed a formal design method, when in fact the critical
part is as informal as before.

6

6
Like predicate calculus, which inspired it, the formal relational model is a true
mathematical system, complete with operations and formulas. Its weakness, we
saw under the first delusion, is only that it is irrelevant to database work: when
we depict the use of a relational system as the translation of database entities
into mathematical ones and their manipulation within the system, we find that
the manipulation – the most important aspect in other mathematical systems,
and the reason for performing the translation – plays an insignificant part.

The normalization theory, on the other hand, is not a mathematical system
at all. The theorists discuss it as seriously as they do the formal relational
model, but on closer analysis we discover that all they do is present it formally.
There are no true operations or formulas in this theory, as there are in the
formal model; all we have is a study of field dependencies, expressed through
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formal notation. The theory of normalization, in other words, consists entirely
of a process of translation: from the real entities into the relational ones. There
is no manipulation at all. The only operations available are those we had under
the formal relational model.

An example of the specious mathematics of the normalization theory is
found in a long paper written by E. F. Codd – a paper generally regarded as the
most rigorous treatment of the second and third normal forms.Í The paper
provides an exhaustive analysis of field dependencies and their elimination,
but despite the formal tone and terminology, this is not a mathematical theory.
The paper describes various combinations of data elements, and represents
their relationships and dependencies by means of a formal system of notation.
The resulting expressions look perhaps like mathematical formulas, but they
serve no purpose beyond this representation. Page after page of expressions
are, in reality, only the translation of files and fields into the new notation. Once
the translation is complete, we have no way to manipulate the expressions. All
the system does, then, is represent field dependencies formally. Were this a true
mathematical system, we would have some new relational operations, to
replace the original ones.

We find the same style in thousands of other writings. What is described as
mathematics is merely a system of definitions and theorems expressing in
formal notation various issues pertaining to the subject of field dependency.
Typically, the papers introduce new terms and define them through references
to other terms, show how to derive certain parts of the system from other parts,
prove that if certain conditions hold then other conditions will also hold, and
so forth. And this is where the mathematics ends.

It is the introduction of new terms that the authors are especially fond of.
The relational theory in general overwhelms us with new terminology, but the
principles of normalization in particular seem to require some new terms at
every step. Thus, along with the formal tone, the rich terminology helps to
make the normalization theory appear important, no matter how shallow it
actually is. But, while the mathematical style of these writings impresses naive
readers, an intelligent person merely finds the writings incomprehensible.
The reason is that, since we know that the whole theory is unnecessary, we
have little motivation to assimilate the countless terms and definitions; and
without understanding the new concepts it is impossible to follow the author’s
discussion.

To convey the flavour of this style, I will quote a few lines from Date’s book
(out of the seventy pages devoted to the subject of normalization). After

Í E. F. Codd, “Further Normalization of the Data Base Relational Model,” in Data Base
Systems, ed. Randall Rustin (Englewood Cliffs, NJ: Prentice Hall, 1972), pp. 33–64.
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presenting several related theorems, Date defines the fourth normal form as
follows: “Relation R is in 4NF if and only if, whenever there exist subsets A and
B of the attributes of R such that the (nontrivial) MVD A→→B is satisfied, then
all attributes of R are also functionally dependent on A.”Î Concepts like
“nontrivial,” “MVD,” and “functionally dependent,” used in this definition, are
explained on previous pages. For example, MVD (multivalued dependency) is
defined as follows: “Let R be a relation, and let A, B, and C be arbitrary subsets
of the set of attributes of R. Then we say that B is multidependent on A – in
symbols, A→→B (read ‘A multidetermines B,’ or simply ‘A double-arrow B’) – if
and only if the set of B-values matching a given (A-value, C-value) pair in R
depends only on the A-value and is independent of the C-value.”Ï

It is also worth mentioning the following warning: “We stress the point that
the discussions that follow are intended to explain a formal theory, albeit in a
fairly informal manner.”Ð In other words, definitions and explanations like
those quoted above, and the endless formulas and diagrams, are not the actual
theory but a simplified version. For the really formal discussion we must
consult the original papers, in academic journals.

�

To summarize, all that the normalization theory does is represent formally the
relationships between fields. A true mathematical system would provide
operations that combine entities to create increasingly high levels, as do
the systems used in engineering. There are no such operations here, so the
normalization theory does not describe a mathematical system. What it
describes is a formal system of representation. This system may have its uses, but
not in the way a mathematical system has. In the end, the only mathematical
manipulation remains the one provided by the original relational model. The
normalization theory is not a true enhancement of that model.

So what the relational theorists invented is akin to a game. The normali-
zation work is additional to the task of studying and implementing the
application’s requirements. That task has remained as important – and as
informal – as before. It is only the game that is formal and exact. This is
a sophisticated and difficult game, demanding a special kind of knowledge.
It is not surprising, therefore, that the academics who invented it, and the
practitioners who learn it, feel that their normalization work is a sign of
expertise. This is expertise in playing a game, though, not in designing
databases.

Î Date, Database Systems, p. 329. Ï Ibid., p. 328. Ð Ibid., p. 327.
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7

7
The reason we cannot have a formal and useful theory of normalization is
that the dependency of one field on another is not a database problem, but part
of the application’s logic. Formal normalization principles can only deal with
the database structures. They cannot take into account the other structures that
make up the application – the business practices, for instance. And it is these
other structures that determine, ultimately, the relationships between database
fields. A formal theory, thus, can deal with such issues as the definition and
classification of dependencies, or the conversion from one normal form
to another; but it cannot tell us whether the relationships are correct. In
particular, no formal theory can tell us to which file to assign a given field.
Only our knowledge of the application can do this.

Recalling the earlier examples, assigning the product description to the
same file as the product number is not right or wrong in an absolute sense,
but only relative to the requirements being implemented: if the description is
fixed, it should be in the same file; if changeable, in the other file. We must
understand the requirements. And when we do, we already know how to
implement them: as a one-to-one or as a one-to-many relationship. Thus, a
formal theory cannot replace the need to study the requirements, and is
unnecessary once we understand them. It is, in other words, useless.

Let us take another example. An employee file usually includes such fields
as department, position, salary, seniority code, and vacation code. Now, these
fields may be related in one company, and unrelated in another. The salary, for
instance, may be independent, or the same for all the employees with a
particular position; the vacation code may be independent, or the same for all
the employees with a particular seniority; the position and salary may be
independent, or the same for all the employees in a particular department.
Some of these fields, therefore, may be dependent on others, in which case they
should be moved into separate files: a salary file where the key is the position,
a vacation code file where the key is the seniority code, and so on. But only we
can know whether a given field is or is not independent; and we would know
this in the same way we know the other requirements that define the payroll
application. The same application, in fact, may be used by two companies while
a certain field is independent in one but not in the other. So, just like the
business practices that make up an application, the normalization requirements
may be different in each case; and as a result, a database that is deemed to be
normalized for one company may not be for the other. Again, since it is only
we that can discover the field relationships, a formal theory is useless.
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Another situation where the need for normalization is determined largely
by our knowledge of the application occurs when files are updated only under
certain conditions. Thus, some files may be used by the application in such a
way that a relationship of dependency between two fields in the same record
would be harmless. For example, records may be added but not modified
or deleted; or those fields alone may never be modified. Also, there are
situations where it may be simpler or more efficient to deal with the problem
of dependency through the application’s logic, rather than through database
restrictions. In all these situations, what we do is simplify the application
or improve its performance by noting that not all conceivable database opera-
tions will actually be performed. Clearly, no formal theory can include such
knowledge.

The only formal theory of normalization possible is one that assumes the
worst case; namely, the case where every field may depend on another field. As
we saw, we eliminate each dependency by separating the two fields: we place
one field in a new file, where the records are linked through their key to the
field left in the first file. Thus, if we want to be absolutely certain that there are
no dependencies, and if we don’t want to rely on an interpretation of the
requirements, we must separate in this manner every field, in every file. In
the end, every file in the database will have only one non-key field. This
is an exact, formal procedure – a procedure that can even be automated.
However, because many of the separated fields must be put back together in
the running application, this overnormalization would make the application
too complicated and too slow; so no one seriously suggests that we follow it.
(In fact, as we will see under the third delusion, even minimal normalization –
separating just a few fields – is often impractical and must be forsaken.)

A database where the smallest necessary number of fields (rather than
an arbitrarily large number) were separated in an attempt to eliminate all
dependencies is said to be in optimal second normal form. This sounds like a
precise definition, but in reality it is only informally, through our knowledge
of the application, that we can determine whether or not the normalization of
a given database is “optimal.” Again, the only way to have a formal theory is by
separating every field in the database, regardless of how it is used in the
application.

�

But even if we succeeded somehow in developing an exact and complete theory
of normalization, it would still be inadequate. This is true because normaliza-
tion deals only with dependencies that can be eliminated by separating fields.
There are many other types of field dependencies in an application, all a natural
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part of the application’s logic. Every application includes operations that relate
fields in the same record, or fields in separate files. Some of these fields,
therefore, depend on others; so they are, strictly speaking, unnecessary. But we
cannot eliminate these dependencies through normalization, by separating
fields.

Let us examine a simple example of the type of dependency that cannot
be eliminated through normalization – the classic case of aged balances.
The customer balance, for instance, is usually stored in several fields in the
customer record: current, thirty-day, sixty-day, and ninety-day balances. And
there is usually an additional field, for the total balance, which is the sum of
the other four. But if the total balance is always the sum of the aged balances,
its field can be eliminated. Instead of having a separate field, we can calculate
the total balance (by adding the other fields) wherever we need it in the
application. The reason we usually retain the total balance field is that this
is simpler than calculating it: in most applications we modify it in only a
couple of places (typically, when invoicing the customer and when receiving
payments), but we show it in dozens of inquiries and reports. So it is simpler
to update the total balance in the few places where an aged balance changes,
and merely to read it in the other places.

It is obvious that the dependency of the total balance on the aged balances
cannot be eliminated through normalization, by moving the total balance into
a new file. What we do for this type of dependency, therefore, is similar to what
we do when we decide not to normalize in situations where normalization is
possible: we anticipate the problems that may be caused by the updating
operations, and we add to the application’s logic the necessary steps to prevent
them. Thus, in the case of balances, we must remember to update the total
balance too, when one of the aged ones is updated. And if we neglect this, we
will face “update anomalies” (the total balance will no longer equal the sum of
the aged ones) not unlike those that occur in unnormalized files when we
ignore the effect of updating operations.

To continue this example, in most applications the aged balances themselves
can be calculated, using a transactions file: we read the records belonging to a
particular customer, and total the invoice and payment amounts under four
different periods. So the aged balance fields too are dependent on other fields,
and hence unnecessary (although the original data is now in another file). Also
like the previous dependency, this dependency cannot be resolved through
normalization. To prevent “update anomalies” (balance fields different from
the sum of the transactions), we must either eliminate the balance fields, or
ensure that they are updated whenever a record is added to the transactions
file. (In this case, though, eliminating the fields is rarely practical, because it is
too inefficient to calculate them by reading the transaction records every time.)
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So what is the point in seeking a formal theory of normalization, if this
theory would eliminate only some dependencies? Clearly, there is no limit to
the types of field dependencies that can exist in an application – types like the
ones we have just examined. In fact, we don’t even think of these dependencies
as a database problem, but as various aspects of the application’s logic. Since
most software requirements involve database fields – fields belonging to one
file or to several files – it is natural to find relationships of dependency between
fields. And it would be absurd to eliminate these relationships solely in order
to avoid redundancy, or to avoid inconsistencies in updating operations.
What we do in each case is seek the most effective design: we eliminate the
dependency when practical, and deal with the updating problems as part of the
application’s logic when this is simpler or makes the application faster.

In the end, all field dependencies cause similar problems, and we can
only deal with these problems by taking into account not just the database
structures but all the structures that make up the application. These are not
database problems but ordinary programming problems, similar to the many
other problems we face when developing an application. And it is just as futile
to search for an exact and complete theory of field dependency as it is to search
for an exact and complete theory of programming. The relational theorists
isolated one type of dependency – the type that can be eliminated by separating
fields; and they naively concluded that, if we eliminate this one type, we will
eliminate all the problems caused by dependency (or, at least, the most
common problems).

This belief is reflected in the relational vocabulary (terms like “normalize”
and “normal form” imply a particular, proper data format) and in the number-
ing system (the fifth normal form is said to be the last and most stringent
one). Hardly ever are the other types of dependencies mentioned at all. Date
discusses them briefly: “5NF is the ultimate normal form with respect to
projection and join. . . . That is, a relation in 5NF is guaranteed to be free of
anomalies that can be eliminated by taking projections [i.e., by separating
fields]. . . . Of course, this remark does not mean that the relation is free of all
possible anomalies. It just means (to repeat) that it is free of anomalies that can
be removed by taking projections.”Ñ Most authors, however, depict the process
of normalization as a final refinement, as a guarantee of database validity.

Thus, by emphasizing the few dependencies that can be eliminated through
normalization while disregarding the many that cannot, the relational experts
make the normalization principles appear more important than they really are.
Then, they use this misrepresentation to rationalize their search for a theory of
normalization.

