
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 4: Language and Software
Sections The Common Fallacies, The Search for the Perfect Language

This extract includes the book’s front matter
and part of chapter 4.

Copyright © 2013, 2019  Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

These sections examine the mechanistic philosophy of language, 
and analyze the mechanistic fallacies common to language theories 
and software theories.

The entire book, each chapter separately, and also selected sections, 
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com




SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS



Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization.  2. Computer software – Social aspects.
3. Computer software – Philosophy.  I. Title.

QA76.9.C66S67 2013  303.48'34  C2012-906666-4



Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four





Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii





Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix



Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents



Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi





Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii



entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface



(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv



The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface



Ch. 4: Language and Software

The Common Fallacies The Common Fallacies
1 1
Let us review first our language and software fallacies. Most people, if asked
what is the purpose of programming languages, would agree that it is similar
to the purpose of natural languages. All languages, it seems, are systems of
symbols, definitions, and rules, employed to convey instructions or informa-
tion. Speaking, along with programming, entails the translation of knowledge
from one representation – mental forms, social situations, natural phenomena
– into another: words and sentences in the case of speech, operations and
statements in the case of programming.

So the resulting sentences or statements, we believe, reflect the original
knowledge in a different form and medium. Sentences describing wishes,
or feelings, or states of affairs, or scientific facts, or logical arguments, are
perceived by most of us to be verbal representations of those things – represen-
tations created by selecting appropriate words and arranging them according
to certain rules of grammar. And the act of communication takes place,
presumably, when the person hearing or reading these sentences translates
them, somehow, into a mental representation that resembles the original one.
Similarly, programs designed to address specific business requirements in
inventory management, production scheduling, or text processing are thought
to be software representations of those requirements.

With programming languages as with natural ones, then, we perceive the
structures created with language to be pictures of the world, replicas of reality.

the common fallacies 297chapter 4



We believe that the role of language is to generate structures which provide a
one-to-one correspondence to the knowledge or events we want to represent:
each entity in the real world – each object, process, or event – must have its
corresponding counterpart in the structures created with language; then, and
only then, will utterances correctly express facts or ideas, and programs
correctly represent our requirements.

Another term commonly used to describe this relationship is mirroring. An
even better term is mapping: just as a map provides a one-to-one correspond-
ence to those aspects of a territory that we want to represent graphically, our
utterances and our programs correspond to, or map, those aspects of the world
that we want to express through language. Lastly, the term isomorphism is
sometimes used to describe these one-to-one relationships: the structures
we create with language are isomorphic to the phenomena that occur in the
world.

A second quality we believe to be shared by programming languages and
natural languages is their hierarchical character. It seems that text can always
be represented as a hierarchical structure of linguistic entities – paragraphs,
sentences, words; in addition, words can be classified hierarchically on the
basis of their meaning. Similarly, it seems that any piece of software can be
broken down hierarchically into smaller and smaller software entities. Our
mechanistic view of the world tempts us to perceive all phenomena, including
language and software, as systems of things within things.

Thus, if we believe that all phenomena can be represented with hierarchical
structures, and believe also that languages generate hierarchical structures, it
is not surprising that we see languages as mapping systems. We do not doubt
for a moment that all aspects of reality can be represented precisely and
completely in one language or another. If we assume that the simplest elements
of language (words, for instance) correspond to the simplest elements of reality
(individual objects or actions, for instance), all we need to do is combine these
elements into more and more complex ones, on higher and higher levels.
Each level in the structure created by language will then correspond to a
more complex aspect of reality. Similarly, if the simplest software elements
correspond to the simplest parts of our affairs, by combining these elements
hierarchically we will generate software applications that represent more and
more complex aspects of our affairs.

�

These, then, are our language and software fallacies. Our naive view of
language – the belief that language can provide a one-to-one correspondence
to reality, which stems from the belief that both language and reality can

298 the common fallacies chapter 4



be represented with neat hierarchical structures – forms one of the oldest
mechanistic delusions in Western history. It has misled philosophers and
scientists for centuries, and it is now distorting our perception of software and
programming.

The fundamental mistake in this view is, of course, reification. The struc-
tures we create with language do indeed represent the world, but not on their
own. Languages are human inventions, so they cannot exist independently
of their human users. As a result, language structures always interact with
various knowledge structures present in human minds, and with the structures
formed by human societies. Thus, it is not through language alone but through
the totality of these structures that we can hope to understand the world;
that is, to attain a close correspondence to reality. The fallacy is the same,
whether we expect a one-to-one correspondence between our world and the
sentences of a language, or between our affairs and the statements of a software
application.