Ñ Ibid., p. 334 and footnote.
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8

8
If the theory of normalization is unnecessary, if the traditional design method
permits us to avoid redundancy and inconsistencies simply by understanding
the application’s requirements, how do the theorists justify their lengthy
discussions? By distorting the problem of database design. They describe some
contrived database structures that are incorrect but hardly ever occur in
practice, and then they show us how to turn them into correct ones.

The only theory they can offer us is one that studies the so-called normal
forms and gives us methods to convert files from one form to another. But
we need such a theory only if we normally create incorrect databases. The
theorists present the incorrect databases as a common occurrence, and the
concept of normalization appears then important. In reality, we can create
correct databases from the start, by selecting file relationships that match the
application’s requirements. So the classification of normal forms and the
conversion procedures have no practical value.

I will illustrate this distortion now with a few examples taken from database
books. In all these situations, we will see, the correct design can be easily
determined from the requirements. The authors, however, ignore the require-
ments, and start with a deliberately incorrect design: a single file, when several
are needed. They start, that is, with a one-to-one relationship when the
requirements call for one-to-many or many-to-many. They point to the
problems caused by the incorrect design, and then they study the requirements
and show us how to arrive at the correct one: through normalization.

The examples, in other words, are presented so as to make the theory of
normalization, which in reality is totally unnecessary, look like an indispen-
sable concept in database design. Moreover, their method is so lengthy and
complicated that the reader is likely to miss the fact that its preciseness
and formality are specious: the most important decisions – identifying the
misplaced field dependencies – are still being made, not mathematically, but
through an informal interpretation of the requirements.

�

Brathwaite demonstrates the second normal form with this simple problem:ÉÈ
we want to store some information about students and about the classes they

ÉÈ Ken S. Brathwaite, Relational Databases: Concepts, Design, and Administration (New
York: McGraw-Hill, 1991), pp. 76–77.
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attend; students are identified by a student number, and we must record their
name and major; classes are identified by a class number, and we must record
the class location and time; a student may attend several classes, and we must
be able to identify these classes.

Ignoring all we know about normalization, we note that the students and
classes form a many-to-many relationship (a student attends several classes,
and a class is attended by several students). So the student number and class
number must be in separate files: a student file, where the student number is
the key, and a class file, where the class number is the key. The student name
and major are both related as one-to-one to the student number, so they must
be non-key fields in the student file. Similarly, the class location and time are
related as one-to-one to the class number, so they must be non-key fields in the
class file. Lastly, to link the two files, we need a service file where the key is the
combination of student number and class number. In a traditional database,
the service file could then have two indexes: class number within student
number (to select the class records associated with a student), and student
number within class number (to select the student records associated with a
class). But the requirements call only for the link from student to classes, so we
need in fact only the first index. (It is worth noting that in a real application
the link file wouldn’t be just a service file; it would also have some non-key
fields, for data that is related as one-to-one to its key – the student’s grade, for
instance.)

Brathwaite, though, attempts to implement the requirements with one file:
the combination of student number and class number is the key, while the
student name and major, and the class location and time, are non-key fields.
Then, he notes the problems caused by this design: no information can be
stored about a particular student unless the student is enrolled in at least one
class, or about a particular class unless at least one student attends it. Also, a
certain name and major will be repeated for every class attended by that
student, and a certain location and time will be repeated for every student
attending that class; so if these values change, several records would have to be
updated.

What causes these problems, Brathwaite explains, is the dependency of non-
key fields on part of the key: while the key includes both the student and the
class numbers, the student name and major depend only on the student
number, and the class location and time only on the class number. Non-key
fields must depend on the whole key, so the solution is to create a separate file
for the two student-related fields, with the student number alone as the key,
and another file for the two class-related fields, with the class number alone as
the key. What will be left in the original file is just its key, the student and class
numbers. This design eliminates all the aforementioned problems.
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The final database, thus, is identical to the one we created earlier, directly
from the requirements. We knew all along that it was correct, simply because
it reflects accurately the requirements. Now, however, we are told that it is
correct because the files are in second normal form (whereas the original file,
with all fields bundled together, was only in first normal form).

What is the point of this approach? Starting with one file would make sense,
perhaps, if the method used to reach the final design were indeed formal
and exact (in which case we could even automate the design process). But
the misplaced dependencies were discovered informally, by interpreting the
requirements. For instance, when noting that the name and major depend only
on the student number, we used the same information and the same logic as
we used earlier, when noting that they are related as one-to-one to the student
number. With normalization as much as with the traditional method, we
relied on skill and common sense, not on mathematics. Thus, if we know how
to determine the relationship between two fields, we may as well use this
knowledge directly to assign them to the proper files. Why bundle them first
in one file, and then use this knowledge to separate them?

So the part that is formal – the classification of field dependencies – did
not replace the need for, nor the importance of, the part that is informal.
The correctness of the normalization depends, ultimately, on the correct
interpretation of the requirements. The fancy terminology makes the process
of normalization seem more exact than the traditional method, when in reality
it is merely more complicated.

�

Date starts his discussion of the second and third normal forms with the
following problem.ÉÉ Let us imagine that we purchase parts from a number of
suppliers, located in different cities and identified by a supplier number; the
cities are identified by the city name, and each city has a status associated with
it; several suppliers may be located in the same city; a supplier can sell different
parts, which are identified by a part number; and we want to record our
purchase orders by storing for each order the supplier number, part number,
and quantity. (The requirements assume, for the sake of simplicity, that only
one order exists at a given time for each combination of supplier and part
number, so we don’t need order numbers. Also, the requirements call for the
capability to identify directly the city of a given supplier, but not the suppliers
in a given city.)

With our knowledge of file and field relationships, we can translate these

ÉÉ Date, Database Systems, pp. 297–303.
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requirements into the following design. We note first that the city is related as
one-to-many to the supplier, so we need two files: a city file, where the key is
the city name, and a supplier file. In one-to-many relationships, the key of the
“many” file includes usually the “one” file’s key; so here it would be the
combination of city name and supplier number. But the present requirements
do not call for selecting the suppliers in a given city, so the key in the supplier
file can be just the supplier number. We do have to select the city associated
with a supplier, though, so we include the city name as a non-key field. The
status is related as one-to-one to the city, so we add it as a non-key field to the
city file. The supplier number is related as one-to-many to the order-related
fields, part number and quantity; so these fields must be in a third file, orders,
where the key is the combination of supplier number and part number.

Date, however, says nothing about these relationships. He starts by bundling
all five fields (supplier number, status, city name, part number, and quantity)
in one file: the orders file, where the key is the combination of supplier number
and part number. And immediately he notes the consequent redundancy and
anomalies: Since there must be a record in this file for every order, the
information that a certain supplier is located in a certain city will be repeated
for every order from that supplier; so, if the supplier relocates to another city,
we will have to modify several records. Similarly, the information that a certain
city has a certain status will be repeated for every order from every supplier in
that city; so, if the status changes, we will have to modify several records. Lastly,
we cannot store the information that a certain supplier is located in a certain
city unless an order exists for that supplier.

Date then presents the solution. The first step is to separate the fields by
creating a new file: the supplier file, where the key is the supplier number,
and the city name and status are non-key fields. The quantity is left in the
orders file. Since each combination of supplier and city appears now in only
one record, the redundancy associated with the city, along with the update
anomalies, has been eliminated. The solution can be expressed in terms of
misplaced dependencies: while non-key fields must depend on the whole key,
the city and status in the original file were dependent only on the supplier
(they are the same for all the orders from a given supplier). In terms of
normalization, the problem was solved because the new files are in second
normal form, while the original one was only in first normal form.

But this still leaves the other redundancy: the status of a certain city is
repeated in the supplier file for every supplier located in that city. Although not
as bad as in the original file (where the repetition was for every order from
every supplier in that city), this redundancy will nevertheless cause the same
kind of problems. The misplaced dependency that must be eliminated now is
between the status and the city (two non-key fields). So we create a new file:
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the city file, where the key is the city name, and the status is a non-key field.
The supplier file will then be left with only the city as a non-key field. In terms
of normalization, the problem was solved because these two files are in third
normal form. In other words, while the second is the highest normal form
attainable for the orders file, we can attain the third for the supplier file by
creating a separate city file; and a database is fully normalized only when each
file is in its highest attainable normal form. (The difference between the second
and third is in the type of misplaced dependency that is eliminated: on only a
portion of the key, and on a non-key field.)

So by the time he is done, Date ends up with exactly the same database as
the one we created directly from requirements with the traditional design
method. The normalization method is more complicated, and we still depend
on an informal decision: we identify the misplaced field dependencies by
interpreting the requirements, the same way we identified the correct field
relationships before. What is formal is only the analysis of these dependencies
and the conversion from one normal form to another; that is, the work that is
additional to the task of identifying them.

�

Carter uses the example of an employee file to demonstrate the fourth normal
form.ÉÊ Specifically, we have to store for each employee, in addition to his name,
some data about his children and about his salary history. Thus, we need a set
of fields for each child (identified by the child’s name), and a set of fields for
the salary of each past year (identified by the year). We will have an employee
file where the employee number is key, and the name (related as one-to-
one to the number) is a non-key field. And we will have two one-to-many
relationships, with the employee file acting as shared “one” file: between
employee and children, and between employee and salary history. In the
children file, the key will be the combination of employee number and
child name; and in the salary history file, the combination of employee
number and year. We will then be able to select for a given employee the
corresponding child records and history records; and for a given child or year,
the corresponding employee record.

Carter, however, starts by showing us what would happen if we placed the
child and salary history fields in the same file – a file where the key is the
combination of employee number, child name, and year: we would have to
repeat the entire salary history for each child. For instance, for an employee
with 3 children and 10 years of history, there would be 30 records in this file:

ÉÊ John Carter, The Relational Database (London: Chapman and Hall, 1995), pp. 135–150.
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one record for each combination of child and year. This design, therefore,
would cause redundancy and anomalies: to add or modify the data for one
child, we would have to add or modify 10 records (because the same child data
is stored for each year); and to add or modify the history data for one year, we
would have to add or modify 3 records (because the same history data is stored
for each child).

Now, no one would try to combine child data and salary history in one file.
Carter must start with this absurd design in order to demonstrate the benefits
of normalization. It is pointless to describe his actual analysis – fifteen pages of
complicated principles, definitions, and diagrams related to the fourth normal
form, not to mention nearly forty prior pages dealing with the lower normal
forms. Briefly, that file suffers from multivalued dependencies (i.e., several
fields dependent on one another). The solution is to separate it into two files,
one for child data and the other for salary history – which is exactly how we
designed the database to begin with.

The redundancy and anomalies were eliminated, we are told, because these
files are in fourth normal form, while the original file was only in Boyce/Codd
normal form. But we know that the database is correct simply because it
expresses two one-to-many relationships, which is what the requirements
actually called for. Carter needs an enormously complicated procedure to
reach the same design that we reached simply by implementing, directly
from requirements, the appropriate file relationships. Moreover, the critical
observation that the child data and history data must be separated could only
be made informally, by studying the requirements – just as we identified the file
relationships with the traditional design method.

�

Date explains the fourth normal form with a more difficult example.ÉË We are
asked to design a database to express the relationships between the courses,
teachers, and textbooks in a certain school, with the following requirements: a
particular course may be taught by one or more teachers, and a teacher may
teach one or more courses; a particular course may use one or more textbooks,
and a textbook may be used in one or more courses; a particular course always
uses the same textbooks, regardless of the teacher.

Studying the requirements, we note two many-to-many relationships:
between courses and teachers, and between courses and textbooks. We need,
therefore, three main files (courses, teachers, and textbooks) linked through
two service files. To satisfy the requirement that a teacher may teach several

ÉË Date, Database Systems, pp. 325–329.
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courses and at the same time a course may be taught by several teachers, we
create a service file where the key is the combination of course and teacher; and
to satisfy the requirement that a course may use several textbooks and at the
same time a textbook may be used in several courses, we create a service file
where the key is the combination of course and textbook.

As usual, in order to implement the two-way links between files (course to
teacher and teacher to course, course to textbook and textbook to course), the
service files must provide both sorting sequences: teachers within courses and
courses within teachers, textbooks within courses and courses within text-
books. (Thus, if we use a traditional database, there will be two indexes for each
service file.) We will then be able to select for a given course the corresponding
records in the teachers file, and for a given teacher the corresponding records
in the courses file; and we will also be able to select for a given course
the corresponding records in the textbooks file, and for a given textbook the
corresponding records in the courses file.

This, then, is how a sensible database book would present the example – the
problem and the solution. Let us see now how Date presents it. He starts by
attempting to implement all the relationships with one service file – a file where
the key is the combination of course, teacher, and textbook. (So there is one
record in the file for each combination of values in the three fields.) But this
design is absurd; it is deliberately incorrect in order to demonstrate the
transition from one normal form to another. The file, Date explains, is only in
Boyce/Codd normal form, and this gives rise to redundancy and anomalies.
For instance, if a particular course uses two textbooks, we will need two records
for every teacher who teaches that course, although all teachers use the same
textbooks. In addition to this duplication, we would have to add, delete, or
modify several records (one for each teacher) when adding, deleting, or
modifying the information about a textbook. Expressing the problem in terms
of dependencies, the design is incorrect because it permits a multivalued
dependency.

But this is a gross simplification of Date’s actual explanation – four pages of
complicated pseudo-mathematical analysis, which is in fact incomprehensible
without a good understanding of some fifty prior pages on the subject of
normalization.

The solution, Date concludes, is to have two service files rather than
one, and to separate the three key fields into two sets of two fields.ÉÌ More
specifically, it is the teacher and textbook fields that must be separated.

ÉÌ It must be noted that Date does not call these files service files, thus suggesting that
they are the main data files (i.e., tables). A real application, though, would also require some
non-key fields, to store details about courses, teachers, and textbooks; and such fields would
not be added to these files, because that would cause much redundancy.

764 the relational database model chapter 7



The result, needless to say, is the two service files we created previously,
when we implemented the database as two many-to-many relationships. The
redundancy and anomalies were eliminated, we learn now, because these files
are in fourth normal form.

The design method based on file relationships, we saw, leads directly to the
correct database. Date describes a situation that is a good example of a
fundamental database concept, the many-to-many relationship. But instead of
discussing this concept, he presents a silly, deliberately incorrect design. Then,
he uses this design to justify the need for the normalization theory.

And, as in the previous examples, the complexity of the normalization
masks the fact that the critical step (the observation that it is the teachers and
textbooks fields that must be separated) was based on an informal interpreta-
tion of the requirements – exactly the same interpretation that helped us to
determine the correct relationships with the traditional method.

9

9
We saw earlier that the principles of normalization are not, in fact, required by
the original relational model: they are not an extension of the formal model,
but an attempt to formalize the process of database design (see pp. 732–734).
The normalization theory is, in effect, an independent theory – a theory
that can be applied to any system based on records, fields, and keys. Thus,
we can study the normalization theory on its own, ignoring the relational
model altogether. And when doing so, its character as a mechanistic delusion
becomes even clearer. By way of summary, therefore, I want to recapitulate the
normalization fallacies and to show how they arose from the mechanistic way
of thinking that pervades the academic world.

Mechanists attempt to explain a complex phenomenon, which can only be
represented with a complex structure, by breaking it down into simpler
phenomena: they extract smaller and smaller aspects of it, until they reach an
aspect that can be represented with a simple structure. And at that point they
discover an exact theory – a theory based on that aspect alone. But this
discovery is a trivial, predictable achievement; for, if we keep reifying any
phenomenon, we are bound to reach, eventually, aspects simple enough to
allow an exact theory. The discovery, nevertheless, generates a great deal of
excitement, so the mechanists initiate a research program. The more elaborate
their research becomes, the more confident they are about its importance.
Although it is obvious to everyone that the theory explains only that one
isolated aspect, the mechanists promote it as if what it explained were the
original, complex phenomenon.
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The phenomenon of a database comprises many aspects, of which the most
important are the application’s requirements and the file relationships; that is,
the actual entities and relationships, and their representation in software. And
these two aspects consist, in their turn, of many aspects. Among the other
aspects of this phenomenon are the field dependencies, the data redundancy,
and the inconsistencies (the so-called update anomalies).

The aim of the normalization theory is to find a formal, exact method
for designing the file relationships from a knowledge of the requirements
(or, at least, for determining whether a given set of relationships matches
the requirements). Now, it may be possible to represent with one structure the
relationships on their own, or the dependencies, or the redundancy, or the
inconsistencies, or perhaps even a combination of them. But the database
phenomenon as a whole is complex, because these aspects interact with
the requirements, which in turn interact with many other aspects of the
application. Thus, no mechanistic theory can represent the system that consists
of the file relationships plus the requirements. No formal method can exist,
therefore, to determine whether or not a given set of relationships matches the
requirements.

Because they could not discover a theory for the actual database phenome-
non, the software mechanists tried to discover a theory by breaking down the
phenomenon into simpler ones. They noticed that the inconsistencies occur
when the file relationships are incorrect; and they also noticed that the
inconsistencies are related to data redundancy and to field dependencies. It is
the misplaced dependencies, they concluded, that cause redundancy and
inconsistencies. And since this one aspect of the original phenomenon is
simple enough to represent with an exact theory, they made it their subject of
research. The dependency theory is believed to be the answer to the original
problem: if we study, analyze, and classify the various types of field dependen-
cies, the mechanists say, we will discover a formal method for avoiding
misplaced ones; this will then prevent data redundancy and inconsistencies;
and the lack of redundancy and inconsistencies will indicate that the file
relationships match the requirements.

But this logic is fallacious. The dependencies, like the redundancy and the
inconsistencies, are merely one aspect of the database phenomenon. They are
not the cause of correct or incorrect file relationships, but just a different way
of viewing them. So it is absurd to study the dependencies in the hope of
determining from them the correct relationships. The requirements are the real
determinant in this phenomenon. It is only from the requirements, therefore,
that we can determine other aspects of the phenomenon: when there is no
discrepancy between the requirements and the file relationships, there are no
misplaced dependencies, no redundancy, and no inconsistencies; and when
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there is a discrepancy, we note misplaced dependencies, redundancy, and
inconsistencies.

It is indeed possible to explain the relationships, the redundancy, and the
inconsistencies in terms of dependencies; but this is true because they are
closely related aspects of the same phenomenon, not because the dependencies
cause the other aspects. Thus, instead of a dependency theory we could develop
an equally elaborate redundancy theory, to study, analyze, and classify the
various types of data redundancy; or an inconsistency theory, for the various
types of data inconsistency; or a relationship theory, for the various types of file
relationships. And each theory could then be used to “explain” the other three
aspects, just as the dependency theory is said to explain the redundancy, the
inconsistencies, and the relationships.

From the requirements, then, we can determine the other aspects, but not
the other way around. The mechanists base their theory on dependencies
because they mistakenly interpret them as the cause of correct or incorrect file
relationships. The dependencies on their own, though, are meaningless; for, we
cannot decide from a dependency alone whether or not it is misplaced.
Similarly, the redundancy or inconsistencies or relationships on their own, or
all aspects together, are meaningless. The real cause – what can explain all four
aspects – is the requirements. The dependency theory, thus, suffers from the
fallacy of confusing cause and effect. It is fundamentally wrong.

�

Each aspect of the phenomenon of a database has its own representation:
the requirements are represented by means of business practices, the file
relationships by means of diagrams or programming languages, and the
dependencies by means of a system of notation peculiar to the normalization
theory. Similar systems could be invented to represent the redundancy and
the inconsistencies, if we wanted. Each aspect provides a different view of
the database, but neither is complete; only a system embodying all these
aspects, plus those aspects we are not even discussing here, can represent the
phenomenon of a database accurately. Thus, because they form a complex
phenomenon, it is impossible to describe these aspects and their relationships
exactly and completely. We can design correct databases, but this is largely an
informal procedure.

Database design entails the conversion from one system of representation
to another. What we want to attain, of course, is the software representation;
that is, the file relationships. So, if it is the requirements that ultimately
determine what are the correct relationships, the only conversion worth
studying is the traditional one, from requirements to relationships. Because
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they failed to discover a formal and exact procedure for this conversion, the
relational mechanists shifted their attention to the study of field dependencies.
Their theory does offer a formal and exact conversion, but only from depend-
encies to relationships. Its exactness is illusory, therefore, because to benefit
from it we must ensure first that we have correct dependencies. And the only
way to attain the correct dependencies is by performing the conversion from
requirements to dependencies, which is as informal as the traditional one,
from requirements to relationships (see figure 7-17).

The dependency theory may appear impressive to the casual observer, but
in reality an exact theory that explains relationships in terms of dependencies is
a trivial accomplishment. It is not surprising that one aspect of a phenomenon
can be shown to depend on another, if they are closely related. Thus, we
could also discover similar theories to explain relationships in terms of
redundancy, inconsistencies in terms of dependencies, dependencies in terms
of redundancy, and so on. But that first step – from requirements to one of
the other aspects – is always necessary, and is always informal. So we may
as well use the traditional method, which entails only that one step – from
requirements to relationships.

Of the five aspects of this phenomenon, the requirements and the file
relationships are the most intuitive, and the field dependencies are the least
intuitive. This is why, before the relational theory, we had no interest in
dependencies; we only studied the requirements and the relationships, and
sometimes the redundancy and the inconsistencies. We are asked now to
replace what is the simplest method – the intuitive conversion from require-
ments to relationships – with a method that involves two steps, each one more
complicated than our one-step method: the conversion from requirements

Figure 7-17
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to dependencies – which the mechanists must perform but don’t like to
discuss, because it is informal – is less intuitive and already more difficult than
requirements to relationships; and in addition, we have now the intricate
dependency theory, for the conversion from dependencies to relationships. (It
is, perhaps, precisely because the study of field dependencies is so complicated
that the mechanists think it is an important discovery.)

The dependency theory is typical of the mechanistic pseudosciences. The
relational mechanists settled for a dependency theory only because this is one
narrow aspect of the database phenomenon for which they could find an exact
explanation. They never proved that this theory could model the whole
phenomenon. But then they forgot this limitation, and proceeded to treat the
theory as if it did provide a formal method for database design.

In conclusion, the dependency theory – a major, thirty-year-old research
program involving thousands of academics and generating a vast literature – is
a worthless, senseless pursuit. No matter how exact it is, it cannot help us
to determine what are the correct relationships. Thus, recalling an earlier
example, the theory cannot tell us whether to assign the product description
field to the product file or to the orders file. We must decide which alternative
is correct during the conversion from requirements to dependencies, before we
even get to use the theory. The theory may well offer us a formal, faultless
conversion from dependencies to relationships, but we can only apply it after
determining – informally – what are the correct dependencies.

The Third Delusion

The Third Delusion
1 1
The third delusion consists of those modifications to the relational model that
are presented as enhancements, while being in reality reversals of the relational
principles. These modifications were introduced when it was discovered
that the model worked only with small and simple databases, and was totally
impractical for serious applications. Thus, while the need for reversals consti-
tutes an obvious refutation of the relational model, the theorists describe these
reversals as new relational features.

The original theory defined a complete database model, and, although
generally worthless, was a falsifiable concept. So, had it remained an academic
treatise, it could have been regarded perhaps as a serious study. But because its
supporters believed that it could have practical applications, the theory had to
be modified again and again. The modifications, as we will see shortly, serve
largely to restore the low-level capabilities of the traditional file operations –
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capabilities which the relational model had attempted to replace with high-
level features. Clearly, by the time we restore these capabilities we no longer
have a relational model. The third delusion is in the belief that we can continue
to enjoy the benefits promised by the original model even while reversing its
principles.

The relational theory, thus, was turned into a pseudoscience when its
supporters, instead of admitting that it had been refuted, decided to “improve”
it: they suppressed the falsifications, one by one, by incorporating them
into the model in the guise of new features. This practice rendered the
theory unfalsifiable. (We examined earlier the pseudoscientific nature of the
relational theory; see pp. 710–712, 713–714.) The relational model was indeed
rescued, but this was accomplished by annulling the relational principles and
reinstating the traditional ones. And because they were reinstated within the
relational model, the traditional principles are now far more complicated than
they were on their own. Moreover, relational systems still lack the flexibility
and efficiency we enjoy with the traditional file operations.

From its simple origin, and from its mathematical ambitions, the relational
theory was degraded in the end to a complicated and messy concept. What is
perceived today as the relational model has little to do with the original
ideas. And, although we still see the claim that the model is founded upon
mathematical principles, relational systems are promoted now on the strength
of features that were described originally as informal aspects of the model.
Today’s relational systems consist of large, cumbersome, inefficient, and
expensive development environments, which include special programming
languages and an endless list of features, definitions, principles, standards,
rules, and procedures that we must assimilate. And what is the purpose of this
complexity? To provide a substitute for what any programmer should be able
to do by using just the six basic file operations.

2

2
Let us start with the concept of normalization. There are two kinds of normali-
zation: the first normal form (1NF), and the second and higher normal forms
(2NF, 3NF, etc.). 1NF was, from the start, part of the formal relational model;
its purpose is to restrict the data stored in each field to a single item, so that the
records and files match the tuples and relations of predicate calculus. The
second and higher normal forms were added later, and belong to the informal
aspects of the relational model; their purpose is to eliminate data redundancy
and inconsistencies.

As we saw, whether the goal is to avoid multiple items in a field or to

770 the relational database model chapter 7



eliminate redundancy and inconsistencies, we must separate the fields of
the file in question into two sets, and move one set into a new file. Each
normalizing step will generally increase by one the number of files in the
database. Thus, although it is quite easy to normalize files, this process
makes it more difficult to access the data. For, we must read more files and
more records, in order to put back together the fields that were separated
by normalization.

The idea of separating and recombining fields looks neat when presented as
mathematical logic; that is, when we assume that data records can be accessed
instantaneously, just like the tuples of predicate calculus. And the additional
complexity caused by the separations and combinations can be justified by
invoking the ultimate benefits of normalization. In real applications, however,
even if we are willing to accept the additional complexity, normalization is
often impractical, because of the excessive time needed to access the data.