In the domain of logic, the language fallacy has given rise to the belief in the
existence of an ideal language. The ideal language is an artificial language, or a
modified natural language, which, being logically perfect, would permit us to
represent with mathematical precision everything that can exist in the world.
The search for the ideal language culminated in the twentieth century with
the work of philosophers like Bertrand Russell and Rudolf Carnap. These
philosophers held that knowledge can always be represented by means of a
language, and that science and philosophy are in fact little more than attempts
to represent the world through various types of languages.

These philosophers also believed that the world has a certain logical
structure – a structure that can be discovered. But we will not discover it as
long as we try to mirror it in our natural languages, because these languages
are imperfect, ambiguous and illogical. It is this defect, more than anything
else, that prevents us from understanding the world and finding answers to our
inquiries. Thus, Russell remarked that “almost all thinking that purports to be
philosophical or logical consists in attributing to the world the properties of
language.”É We set out trying to mirror the world in language, and we end up,
instead, perceiving the world as similar to our illogical languages.

So, the argument continues, if we represented reality in a logically perfect
language, we would find the correct answers simply by expressing our inquiries
in that language. This is what we do when we represent the world in the perfect
language of mathematics – in astronomy, for instance. It is because we have
found a way to represent the world with a perfect language that we are so

É Bertrand Russell, quoted in Irving M. Copi, “Artificial Languages,” in Language,
Thought, and Culture, ed. Paul Henle (Ann Arbor: University of Michigan Press, 1965), p. 107.

the common fallacies 299chapter 4



successful in the exact sciences and in engineering; so we should try to find an
equally logical language for the other kinds of knowledge.

But the argument is wrong, because most aspects of the world are too
complex to represent with logical languages like mathematics. Our natural
languages appear ambiguous and illogical precisely because we use them to
represent this complexity. No language can represent with precision the
complex aspects of the world.

In the domain of programming, the language fallacy has given rise to
our software delusions, to the notion of software engineering, to theories
like structured programming, to methodologies, development tools, and
programming environments – all stemming from the belief that the problem
of programming is the problem of creating exact hierarchical structures of
software entities. We believe that the answer to our programming problems lies
in inventing programming concepts that are logically perfect, and in the use of
application development systems based on these concepts.

Thus, because programming systems can generate hierarchical structures,
we ended up attributing to the world the properties of these systems: we ended
up believing that those aspects of the world that we wish to represent with
software are neat hierarchical structures. But the world is not a neat structure,
so the neat software structures are seldom adequate. We continue to believe,
though, that the problem is the inexactness of the software structures, so the
answer must be to improve our programming systems.

The language fallacy, then, has given rise to our preoccupation with pro-
gramming languages, methodologies, tools, and environments, to the belief
that these inventions are the most important aspect of software development,
and that the adoption of more and more elaborate versions is the only way to
improve our software representation of the world.

This preoccupation, this search for the perfect programming system, is the
software counterpart of the age-old search for the perfect language. Instead of
overcoming our mechanistic language delusions, we have augmented them
with mechanistic software delusions.

2

2
We are interested in the modern theories of a perfect language – the theories
that have emerged since the seventeenth century – for it is from these language
delusions that our software delusions were ultimately born. Umberto Eco,Ê

Ê Umberto Eco, The Search for the Perfect Language (Oxford: Blackwell, 1997). The title
of the next section reflects this book’s title.

300 the common fallacies chapter 4



however, notes that the idea of a language that mirrors the world perfectly was
preoccupying philosophers long before the Scientific Revolution. An attempt
to explain how language corresponds to reality can be found even in Plato’s
dialogues. On the whole, “the story of the search for the perfect language is the
story of a dream and of a series of failures. . . . [It is] the tale of the obstinate
pursuit of an impossible dream.”Ë

If the search for a logically perfect language has been based since Descartes
on mechanistic notions, earlier theories were based on mystical or religious
notions. One theory, for instance, was inspired by the biblical story of Babel:
In the Garden of Eden there was only one language – the language God used
to speak to Adam. This was a perfect language, but it was lost at Babel, when
Man started to build a mighty tower in an attempt to reach the heavens.
This arrogant project incurred the wrath of God, who decided to stop it by
confounding the language used by the workers. Construction was disrupted,
the tower was never finished, and we have suffered ever since the confusion of
a multitude of illogical languages. Thus, the belief in a perfect language can be
seen as an attempt to restore the ideal state of the Beginning: a language that
mirrors reality perfectly would enable Man to again understand his world,
attain omniscience and happiness, and perhaps communicate with God.