Whether the fields were separated in order to attain the first or the higher
normal forms, the only way to recombine them is with the JOIN relational
operation (see pp. 702–703). JOIN creates one file from two: it combines the
records of the two files, retaining only those records where certain fields relate
the files in a particular way. But, while easy to use as a high-level operation,
JOIN is very inefficient and hard to optimize. This may go unnoticed with small
files, but in most databases its execution takes far too long to be practical. Also,
applications usually need many normalization steps, and hence many JOINs
later. Even a simple query may need two or three JOINs, and perhaps hundreds
of times the number of disk accesses that the traditional file operations
would need.É

So the idea of strict normalization had to be abandoned. But the theorists
refer to this reversal with such euphemisms as database “optimization,” or
“tuning,” or “tailoring.” They discuss now the benefits of denormalization with
the same seriousness, and with the same technical, impressive language, as
they did the benefits of normalization before. This makes the reversal appear
like progress, like an enhancement of the relational model. No one mentions
the fact that the abandonment of strict normalization means simply a return
to the informal design principles we had followed before the relational model:
we compare in each situation the benefits and drawbacks of keeping data
together in one file, with those of using two files, and we choose the more
effective alternative. This is what we routinely do when creating databases with
the traditional file operations.

É As I remarked earlier (see p. 732), we can attain the ideals sought by normalization
more effectively with traditional databases. As a result, what is perceived as a fundamental
relational principle – normalized files – is found more often in applications using the
traditional file operations than in applications using relational databases.
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�

The abandonment of the first normal form comes by way of a feature called –
incredibly – non-first-normal-form. Abbreviated with scientific-looking terms
like non-1NF, NFNF, and NF², this feature is so advanced that only a few
database systems support it. Those that do are known as extended relational
systems.

The name chosen by the experts for the new feature betrays their attitude:
instead of simply stating that the first normal form – one of the fundamental
principles of the relational model – has been abandoned, they present the
abandonment as a new principle; and they call this principle, literally, the
opposite of the original one. 1NF is still important, but now we need to impose
this restriction only when convenient. Thus, the experts suppressed the
falsification of an important principle by introducing a new one. In effect, the
two principles, 1NF and non-1NF, cancel each other; that is, taken together
they cannot possibly be serious principles. So the first normal form is now just
an informal recommendation. But the experts describe this falsification of the
relational model as a new, advanced relational feature.

To appreciate the significance of non-1NF, recall the 1NF restriction and its
implications. For a file to be in first normal form, its fields must contain single,
atomic values. Each field, in other words, must contain only one value at a time
– not a list of items, or an array, or any other structure. This restriction is
usually expressed by saying that the columns of a relational table must not
contain repeating groups. The restriction to a single item per field is critical if
we want to base the relational model on mathematical logic (because the
elements of a tuple in predicate calculus are single items).

In most applications, however, we encounter sets of values that are so closely
related that the most effective way to store and use them is as a list, or array.
For example, in a file of purchased parts, we may want to store for each part a
list of up to three vendor numbers, or three vendors and their selling price, or
three vendors with their last price and purchase date. With the traditional file
operations and a language like COBOL, we define these values, respectively, as
an array of 3×1, or 3×2, or 3×3 elements. In the part record, the whole array
will be treated as one field. It will be read into memory or written to disk along
with the record, and, when in memory, its elements can be conveniently
accessed with the same operations that programming languages provide for
manipulating memory arrays. Thus, we can easily display or update one
element or a subset of the elements, compare the three prices, change the
relative position of the vendors, and so on.

In a relational database, the only way to store these values is as a separate
file. The fields in the new file will be, for instance, the vendor number, price,
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and date; and the key will consist of the part number and a sequence number,
1 to 3. For each record in the part file, there will be up to three records in the
new file. Operations like comparing prices or exchanging the relative position
of vendors, which can be performed with a couple of statements in a traditional
database, will now be small programming projects (since we must combine the
two files with JOINs, access the three sets of elements as separate rows but save
them somehow so that we can use them together, and so on). What is worse,
these operations will now take longer to execute, because of the additional
disk accesses.

For a few fields, it is possible to bypass the 1NF principle; and the simplest
way to do it is by simulating arrays with ordinary fields. In the previous
example, we would add to the part record three, six, or nine fields, each one
with its own name, and access them through whatever means a relational
system provides for accessing individual fields. This method obviates the need
for a second file and separate records, and solves therefore the performance
problem; but it makes programming even more complicated. Simulating
arrays with ordinary fields, thus, is an awkward trick that programmers must
employ if they want to bypass the 1NF principle while pretending to like the
relational model.Ê

The fact that we have to resort to tricks in order to avoid the inefficiency of
a relational principle constitutes a falsification of the relational theory. And the
final abandonment of 1NF, after thirty years of struggling to fit real-world
problems into relational systems, is in effect an acknowledgment of this
falsification. Presenting non-1NF as a new relational feature is how the
relational charlatans suppress the falsification.

�

With non-1NF, a field in one file acts as a pointer to records in a second file.
For example, if the first file contains customer records, one field may be used
for that customer’s invoices. But the field itself contains no information. It only
points to another file: an invoice file, where the records are identified through
the combination of customer and invoice numbers, and the set of invoice
records associated with a particular customer record are those with the same
customer number.

Ê The 1NF principle is impractical, not because it requires a second file, but because it
requires a second file in any situation. In contrast, with the traditional operations we are free
to choose, in each situation, the most effective alternative. Thus, we may decide to use a
second file even to replace a small array, if the application must access those elements in such
a way that the use of indexed data records is simpler. Conversely, if access time is critical, we
may decide to use an array even if this results in a very large record size.
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With this method, a record in the first file can point to any number of
records in the second file. In some database systems, more than one field can
act as a pointer to another file; for example, in addition to the invoice field, we
can have an order field and a history field in the customer record, pointing to
records in an orders file and a sales history file, respectively.

Non-1NF allows us to relate files hierarchically, by logically nesting one file
within another. Thus, databases that utilize this feature are also known as
nested relational databases. Nesting is not limited to one level: fields in the
second file can act as pointers to further files, which become then logically
nested within the second one, and so on. Non-1NF allows us, therefore, to
create hierarchical file structures. And, since the original relational model does
not support these relationships, new relational operations were introduced for
defining and accessing the records of nested files.

The concept of file nesting, however, is not new; it is practically identical, in
fact, to the way we relate files when using the traditional file operations (see
pp. 683–686). The only real difference is the higher level of abstraction of the
non-1NF operations. What this means in practice is that, instead of creating
explicit file scanning loops like those in figures 7-15 and 7-16, we invoke some
built-in functions that generate the loops for us.

But, as we know, a higher level of abstraction also has drawbacks: we are
restricted to fewer alternatives. So in the end, even with non-1NF, the relational
systems are not as flexible or efficient as the basic file operations. For example,
with the basic operations we can nest – in different places in the application,
through different fields – the same files in different ways; we can create,
therefore, several relationships between the same files. Also, with the basic
operations we still have the option of storing arrays directly in a record – a
method that is both simpler and faster than file nesting.

The main objection to non-1NF, however, is that it is presented as a new
feature while being an abandonment of the relational file-relating method and
a reinstatement of the traditional one. Even the term “nesting” is old: with the
traditional operations, the files are nested by nesting their scanning loops; with
relational systems, the files are nested through implicit scanning loops. The
logical relationship between files is the same.

�

The term “non-1NF,” then, is not only silly but also misleading. For, the
intent of the new feature is not to avoid the problems caused by the 1NF
principle, but to replace the impractical JOIN operation. Let us examine this
misrepresentation more closely.

To promote non-1NF, the experts point to the inefficiency of certain file
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combinations in the original relational model. But the combinations they
describe were never thought to be a consequence of the 1NF restriction.
Specifically, non-1NF is recommended for files of any size, not just as a
substitute for the small arrays that we may want to store directly in a record.
Thus, referring to the earlier examples, we can use file nesting not just to
replace an array of three vendors associated with one part, but also for a whole
invoice file, where hundreds of invoices may be associated with one customer.
For this type of data, though, we have always resorted to a second file, even
with the traditional file operations, because this is the only practical way to
store it. The difference between non-1NF and 1NF, then, is simply in the
way we combine files: through nesting instead of JOINs. So what the experts
are recommending in reality is not the replacement of 1NF with non-1NF,
but the replacement of JOIN operations with the traditional concept of file
nesting.

Non-1NF, in other words, is not promoted as a solution to the inefficiency
of 1NF, but as a solution to the inefficiency of JOIN; that is, for any situation
where we have to combine files. Thus, if we adopt non-1NF we can dispose of
the JOIN operation altogether. If we want, we can replace with nested files every
situation that would normally require JOINs: not just files that would be created
when enforcing the first normal form, but also files that would be created when
enforcing the second and higher normal forms, and even files that would be
kept separate in any case. Non-1NF eliminates, therefore, the inefficiency
caused by combining any files in a relational database. So, if it is a general
substitute for the relational way of combining files, what we have now is a
different database model.

Far from being just a new feature, then, non-1NF cancels the whole re-
lational model. To understand this, let us take a moment and recall the
importance of the first normal form. And there is no better way to start than
by citing the experts themselves.

Date says that 1NF is so fundamental that the term “normalized,” when
unqualified, means “first normal form”: “It follows that every normalized
relation is in first normal form . . .; it is this fact that accounts for the term ‘first.’
In other words, ‘normalized’ and ‘1NF’ mean exactly the same thing.”Ë In Codd’s
original papers, too, the term “normalized” means what we call now first
normal form;Ì the higher normal forms are not even mentioned. Recall
also that the first normal form is the only one that is part of the formal
relational model.

Ë C. J. Date, An Introduction to Database Systems, 6th ed. (Reading, MA: Addison-
Wesley, 1995), pp. 289–290.

Ì See, for example, E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM 13, no. 6 (1970): 377–387.
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Here are some additional statements: “At each intersection of a row and
column there is exactly one value. This is the principle of first normal form,
fundamental in the relational model.”Í “This property implies that columns do
not contain repeating groups. Often, such tables are referred to as ‘normalized’
or as being in ‘first normal form (1NF).’ It is important that you understand the
significance and effects of this property because it is a cornerstone of the
relational data structure.”Î “Occasionally there might be good reasons for
flouting the principles of normalization. . . . The only hard requirement is that
relations be in at least first normal form.”Ï “All data in a relational database is
represented in one and only one way, namely by explicit value (this feature is
sometimes referred to as ‘the basic principle of the relational model’ . . .). In
particular, logical connections within and across relations are represented by
such explicit values.”Ð

It is not difficult to see why the first normal form is so important to
the relational model – why it is “fundamental,” a “cornerstone,” a “hard
requirement,” and a “basic principle.” It is not so much the restriction to single
values that is important, as the purpose of this restriction. By preventing us
from creating any data structures within a record, 1NF forces us to keep all data
in the form of tables. And if the data is restricted to tables, the methods used
to access and combine the data can be restricted to operations on tables; that
is, to high-level operations based on mathematical logic.

Accordingly, by annulling 1NF we also annul these restrictions: we can
store, access, and combine data in other ways too. In effect, we have regained
some of the freedom we enjoyed when using files through the traditional
file operations: we can now relate them through the versatile hierarchical
concept, as data within data. And we can use this method, not just with
small arrays or structures, but with files of any size, and on any number
of nesting levels. In the end, annulling 1NF permits us to create database
structures that are more flexible and more efficient than those possible with
the relational model.

In conclusion, the restriction imposed by the first normal form is far more
significant than what it appears to be – merely preventing multiple values in a
field. Its annulment, therefore, means far more than just permitting multiple
values; it means the annulment of the relational model. It also demonstrates
the pseudoscientific nature of this theory, as well as the dishonesty of its
supporters: the impracticality of 1NF, along with the impracticality of JOIN, is

Í Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1162.

Î Candace C. Fleming and Barbara von Halle, Handbook of Relational Database Design
(Reading, MA: Addison-Wesley, 1989), pp. 32–33.

Ï Date, Database Systems, p. 291. Ð Ibid., p. 99.
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a falsification of the model; but instead of being abandoned, the theory is
expanded – by turning this falsification into a new relational feature, non-1NF.

�

The mathematical foundation of the original model was predicate calculus,
with its relations and tuples. Thus, if our databases no longer consist of this
type of relations and tuples, it is absurd to continue to call them relational.
Terms like “extended relational” and “nested relational” are simply incorrect if
the new model is not “relational.” The term “relational” derives from the
mathematical concept of a relation; namely, a set of tuples, where each tuple is
composed of single elements. And in predicate calculus the only operations
are those performed on such sets through mathematical logic. It is these
relations, tuples, and elements that become the files, records, and fields of
a relational database. So, if we want a different database organization, or
different operations, we need a different model.

As we saw under the first delusion, the mathematical claims of the relational
model were tenuous in any case, since only a small part (those aspects that
constitute the formal model) had indeed a mathematical grounding. And
with the annulments we are discussing in this subsection – non-1NF, in
particular – even that small part has disappeared. What we have now is
neither an enhanced nor an extended relational model. What we have is not a
relational model at all.

Non-1NF systems, then, are indeed as useful as their promoters claim; but
they are useful because they are no longer relational. This is why some experts,
embarrassed perhaps by this fraud, suggest terms like “post-relational,” and
even “object-relational,” for the database systems that include non-1NF or a
similar “enhancement.”

Still, if not predicate calculus, perhaps another mathematical system can
serve as a foundation for the new database model. And indeed, some theorists
have attempted to extend the formal relational model to include non-1NF. But
this is silly. For, if a mathematical system could guarantee the correctness of
nested databases, then the same system would also guarantee the correctness
of the nesting performed through the traditional file operations – which is
identical, logically.

This, of course, is true for the original model too: nothing stops us from
using the traditional data files and operations while limiting ourselves to the
subset of features that parallel the relational model; and our databases would
then be founded on predicate calculus, just like the relational ones.

The conclusion must be that, no matter how rigorous a formal database
model is, it offers no mathematical benefits that we do not also enjoy with the
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informal traditional operations.Ñ The answer to this apparent contradiction is
that the formal part plays such a small role in a database system that it is
practically irrelevant. So, for the application as a whole, the mathematical
benefits are about the same with a formal database model as they are without
one. (This is the essence of the first delusion.)

�

By way of summary, I want to show how the software elites are presenting the
non-1NF feature. A good example is the white paper published by IBM to
promote one of their new database systems.ÉÈ This paper, we are told, “discusses
technical advances represented by nested relational database technology.”ÉÉ

And just in case we were not sufficiently impressed by this statement, a few
sentences later we are reminded that nested relational databases represent an
“advanced technology.”

Now, the advanced technology that is file nesting has been available since
about 1970 to anyone capable of writing a few lines of COBOL. So it is clear
that IBM addresses individuals who, while being perhaps programmers or
managers, have very little programming knowledge. These incompetents try to
develop applications, not through programming, but by buying programming
substitutes. They can be impressed by a feature like non-1NF because they are
always dependent on the elites for solutions to their software problems. They
have problems now because they trusted the elites in the past and adopted a
relational system. But they believe that the solution must also come from the
elites, in the form of a new system.

The paper continues by describing the problems caused by the restriction
to 1NF: “Database conformance with 1NF often increases the amount of
storage used, makes maintenance more difficult, and most importantly greatly
increases the processing required to produce results, while still making the
schema more complex. . . . For some potential users of relational databases, the
joins [i.e., JOIN operations] that would be required to resolve relationship
relations [i.e., cross-references] in 1NF databases would affect performance

Ñ Because they are restricted to higher levels, the relational operations are logically a
subset of the basic, traditional file operations. Thus, we can always simulate a relational
database system using a traditional file system, but not vice versa. Many relational systems,
in fact, are designed simply as a high-level environment based on an underlying file
management system: the relational operations are implemented as subroutines that employ
the basic file operations in conjunction with appropriate loops and conditions.

ÉÈ IBM Corporation, Nested Relational Databases, white paper (2001).
ÉÉ Ibid., p. 3. Note, again, the slogan “technology,” used to make something appear more

important than it really is.
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enough to preclude the use of relational databases. . . . Apart from performance
considerations, 1NF relational databases also have practical limitations for
many applications.”ÉÊ

This is an excellent description of the restrictions imposed by the first
normal form, and by the relational model in general. Reading this, one is liable
to forget that the same institutions that are so harshly attacking this model now
had been promoting it for the previous thirty years as an expression of database
science, and as an important aspect of software engineering. These problems
had been noticed from the start, of course. So how were the millions of
programmers and users who had adopted relational systems coping all these
years? By constantly seeking ways to bypass the restrictions; by spending most
of their time dealing with these spurious problems instead of the actual
business problems; and, ultimately, by being content with inadequate and
inefficient applications.

The nested relational model, the paper tells us, eliminates the 1NF prob-
lems. Non-1NF is such an important feature, in fact, that all relational systems
will soon support it: “Because of the limitations of 1NF relational databases,
especially for storing complex data structures, all commercial relational
databases have begun adopting extended relational technology; however, IBM
has a technological lead of several years over its closest competitor.”ÉË

The shallowness of the non-1NF issue is seen in the pretentious description
of file nesting. For example, one of the reasons why IBM’s “extended relational
technology” is more advanced than the competing ones is that “the IBM nested
relational implementation, unlike others, is not limited to a single nested
table.”ÉÌ With the basic file operations, as we know, it is just as easy to nest
several file scanning loops as it is to nest one, simply because programming
languages allow us to combine file scanning loops in any way we like. But with
nested relational databases, this trivial capability is presented as a major
technological advance, currently available only from IBM. Again, only ignorant
practitioners can be impressed by such claims.

Finally, the paper reminds us (three timesÉÍ) that the relational model has a
rigorous mathematical foundation, which guarantees correct results when
using the relational operations. And, the paper assures us, research has shown
that this guarantee is not compromised by the annulment of the 1NF principle:
“Analysis has proven that the resulting model is equally robust.”ÉÎ Such analysis
and proof are senseless, though, because the relational model is not robust
even with 1NF. As we saw under the first delusion, its mathematical foundation
is irrelevant in practice. It is precisely because the mathematical foundation is

ÉÊ Ibid., p. 7. ÉË Ibid., p. 14. ÉÌ Ibid. ÉÍ Ibid., pp. 3, 7, 14.
ÉÎ Ibid., p. 7. The paper cites several sources, where presumably the proof can be found.
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irrelevant that annulling an important principle like 1NF indeed makes no
difference.

And we are expected to feel even better after reading that nested relational
databases have been “accepted by the academic community as adhering to a
valid relational model.”ÉÏ But we saw that it is wrong even to call the new model
relational. In any case, this statement is hardly reassuring if we remember that
the same academic community also advocated other theories that failed
(structured programming and object-oriented programming, in particular),
and that, just like the relational model, those theories were rescued by being
turned into pseudosciences.

Thus, by promoting pseudoscientific software theories, the universities
help software companies to sell worthless development systems, and help
incompetent programmers and managers to control corporate computing.

3

3
I began the discussion of the third delusion with the non-1NF issue because
this is the most flagrant of the relational reversals – a reversal that marks, in
effect, the end of the relational theory. But 1NF is merely the latest principle
to be annulled. At this point, most relational principles had already been
forsaken, because, like 1NF, they had been found to be impractical. In the
remainder of this subsection, I propose to study the other reversals.

�

The abandonment of the second and higher normal forms (2NF, 3NF, etc.)
came by way of a new relational principle, called denormalization. At first,
database designers and programmers simply ignored the stipulation to fully
normalize their files, when this was too complicated or too inefficient. But the
theorists were condemning this practice. Before long, though, even they
realized that strict normalization is impractical, and that the decision whether
or not to normalize a particular set of files depends ultimately on the situation:
on the type of data stored in these files, on the file relationships, and on the way
we plan to use the files in the application.ÉÐ

But instead of admitting that the idea of strict normalization had failed, the
theorists reacted, as pseudoscientists do, by turning this falsification of the

ÉÏ Ibid., p. 14.
ÉÐ The term “normalization” refers usually to all normal forms; but here, in the discussion

of the second and higher normal forms, I use “normalization” to refer only to them.
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relational model into a new relational principle – denormalization. The new
principle says that we must first normalize all files, as before; then, we must
denormalize (that is, restore to their previous state) those files that should not
have been normalized in the first place.

Both the principle and the term, “denormalization,” are absurd. All we
needed was a statement acknowledging that normalization was annulled as a
relational principle and is now just an informal concept. The very term
“normalization” should have been abandoned, in fact. After all, normalizing
some files and not others is what we had been doing all along, with the
traditional file operations, and we didn’t need a special term to describe this
activity. With the relational model we have now two principles for this activity,
and two terms. We are told that normalization is as important as before, and
that denormalization is the process of improving the results of normalization.

Clearly, the theorists invented the second principle in order to suppress the
fact that the first one had failed. The two principles, normalization and
denormalization, in effect cancel each other. But the theorists managed to
make this return to what we had before the relational model look like an
enhancement of the model.

�

Here is a typical explanation of the new principle: “Denormalization is the
‘undoing’ of the normalization process. It does not, however, imply omission
of the normalization process. Rather, denormalization is the process whereby,
after defining a stable, fully normalized data structure, you selectively intro-
duce duplicate data to facilitate specific performance requirements.”ÉÑ What
this sophistic verbiage is trying to say is that, while normalization is generally
desirable, strict normalization is impractical; in other words, what we always
knew. Now, however, we can no longer simply allow some data duplication
from the start (when we know from experience that the application would
otherwise be too slow). Instead, we must first normalize the whole database,
and then “selectively introduce duplicate data to facilitate specific performance
requirements.” Actually, in both cases we address the same problem and end
up with the same database. The pompous language serves to mask the fact that
the principle of strict normalization – a fundamental relational requirement –
has been falsified.

Here is how two other experts present this reversal: “The general idea of
normalization is that the database designer should aim for relations in the
‘ultimate’ normal form (5NF). However, this recommendation should not be

ÉÑ Fleming and von Halle, Relational Database Design, p. 440.
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construed as law. Occasionally there might be good reasons for flouting the
principles of normalization.”ÊÈ “There are, however, exceptions to [strict
normalization]. . . . We recommend that data models always be designed in
third normal form, but that the physical data-base designer be permitted to
deviate from it if he has good reasons and if the data administrator agrees that
no serious harm will be done.”ÊÉ

A critical aspect of the idea of denormalization, then, and what the experts
keep stressing, is that denormalization does not constitute the annulment of
normalization. Normalization remains as important as before, and what we
must do is both normalize and denormalize the database.

Here is another example of this doubletalk: “Data denormalization is
constrained so that it does not alter the basic structure of the conceptual
schema. It only makes adjustments to the basic structure for operational
efficiency.”ÊÊ Denormalization, thus, consists in adjusting the database design,
but without altering it. This is silly, of course, since adjusting something will
also alter it. A database either is or is not normalized; so, if we denormalize
a normalized database we necessarily end up with an unnormalized one,
regardless of whether we call this process “adjustment” or “alteration.” Not
so, says Brackett: “A common misconception about data denormalization is
that it results in a return to the unnormalized business schema that began
the data normalization process. . . . However, this is not the situation. Data
denormalization produces denormalized data, not unnormalized data.”ÊË In
reality, there is no difference between the two: both “denormalized” and
“unnormalized” mean simply data that is not fully normalized, violating
therefore this relational principle.

The theorists, thus, are defending their deviation from strict normalization
by claiming that denormalizing the database after fully normalizing it is
different from simply leaving some of the files unnormalized in the first
place. One method, they tell us, constitutes an exact design process, while the
other is merely an informal decision. But this would be true if denormalization
were indeed an exact process. In practice, though, the decision to denormalize
a file can be no more exact than the decision to leave a file unnormalized to
begin with. Recall the previous quotations: “[the designer is] permitted to
deviate from [strict normalization] if he has good reasons and if the data
administrator agrees that no serious harm will be done,” and “occasionally
there might be good reasons for flouting the principles of normalization.”

ÊÈ Date, Database Systems, p. 291.
ÊÉ James Martin, Managing the Data-Base Environment (Englewood Cliffs, NJ: Prentice

Hall, 1983), p. 216.
ÊÊ Michael H. Brackett, Practical Data Design (Englewood Cliffs, NJ: Prentice Hall, 1990),

pp. 155–156. ÊË Ibid., p. 156.
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Informal comments like these can hardly be described as an exact method
of denormalization.

Brackett starts by promising us an exact method: “Conceptual schema are
converted to internal schema through a denormalization process following a
precise set of rules depending on the physical operating environment.”ÊÌ But
the “precise set of rules” never materializes. All we find on the subsequent
pages is a list of cases where denormalization is beneficial, and a reminder to
deal carefully with the consequent problem (redundancy and inconsistencies).
For instance, this is how Brackett describes one of the cases of denormalization:
“This situation creates redundant data and those redundant data must be
consistently updated or the quality of the database will deteriorate rapidly. . . .
Other data entities may be denormalized for operational efficiency based on
these criteria. . . . Each situation must be carefully evaluated to assure that the
logical model is not compromised and that any redundant data are routinely
and consistently updated.”ÊÍ

So what Brackett is describing as denormalization is not “a precise set of
rules” but an informal process – a process no different from what we do
with traditional databases: we study the application’s requirements, allow
redundancy and inconsistencies when it is impractical to eliminate them, and
deal with the consequent problems by adding special checks and operations to
the application’s logic.

�

Thus, to cover up the failure of strict normalization, the theorists were
compelled to invent the absurd principle that we must first normalize the
database and then denormalize it. And they defended the principle with the
absurd claim that this method is exact while the traditional, simpler method –
creating the correct database directly from the requirements – is not. In reality,
both methods entail the same decisions and result in the same design.

We saw under the second delusion that the process of normalization is
presented by the theorists as a formal design method, while being in fact as
informal as the traditional method. It is informal because it must be based,
ultimately, on the same decisions as those we make when designing the
database directly from the requirements. Now we see that the process of
denormalization too is informal, despite the claims that it is exact. Only we, by
studying and interpreting the requirements, can determine whether strict
normalization is practical in a given situation, and, if not, what operations
must be added to maintain data integrity.

ÊÌ Ibid., p. 155. ÊÍ Ibid., pp. 157–158.
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In conclusion, both normalization and denormalization are perceived as
formal design methods, when in fact both are informal. So, to appreciate the
new delusion, denormalization, we must ignore the previous one: we must
believe, with the theorists, that normalization is indeed an exact process.
Judging it from their perspective, therefore, denormalization is a delusion; for
they did not stop promoting normalization when they introduced the concept
of denormalization. They continue their research in what they believe to be
formal and exact concepts – the dependency theory, the classification of
normal forms – even while praising the virtues of denormalization, which is
informal. They are oblivious to the absurdity of promoting these two methods
at the same time: no matter how exact is the process of normalization, when
we modify its result by adding the inexact process of denormalization the final
result is bound to be inexact. So what is the point in seeking a formal and exact
normalization theory while also permitting denormalization?

It is in order to resolve this self-contradiction that the theorists introduced
the principle that we must denormalize the database only after fully normaliz-
ing it. This principle appears to justify the need for both processes, when in
reality it shows that we need neither.

Earlier, to justify the need for normalization, the theorists distorted the
problem of database design. Instead of determining the correct design simply
by studying the application’s requirements, we were asked to do two things:
create a deliberately incorrect database, and then normalize it to make it
correct. And now, to justify both normalization and denormalization, we are
asked to do three things: create an incorrect database, normalize it to make it
correct, and, finally, denormalize it to make it practical.

The traditional design method allows us to create, not only correct data-
bases, but also efficient ones. For, the same skills that help us to create a correct,
fully normalized database also help us to decide when this would be inefficient.
Thus, we can create a correct and efficient database at the same time, directly
from the requirements. We don’t need a denormalization theory any more than
we need a normalization one.

Finally, and quite apart from the delusions already discussed, the need for
denormalization means that we are again preoccupied with the efficiency of
the database operations – contrary to the claim that the relational model
shields us from the physical implementation of the database. We must study
each situation and seek the most effective solution, instead of implementing
the requirements through formal methods and high-level operations, as the
relational theory had promised us. We must accept, rather than avoid, the
“update anomalies”; and we must add special checks and operations to deal
with them. In other words, we have returned to what we had been doing all
along, with the traditional databases. The theorists describe denormalization
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as database “optimization”; but if the optimization consists in a deviation from
fundamental relational principles, this description is merely a way of denying
that the relational model has failed.

4

4
One of the relational model’s promises was that we could restrict ourselves, in
all database work, to the high-level relational operations. And this promise too
had to be annulled. In the end, the relational systems became practical only
after reinstating the low-level capabilities of the traditional file operations;
specifically, the means to manipulate fields and records through traditional
programming methods, and the means to link them to other low-level entities
in the application. Let us examine this reversal.

Recall the original relational model. The database, we are told, must be
perceived as “tables and nothing but tables.” The relational operations can
be assumed to occur instantaneously, and can therefore be treated like the
operations of mathematical logic: all we have to do is reduce the database
requirements to logical expressions where the operands are tables, and the
relational operations (along with standard logical operations) combine in
various ways tables and portions of tables. No matter how large or how small,
a data file can be treated simply as a table with a number of rows and columns.
In particular, if we need just one record of a given file, we must create a new
table with just one row; and if we need one field, we must create a table
with one row and one column. Also, there is no way to modify the tables.
Updating the database was thought to be a relatively simple and infrequent
aspect of database work, so the operations that add, delete, or modify records
were expected to be informal, like the traditional ones. We must be careful
when modifying the database, of course; but we don’t need the formality and
precision of mathematics, as we do for queries.

The original model, thus, permits only database queries. Consequently, the
only database language we need is one that provides the means to formulate
queries through the relational operations. In their naivety, the theorists
believed that a model shown to satisfy some simple queries on small files could
serve as the foundation of practical database systems: for applications with files
of any size and queries of any complexity. Moreover, they later believed that the
same model could be extended to cover all aspects of database work, including
the updating operations and the design process. The fact that simple queries
look neat when expressed as mathematical logic was enough to convince the
theorists that all database programming could be restricted to high-level
operations and to the notion of tables.
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Today, after all the reversals, the relational systems are no longer restricted
to “tables and nothing but tables.” Rather, they provide, in a very complicated
manner, the means to link individual fields and records to the other entities
in the application. In addition, the database language, SQL, has grown from a
set of simple query operations into an elaborate (although quite primitive)
programming language. The relational systems, thus, have restored the means
to manipulate, through programming, the low-level database entities. So they
have restored exactly what the traditional file operations and programming
languages had been doing all along, in a much simpler way – and what the
original relational model had claimed to be unnecessary.

�

We need to access low-level database entities for two reasons: because this is
the only way to implement the details of a database operation, and because this
is the only way to link the database structures to the other structures that make
up the application. It is obvious, therefore, why the traditional file operations
are indispensable: in addition to allowing us to access the low-level database
entities, they can be used from a programming language; and through this
language we can create the critical, low-level links between database entities
and the other types of entities in the application.

These two qualities are both necessary and sufficient for implementing any
database requirement; and it is precisely these two qualities that are lost in the
relational model. Thus, since it is impossible to implement serious applications
without accessing and linking the low-level elements of the application, it is not
surprising that the modifications needed to make the relational systems
practical consisted in restoring both the low-level operations and the means to
use these operations through a programming language.

So, like all systems that offer us high-level starting elements, the relational
systems became in the end a fraud. When promising us higher levels, the
software charlatans tempt us to commit the two mechanistic fallacies, reifica-
tion and abstraction (see “The Delusion of High Levels” in chapter 6). In the
case of relational systems, the claim was that we could separate the database
structures from the other structures that make up the application; this would
allow us to start from higher levels of abstraction within these structures,
greatly simplifying database work.

With the traditional development method, all we need is a programming
language and a few libraries of subroutines (for mathematical functions, display
operations, database management, and the like). The software charlatans have
replaced this simple concept with the concept of development environments:
large and complicated systems that lure ignorant practitioners with the promise
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of high-level, built-in operations. These operations, we are told, function as
prefabricated software subassemblies: they already contain within them many
of the low-level operations that we would otherwise have to program ourselves.
But, in fact, only trivial requirements can be implemented by combining high-
level operations. So the systems must be continually enhanced, with more and
more features. And what are these features? They are means to deal with low-
level entities, precisely what the systems had originally attempted to eliminate.

Thus, instead of admitting that the restriction to high-level operations failed
as a substitute for traditional programming, the software charlatans rescue
these systems by turning their falsifications, one by one, into new features. The
systems keep growing and appear to become more and more “powerful,” but
this power derives from reinstating the low-level, traditional concepts. By the
time enough of these concepts are reinstated to make the systems practical,
there is nothing left of the original promise. For now we must deal with the low
levels again. What is worse, because the low levels were introduced within the
high-level environment, they are much more complicated than they are when
available directly, through a traditional language. So, in the end, programming
is even more difficult than before.

�

Returning to the relational systems, the need for low levels emerged when the
notion of data integrity was introduced. Data integrity became an issue in the
relational model only when the model was expanded to include updating
operations. As long as it permitted only queries, there was no need for integrity
checks, because, within the scope of the model, the data never changed. Since
the operations that add, delete, or modify data records were expected to be
similar to the traditional ones, and to be performed outside the model, the
validity checks accompanying these operations were also expected to be
performed outside the model. Once the relational model was adopted for
serious database work, however, the updating operations, along with the
problem of data integrity, could no longer be ignored.

The normalization principles too, we saw earlier, were needed only when the
relational model was expanded to include updating operations. Tables did not
have to be normalized in the original model, because no data inconsistencies
can arise when we restrict ourselves to queries and to the high-level relational
operations. We also saw how both the attempt to formalize the process of
normalization, and the idea of strict normalization, failed. In the end, the only
way to design a correct database is informally, by studying the application’s
requirements. All that the theory of normalization accomplished was to add
to the traditional design problems the complicated concepts of normal forms
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and field dependencies. The critical part – the need to determine whether
two given fields must be in the same file or in separate files – remained
unchanged. With the traditional design method or with the relational one,
we can decide in which file to place a new field only by discovering the
low-level links between the database entities and the other entities in the
application.

The formality and the neat classification of normal forms can be seen,
therefore, as a failed attempt to raise the level of abstraction in database design:
instead of having to study and understand the application’s requirements, it was
believed that we could attain the same goal by knowing only how to convert
files from one normal form into another – an easier, largely mechanical, task.

But regardless of its failure, the normalization theory was silly because it
addressed only a small number of data inconsistencies; specifically, only those
that can be prevented by placing fields in separate files (see pp. 755–757). Since
most data inconsistencies cannot be eliminated simply by separating fields, we
must deal with them through the application’s logic: to ensure that an updating
operation does not cause inconsistencies, we add various checks, restrictions,
or further updating operations. An example of a situation where the updating
problems cannot be solved through normalization, we saw, is the requirement
for the balance field in the customer record to match at all times the amounts
present in that customer’s transaction records. Although technically redundant,
the balance field is useful because it obviates the need to recalculate the balance
by reading the transaction records every time. Thus, instead of avoiding
the redundancy, we ensure that the field remains correct by adding to the
application’s logic some operations to update it whenever a transaction is
added, deleted, or modified.

The requirement to match the balance field and the transaction records is,
in effect, a database integrity rule. So the notion of integrity was the answer to
the updating problems that could not be solved through normalization; that is,
to practically all the updating problems that can arise in an application.
A whole new class of relational features had to be invented – features totally
unrelated to the original model – in order to move the data validity operations
from the application, where they are normally performed, into the database
system. The sole purpose of these features is to permit us to do through a new
language, in the database system, what we had been doing all along through a
traditional language in the application. Thus, the operations that update the
customer balance field, previously mentioned, would no longer be part of the
main program; they would be written instead in a special language, and made
part of the database environment.

�
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The problem of data validity is well known. Whenever a database field is
modified, the application must verify that the new value is correct within the
current context. Similarly, when a record is added, the value of each field in the
record must be correct. But there is more to the validity problem than verifying
the value of individual fields. For example, the application must verify that a
record may be modified at all, or added or deleted, in a given situation. Also,
adding, deleting, or modifying a given record often affects other records and
other files, so the application must perform additional operations if the
database as a whole is to remain correct. Generally, all the specifications and
restrictions known as business rules – which are reflected in the various
processes implemented in the application – can be described, if we want, as
integrity rules.

Data validity, thus, is closely related to the application’s requirements: what
is correct in one situation may be incorrect in another. Just like the “anomalies”
they tried to eliminate through normalization, the problems that the relational
theorists are discussing under “integrity” are problems we always faced. And
we never thought of them as database problems, but as a natural part of
application development. The so-called integrity problems are merely one
aspect of the challenge of programming: if we fail to take into account certain
requirements, some data may become incorrect – inconsistent, redundant,
invalid – when the application is used. The problems that cause incorrect
data are similar to those that cause incorrect operations. In both cases the
application will malfunction, and in both cases the reason is that it does not
reflect the requirements accurately.

We saw earlier that files cannot be said to be normalized in an absolute
sense, but only relative to the application’s requirements. For example, if the
product description does not change from one order to the next, the product
and orders files are normalized when the description field is in the product
file; but when the description may change, they are normalized when the
description field is in the orders file. Similarly, the validity criteria cannot be
defined in an absolute sense, but only relative to the application’s requirements.
Some examples: A certain date may be deemed too old in one part of the
application, but not in another. Deleting a transaction record may be permitted
if certain conditions hold, but deemed invalid otherwise; elsewhere in the
application, though, we may have to prevent the deletion under all conditions.
Creating a new transaction record may generally entail adding a record to the
history file too, and failing to do so would result in an incorrect history file;
sometimes, though, when this is not a requirement, it is adding the history
record that would result in an incorrect file.

Clearly, validity issues like these are part of the application’s logic. It is
absurd to treat them as a special class of operations just because they are
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concerned with the correctness of database entities. We also modify memory
variables in the application, and they too must remain correct; yet no one has
suggested that – in order to safeguard the correctness of memory-based entities
– we extract these operations from the application, restrict them to high levels,
and design special systems and languages to perform them. If we were to do
this for every type of entities and operations, we would no longer need
applications and general-purpose languages. Performing and combining
various types of operations, including those concerned with data validity, is
precisely what applications are for, and what programming languages are
designed to do. In any case, the operations that validate the database, as much
as those that modify it, must necessarily access low-level entities. So the idea of
separating them from the application, incorporating them into a database
system, and restricting them to high levels is senseless, and bound to fail.

In conclusion, the integrity features added to the relational database systems
were totally unnecessary. Their real purpose was to rescue the relational model
from refutation. Here is how: The promise had been a model that satisfies all
our database needs through high-level operations. The existing data validity
functions, however, required low-level operations. Moreover, they required
programming, so they could not be implemented at all in a relational system.
Asking us to depend on traditional programming for a critical aspect of
database management was, thus, a falsification of the relational model. To save
the model, the theorists were compelled to move these functions from the
application, where they belong naturally and logically, into the database system.
The integrity features are a fraud because this move is said to complement the
high-level database operations, when in reality the new functions require low
levels, and programming.

The integrity features, then, were the expedient through which low-level
capabilities could be added to a relational system. Instead of recognizing the
need to deal with low-level entities as a falsification, the theorists solved the
problem by annulling the restriction to high-level operations. Using the issue
of data integrity as pretext, they turned a blatant falsification into an important
new feature. This feature is so important, in fact, that no serious database
requirements can be implemented without it. And all this time, they kept
praising the power of the relational model: annulling the restriction to high
levels, they say, is an enhancement of the model.

�

The first integrity functions were limited to simple validity checks. Here are
some examples: The attribute integrity functions check that the value placed in
a field is correct with respect to the definition of the field (valid numbers in a
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numeric field, valid dates in a date field, etc.). The domain integrity functions
check that the value placed in a field is correct when the field is restricted to a
range of values (a number must not be larger than 1,000, for instance, a date
must not be older than 30 days ago, etc.). The referential integrity functions
check that the relationship between two files remains correct when the files are
modified; typically, they are used to prevent the deletion of a record in one file
while there exist records in the other file related to it through their key.

To use an integrity function, the programmer specifies the event that is to
invoke the function at run time (this event is known as trigger), the conditions
and values that make up the constraint, and the action to take in case of error
(display a message, prevent a change or deletion, etc.). Triggers may be
included in the application when a certain field is modified, after a record is
added to a certain file, before a record is deleted, and so on.

Validity checks like these can be easily implemented in the application,
of course, using the conditional constructs or exception-handling features
available in most languages. So it is not at all clear why a database system must
provide these checks in the form of built-in functions. Still, if we agree that
higher levels of abstraction are sometimes beneficial, these functions do
provide a good alternative for specifying and enforcing certain validity criteria.

Only simple checks, however, can be implemented through standard, built-
in functions. This is true because all we can do in a standard function is specify
a few conditions and values and the action to take, while most integrity checks
entail combinations of conditions, values, and actions. Thus, the checks we
need in a typical application may affect several fields and files, may require a
unique piece of logic, and may need some data that resides in the application,
not in the database.

So, like all high-level operations, the concept of standard integrity functions
can be useful if provided as an option, to be employed only when better than
programming the same checks. The relational theorists, though, hoped to turn
all integrity checks into standard functions. Their naivety is betrayed by
their attempt to classify the integrity functions – referential integrity, domain
integrity, and so forth. They actually believed that they could discover a set of
standard functions that would encompass all conceivable data validation
requirements (or, at least, the most common ones). Note also the pretentious
names they invented to describe what are in reality simple operations. Clearly,
they believed that the concept of built-in integrity functions represents an
important contribution to database science. But preventing the deletion of a
particular record, or ensuring that a field’s value lies within a certain range,
are operations we routinely perform in every application, using ordinary
programming languages; and we don’t need scientific-sounding terms like
“referential integrity” and “domain integrity” to describe them.
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The concept of built-in integrity functions failed, of course. After devising
a few standard functions, the theorists had no choice but to give us the means
to create freely our own functions, which is the only way to satisfy real-world
data validation requirements. And, since it is only through programming that
one can create such functions, new programming languages were invented –
languages whose only purpose was to allow programmers to implement
these functions as part of the database, rather than part of the application.
Then the languages started to grow, as programmers demanded greater
functionality. Means were introduced to perform calculations, to create flow-
control constructs, to call subroutines, to access memory variables, to use
general-purpose function libraries, and so forth. These languages provided, in
other words, more and more of the very same features that were already
available in the traditional languages.

No one noticed the absurdity of this situation. Programming our own
functions is an alternative we always had. The promise had been, not a new
language, but a higher level of abstraction. And if this turned out to be
impossible, the theorists should have admitted that the only way to implement
versatile data validation is through a programming language – the way we
always did – and encouraged us to return to the traditional methods. What is
the point in inventing specialized languages, indicating by means of “triggers”
where in the application we need the integrity functions, and placing the
functions in the database, when we could simply keep them as part of the
application? After all, despite the multiplying features, the new languages
remain inferior to the traditional ones, even in the narrow domain of database
work that is their specialty. So programmers must now assimilate and depend
on some new languages without deriving any real benefits. In the end, not
only do the relational systems fail to provide the promised higher level of
abstraction, but they make the task of data validation more complicated than
before.ÊÎ

The theorists, of course, could not admit that the concept of high-level
integrity functions had failed, and that we must return to the traditional
methods, because this would have been tantamount to admitting that the
relational model had been falsified. So, inventing new languages was the way
to cover up this falsification. Imagine an application written in COBOL, and a
database system that asks us to write the data validation functions also in
COBOL, but to store them in the database. Since we know that we can

ÊÎ We hear sometimes the argument that storing the integrity functions outside the
application facilitates the implementation of corporate standards, as all validity criteria are
specified in one place. But this argument is tenuous. First, we can accomplish the same
thing with ordinary subroutines. Second, even with the functions outside the application,
why do we need new languages?
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accomplish the same thing by making those functions an integral part of the
application, we would reject the database alternative as absurd. If, however, it
is not in COBOL but in a new language that we must write these functions –
and if the language is accompanied by some new and impressive terminology,
and if it is provided through a large and intricate development environment –
the absurd alternative can be made to look like an important programming
concept. And if we add to this the enthusiasm of the experts and the media, and
the urgent needs of the companies that already depend on relational systems,
everyone would perceive this concept as progress. Thus, what is in reality a
falsification of the relational model is made to appear as an enhancement
of the model.

�

Reinstating the programming capabilities, then, is what made the relational
systems practical. All relational principles had to be annulled, as we saw earlier;
but the other annulments would have amounted to nothing had the restriction
to high-level database operations been maintained. The idea of programmable
integrity functions was so well received because it provides the means to bypass
the restriction to relational operations. Although not as useful as the traditional
file operations, the operations available through the new languages do have
similar capabilities. So they allow us to implement many database requirements
that would be impractical through relational operations alone.

Thus, in the guise of integrity functions, programmers could now add to
their applications a great variety of low-level file operations. Whenever a
database requirement was too complicated or too inefficient to express through
the relational operations, they could program it in the form of an integrity
function and define a “trigger” in the application to invoke it. After all, with a
little imagination any database requirement can be associated with some
integrity checks or rules. For example, if we have to modify a record in such a
way that a field’s value is the result of calculations and conditions involving
some other files and some memory variables – a task impossible or impractical
through relational operations – we can program all this in a database language
and call it an integrity function.

Understandably, this stratagem was very popular. Programmers praised the
virtues of the relational model, but resorted to “integrity” functions and
“triggers” whenever the requirements called for low-level file operations, or
low-level links between database entities and other types of entities; in other
words, whenever they needed the capabilities of the traditional file operations.
They appeared to like the relational model, but what they liked in reality was
the new, low-level capabilities – which contradict the relational principles.
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In the end, all pretences of integrity and triggers were discarded, and these
functions were expanded into the broader concept known as stored procedures.
These procedures are general-purpose pieces of software that can be employed
freely in the application. They are stored in the database, but are used like
ordinary subroutines: they can be invoked from the application or from other
stored procedures, can have parameters, and can return values. And, since
there is no limit to the size or number of stored procedures, larger and larger
portions of the application were being developed in this new fashion, in order
to take advantage of the low-level capabilities of the database languages.
Thus, while programmers were convinced that they were using the relational
model, their applications resembled more and more those developed with the
traditional languages and file operations.

So, by allowing programmers to bypass completely the relational principles,
the concept of stored procedures was the final answer to the need for low-level
file operations and low-level links to the other aspects of the application.

5

5
Although there are many relational database languages, it is SQL that became
the official one. And it is through SQL, more than through the others, that the
fraud of reinstating the traditional concepts was committed. Today’s relational
systems would be unusable without SQL. From its modest beginning as a
query language, SQL has achieved its current status, and has grown to its
enormous size, as a result of the enhancements introduced in order to provide
programming and low-level capabilities – precisely those capabilities that
the relational model had claimed to be unnecessary. Thus, today’s official
relational language is in reality the official means, not of implementing, but of
overriding, the relational principles. Let us study this evolution.

The original relational model, we recall, was meant only for queries. And
SQL (which stands for Structured Query Language) was the language through
which programmers and users alike were expected to access the database. The
original SQL, thus, allowed us to select and combine subsets of tables by
specifying various criteria in the form of relational operations.

The SQL statement for queries is SELECT. This one statement, however,
contains many clauses, which permit us to specify various details: the files
involved in the query, the operations required to relate these files, the sorting
sequence, the record selection criteria, which fields to display, and how to
group the selected records for showing subtotals and the like. Thus, while neat
and straightforward for trivial queries, a SELECT statement can become very
long and complicated for intricate queries or queries involving several files.
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The reason is that, no matter how complex, a query must be expressed in its
entirety in one statement. Specifications that in a traditional language would
be implemented naturally by combining some simple constructs must be
expressed now by means of clauses and further SELECTs awkwardly nested
within the various parts of the main SELECT. Moreover, in order to support real-
world queries, some contrived features had to be added to SELECT. The features
are, in reality, substitutes for ordinary programming concepts. But, while the
traditional languages provide these concepts naturally, as diverse statements,
in SQL they must all be crammed, artificially, into the SELECT statement. SQL,
thus, while perceived as a modern, high-level database language, is in fact a
primitive, ugly language.

Another way to include traditional operations in the SELECT statement was
by making them look similar to the relational operations. For example, an
operation that results in one value for a group of selected records (the sum of
the values present in certain fields, or their average, or minimum) can be
included through an option that creates a temporary file of one record where
the fields contain the result; and an operation performed on a certain field in
every record in the group (calculating the square root, multiplying by a
constant, etc.) can be included through an option that creates a temporary file
with the same number of records as the original group, but where the fields
contain the new value. Many operations easily performed in traditional
languages (mathematical and statistical functions, character string manipula-
tion, date and time calculations, etc.) were artificially added to the SELECT

statement in this fashion.
Clearly, if we have to develop real-world applications while being unable to

create our own file scanning loops, and if SELECT is the only statement available,
every operation that we will ever need must be included somehow in this one
statement. Thus, the reason for the growing complexity of SELECT is the
desire to keep SQL “non-procedural”; specifically, the attempt to provide
programming capabilities while restricting these capabilities to a higher level
of abstraction than a traditional language. This is an absurd quest, since, if we
want the ability to implement any conceivable queries, the language must
provide low-level file operations. (We examined in chapter 6 the fallacy of
non-procedural languages; see pp. 442–443.) So, in the end, the entities and
operations that became part of the SELECT statement had to be of the same level
of abstraction as those used in traditional languages: fields, records, keys,
comparisons, calculations, and so on.

What the relational theorists are trying to avoid at any cost, even if the cost
is increased complexity, is code like that shown in figures 7-13 to 7-16 (pp. 680,
683–685); that is, traditional programming, where the file operations are
managed through explicit flow-control constructs. An SQL SELECT statement
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may well be a little shorter than the equivalent COBOL code, but it does not
provide a higher level of abstraction.ÊÏ What is different between SQL and
COBOL – implicit loops and conditions as opposed to explicit ones – is the easy,
mechanical part of programming. The difficult part – the overall logic, the file
relations, the concept of nested loops and conditions, the links between
database entities and the other entities in the application – is necessarily the
same in both. With SQL or with COBOL, since the computer cannot know
what we want, the only way to implement a given query is by specifying all the
details. It is futile to seek a higher level of abstraction.

Thus, even when restricted to queries (and hence still within the relational
model), we already note the need to enhance SQL in order to extend its
usefulness beyond trivial requirements, as well as the effort to cover up the fact
that this is achieved by introducing programming capabilities. A complex SQL
query is in reality a little program, and what we are doing when creating a
complex SELECT statement is programming. We would be better off, therefore,
to implement that requirement as several simpler statements, linked through a
flow-control structure that follows naturally and intuitively the query’s logic,
as we do in most languages. But then we could no longer delude ourselves
that SQL is non-procedural, or that we are using only high-level relational
operations. In the end, as in all mechanistic software delusions, not only did
SQL fail to eliminate the need for programming, but in attempting to do this it
made programming more difficult.

�

When the relational systems were expanded to include updating operations,
SQL was enhanced with the capability to add, modify, and delete records. The
respective statements are INSERT, UPDATE, and DELETE. And these statements are
very similar to SELECT, in that they create an implicit file scanning loop and
include clauses for various details (record selection criteria, for instance).
Updating operations, we recall, are not part of the formal relational model.
Thus, regardless of how we feel about SQL as a query relational language, the
new statements cannot be judged at all by relational principles. So the fact that
they are in the same contrived style as SELECT, or the fact that INSERT also
permits us to bypass the relational principles altogether and process individual
records, can easily be overlooked.

Recall the traditional file operations (pp. 676–679): WRITE, REWRITE, DELETE,

ÊÏ SQL code corresponding to the COBOL code of figure 7-13 might be: SELECT P-NUM

FROM PART WHERE P-NUM>=P1 AND P-NUM<=P2 AND P-QTY>=Q1 ORDER BY P-NUM. For the
operations in figures 7-14 to 7-16, however, the SQL code would be far more involved,
especially if we have to access individual fields from two or three files at the same time.
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READ, START, and READ NEXT. We concluded that this is the minimal practical set
of file operations – the operations that are both necessary and sufficient for
using indexed data files in serious applications. In conjunction with the flow-
control constructs provided by the traditional languages, these operations
permit us to implement any conceivable database requirement. Putting it in
reverse, to permit us to implement any database requirement, a database
system must provide these operations, or their equivalent.

After the various enhancements, SQL provided four of these operations:
INSERT, UPDATE, DELETE, and SELECT correspond, respectively, to the traditional
WRITE, REWRITE, DELETE, and READ. Only START and READ NEXT had no SQL
counterpart. READ NEXT instructs the file system to retrieve the current record
in the indexing sequence and advance the pointer to the next record. It is
normally used, therefore, in a file scanning loop (and START is used once, before
the loop, to indicate the first record). READ NEXT was thought to be unnecessary
in SQL because the four other statements create their own, implicit file
scanning loops.

So, with the traditional operations we use READ to access individual records,
and READ NEXT to access in a loop a series of consecutive records; and to
modify or delete records we use REWRITE or DELETE, either for individual
records or in a READ NEXT loop. With the SQL statements, on the other hand,
we access records only in a loop – the implicit loop generated by each one of
the four statements. (Consequently, if we need to access a single record in SQL,
we must specify selection criteria that will result in a trivial loop of one
iteration.)

The most striking difference between SQL statements and the traditional
operations, then, is the implicit file scanning loop as opposed to the loop that
we create ourselves. So SQL statements are a little simpler, but to benefit from
this simplicity we must give up all flexibility. When we create our own scanning
loop, in a traditional language, we can include in the loop additional operations
(to perform various tasks related to the file operation). In SQL, the only
operations we can have in the loop are those provided by the statement itself,
through its clauses. For example, in SQL we can specify with UPDATE the record
selection criteria and how to modify the fields in these records. But with a
traditional language, a loop based on READ NEXT and REWRITE can also include
display operations, subroutine calls, and calculations involving both database
fields and memory variables. Thus, when we create our own file scanning loop
we can easily link the file entities to the other entities in the application. This is
the seamless integration of the database and the application that we discussed
earlier (see “The Lost Integration”).

�
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We saw how the relational theorists crammed into SELECT various features in
an attempt to restore some of the flexibility that was lost in the implicit SQL
loops. But there is a limit to the number of operations that can be specified in
this fashion, and in the end they had to admit that the capability to create
explicit file scanning loops, and to control the operations in the loop, is an
indispensable database feature. So they added this feature to SQL too, by way
of a new enhancement: the FETCH statement.

FETCH is the true counterpart of the traditional READ NEXT: it lets us create
explicit loops, and retrieve one record at a time, just as we do in a traditional
language. (There is no equivalent of the traditional START: in SQL we always
start from the beginning of the file, and the system will deliver only those
records that passed the selection criteria previously specified with a SELECT.)
FETCH, of course, is not independent. To use it we also need the capability
to create explicit loops, and this capability was added to SQL by means of
further enhancements: actual loop-control constructs, and a way to perform
SQL statements from within a traditional language. (We will examine these
enhancements in a moment.)

The mechanism through which we read one record at a time in a loop is
known in SQL as cursor, and is identical to the mechanism known as pointer
in the traditional file operations (see pp. 677, 678). The cursor is the indicator
that keeps track of records in the current indexing sequence: each time we
perform a FETCH, the system retrieves the record identified by the cursor and
advances the cursor to the next record – just as it does in the case of the
traditional READ NEXT. And if we do this at the beginning of each iteration, all
the operations in the loop will be able to access the fields in that record. Thus,
in SQL too we can now include in a file scanning loop any operations we
want, and thereby link the database fields to other types of entities (memory
variables, display fields, etc.). Also, when used in conjunction with FETCH,
UPDATE and DELETE can now modify or delete individual records in a scanning
loop – just as REWRITE and DELETE can in conjunction with READ NEXT in a
traditional loop.

�

To appreciate the importance of the cursor, we must recall the original
relational principles. For, without the means to create explicit file scanning
loops, SQL would have been almost useless. The relational model specifically
restricts us to high-level operations: all we can do is extract and combine
logical portions of tables. The permitted operations are PROJECTION, SELECTION,
UNION, JOIN, and the like (see p. 702). The original SQL SELECT statement, with
its implicit file scanning loop, follows this principle: we specify the operations
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through the various clauses of a SELECT, and combine them by nesting SELECTs
within one another. At every step we manipulate only tables – tables that
contain, usually, just some of the records and fields of an actual data file.

So the original SELECT statement (plus INSERT, UPDATE, and DELETE if we allow
updating operations) is all we need in order to implement the relational model
in SQL. This is true because in high-level queries, as the model was originally
intended, we only need the means to specify which fields to list, and such
details as their order and format. But if we want to employ the model for
any conceivable query, in any application, we need the means to perform
additional operations with these fields, not just list them. Also, we need the
means to use the fields together with other data types – display and data entry
fields, and memory variables. The theorists hoped at first to satisfy these two
demands by adding more and more options to the SELECT statement; that is, by
inventing a high-level feature for every conceivable situation. This is an absurd
idea, however, and they realized in the end that the only practical solution is to
permit low-level operations.

Thus, only trivial requirements can be implemented if restricted to the
implicit file scanning loops of SELECT. It was by adding to SQL the concept of a
cursor, and the means to create explicit file scanning loops, that we gained the
two critical qualities: the capability to perform additional operations in the
loop, and the capability to link low-level database entities (individual fields and
records) to other entities in the application.

With the concept of a cursor, then, all the capabilities of the traditional file
operations were finally available in relational systems. But this was accom-
plished by abolishing the relational principles: the way we use data files in SQL
is now practically identical to the way we use them in a traditional language.

�

As SQL was used for more and more demanding tasks, it had to be enhanced
with the kind of features found in general-purpose programming languages.
And software vendors increasingly used these features – which have nothing to
do with the relational principles, or with database operations – as a way to
promote their database systems and attract buyers. For example, some vendors
enhanced their version of SQL with the means to create conditional, iterative,
and other flow-control constructs (officially abandoning, therefore, the idea of
a non-procedural language). And, in addition to those functions similar
to the traditional operations and subroutine libraries, already mentioned,
countless expedients were provided to assist programmers in developing
applications: functions for creating reports, for data entry and display, for
system management, and so forth.
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What is the point of these enhancements? We already had these features, in
a hundred languages. The relational promise had been mathematical logic and
a higher level of abstraction, not a new programming language. And if this idea
turned out to be impractical, it should have been abandoned. Instead, like all
pseudoscientists, the relational experts rescued their theory by reinstating
precisely those concepts that the theory had attempted to replace. As a result,
software vendors are competing today, not by stressing the relational capabili-
ties of their systems, but by adding more and more low-level, programming
features; that is, features meant to help us bypass the rigours imposed by the
relational model. In other words, the value of a relational system is measured
today by how good it is at overriding the relational principles.

But despite the enhancements, SQL remained inferior to the traditional
languages. It was still too awkward and too inefficient for serious applications,
so one more feature had to be invented: the capability to use SQL from within
a traditional language. This feature, called embedded SQL, is the ultimate
relational degradation: the most effective way for a programmer to enjoy the
benefits of the traditional database concepts while pretending to use the
relational model.

With embedded SQL, we implement in a traditional language the entire
application, including all database requirements; then, we invoke isolated SQL
statements here and there in the form of subroutines. The relational system,
thus, is relegated to the role of subroutine library, and works similarly to a
traditional file system. A typical use of this concept is with the FETCH statement,
as explained earlier: we create a file scanning loop in COBOL or any other
language, and use FETCH within the loop to read one record at a time – exactly
the way we use the traditional READ NEXT. Every other operation in the loop is
implemented in the traditional language. The resulting code is identical, for all
practical purposes, although we employ in one case a relational system and in
the other a traditional file system. We have come a long way from the idea of
“tables and nothing but tables,” accessed through high-level operations.

�

An important promise of the relational model had been that the result of a
query is mathematically guaranteed to be correct: if we restrict ourselves to the
relational operations – to extracting and combining portions of tables – the
data in the final table will always reflect accurately the data in the tables we
started with. So, if we bypass the restriction to relational operations, this
promise no longer holds. Whether the new operations are added in the form
of SELECT options or in the form of explicit file scanning loops, the benefits
promised by the relational model are now lost. Without the restriction to

800 the relational database model chapter 7



relational operations, what we have is no longer a relational model, so the
resulting tables may or may not reflect accurately the starting ones.

The SQL fallacy, thus, is the belief that the relational model can be enhanced
with features that contradict its most fundamental principles, and still retain
its original qualities. The mathematical benefits were shown to emerge only if
we restrict ourselves to the relational operations. The theorists keep adding
features designed specifically to bypass this restriction, but they continue to
promote the model with the original claims.

We already know that the updating operations lie outside the scope of the
formal model, so the model’s mathematical grounding is irrelevant when a
relational system is used for general database work. And now we see that the
model’s mathematical grounding has become irrelevant even for queries. As
was the case with the other modifications, the SQL features do not enhance the
relational model but annul it.

The Verdict

The Verdict

In the end, what has the relational model accomplished? After thirty years of
“enhancements,” relational database programming is more or less the same as
traditional database programming: we manipulate fields, keys, records, and
files in order to create database structures. The only real difference is that the
database operations have been separated from the rest of the application,
and are now possible only through complicated, inefficient, and expensive
database environments.

If we disregard that extreme degradation, embedded SQL, applications are
now divided into two parts: the part written in an ordinary language, where the
application’s main logic resides, and the part written in SQL (in the form of
integrity functions, stored procedures, and the like), where the database-
related operations reside. More and more pieces of the application have been
moved into the SQL part; this is not because they are easier to implement in
SQL, though, but because they are closely related to the database operations,
and keeping them together is the only practical way to link them. And this
artificial separation obscures the fact that the part dealing with the database-
related operations is now very similar to what it was when integrated with the
application’s main logic.

The relational charlatans, thus, claimed at first that we must separate the
database operations from the application, and restrict the links between the
two to a high level of abstraction, because this is the only way to benefit from
the relational model. Then, when the separation proved to be impractical, they
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restored the low-level links. They did it, though, not by moving the database
operations back into the application, but by bringing into the SQL procedures
further pieces of the application. They restored the links, thus, by reinstating
in the SQL procedures the same low-level programming concepts that we had
used in the application before the separation. So the benefits believed to
emerge from the relational model are now lost even if we forget that they had
already been lost, in the other annulments of the relational principles. The
separation of the application into two parts is absurd because what we are
doing in the SQL procedures is about the same as what we were doing before,
in a much simpler way, in the application.

So, after all the “enhancements,” there remains very little that is relational in
the relational database systems. Programmers use SQL in about the same way
that the traditional file operations are used. Only now and then, when not
too inconvenient or too inefficient, do they employ the relational operations
as they were defined in the original theory. But by calling files “tables,”
records “rows,” and fields “columns,” they can delude themselves that they are
programming under the relational model.

It must be noted that some features are indeed found only in relational
systems. But these features could easily be added also to the traditional file
systems, simply because they have nothing to do with the relational model.
These are the kind of features made possible by hardware and software
advances – larger files, new types of fields, enhanced caching and buffering,
better security or backup facilities, and the like. So, if these features are missing
in a file system, it is deliberate: in their effort to make everyone dependent on
complicated and expensive development environments, the software elites are
doing everything in their power to discredit the straightforward, traditional
languages and file systems; and refusing to keep them up to date is part of this
manipulation.

It is all the more remarkable, thus, that the traditional languages and file
systems, while remaining practically unchanged for the last thirty years, have
been the chief source of inspiration for the features added to the relational
systems. This shows, again, just how little the relational model itself had
to offer.

The relational model is still described as an application of mathematical
logic. And those monstrous database systems are promoted with the claim
that the relational model is the only way to have rigorous databases, even as
everyone can see that these systems have little to do with the relational model,
and that their only practical features are those taken from the traditional
languages and file operations. So, like the theories of structured program-
ming and object-oriented programming, and like all other pseudosciences,
the relational theory continues to be promoted on the basis of its original
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principles even after these principles were abandoned, and hence their benefits
were lost.

If we have to bypass the relational restrictions and revert to operations that
are practically identical to the traditional ones, in what sense is the relational
model beneficial? The theorists are committing a fraud when promoting the
relational systems if, at the same time, they enhance these systems with means
to override the relational principles.

The multibillion-dollar relational database industry thrives on the incompe-
tence of the software practitioners, whose skills are limited to knowing how to
use programming aids and substitutes. To repeat, the six basic file operations
and an ordinary language are all we need in order to implement database
requirements. Thus, only a programmer incapable of designing some simple
loops and conditions can be impressed by the relational features. Every one of
these features has been available – in a much simpler form, through file
management systems and languages like COBOL – since about 1970.
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