An early example of this belief, Eco notes, is the linguistic project of Dante
Alighieri, started in 1303. Dante, who is best known as poet and philosopher,
attempted to create a poetic language that would serve the needs of an ideal
society – a language suited for expressing truth and wisdom, and capable of
accurately reflecting reality. “Opposing this language to all other languages
of the confusion, Dante proclaimed it as the one which had restored that
primordial affinity between words and objects which had been the hallmark of
the language of Adam.”Ì

Interpreters have concluded that Dante, influenced by even earlier scholars,
believed that the divine gift received by Adam was not so much a language as
the capacity to understand and create languages – a view similar to Chomsky’s
idea of an innate language faculty (see “Universal Grammar” in chapter 3):
“What God gave Adam . . . was neither just the faculty of language nor yet a
natural language; what he gave was, in fact, a set of principles for a universal
grammar.”Í And what Dante believed to be the most important characteristic
of these principles was the capability to provide a one-to-one correspondence
to the actual world. This capability is what he saw as the distinguishing quality
of a perfect language – that quality which our natural languages have lost, and
which he strove to restore through his poetic language: “It seems most likely
that Dante believed that, at Babel, there had disappeared the perfect forma

Ë Ibid., p. 19. Ì Ibid., p. 35. Í Ibid., p. 44.

the common fallacies 301chapter 4



locutionis [i.e., linguistic model] whose principles permitted the creation of
languages capable of reflecting the true essence of things; languages, in other
words, in which the modi essendi of things [i.e., their essence] were identical
with the modi significandi [i.e., their representation].”Î

George Steiner points out that every civilization had its version of Babel in
its mythology.Ï Thus, the belief in a language that mirrors reality stems perhaps
from a common human need to understand the world. And the one-to-one
correspondence provided by such a language derives from its divine nature:
“The vulgate of Eden contained, though perhaps in a muted key, a divine
syntax – powers of statement and designation analogous to God’s own diction,
in which the mere naming of a thing was the necessary and sufficient cause of
its leap into reality. . . . Being of direct divine etymology, moreover, [it] had a
congruence with reality such as no tongue has had after Babel. . . . Words and
objects dovetailed perfectly. As the modern epistemologist might put it, there
was a complete, point-to-point mapping of language onto the true substance
and shape of things.”Ð

�

Throughout history we have been searching for an ideal language, motivated
by the belief that language can provide an exact correspondence to reality – the
same belief we recognize in modern linguistics. We should not be surprised,
therefore, that this mechanistic view of language has prompted twentieth-
century thinkers like Russell, Carnap, and Chomsky to propose linguistic
theories that are so similar to the mystical notions held by medieval scholars.
Nor should we be surprised that our software theories, which arose out of the
same mechanistic culture and are grounded on the same beliefs, make the same
mistake: they regard the relationship between programming languages and
reality just as the linguistic theories regard the relationship between natural
languages and reality.

Ancient or modern, founded on mysticism or science, all attempts to find
an ideal language, or a logically perfect language, have been sheer fantasies.
It is important, however, to recognize their common fallacy. Philosophers
recognize the potency of language, its power to describe and explain the world,
to express knowledge and ideas; and they also recognize the power and
simplicity of hierarchical structures, their ability to represent apparently
complex phenomena with neat systems. These philosophers believe, then, that

Î Ibid., p. 45.
Ï George Steiner, After Babel: Aspects of Language and Translation, 2nd ed. (Oxford:

Oxford University Press, 1992), p. 59. Ð Ibid., pp. 60–61.

302 the common fallacies chapter 4



it is possible to combine the potency of language with the neatness of a
hierarchical structure. The terminal elements of the hierarchy (the words,
typically) would correspond directly to the basic objects, processes, and events
that make up the world; and the rules that define the relations between
elements in language would correspond to the natural laws that govern the
relations between the real things. Since such a system would provide an exact
correspondence between words and reality, it would constitute a perfect
language.

What these philosophers fail to see is that the potency of language derives,
not from a capability to mirror the world through one-to-one correspondence,
but from its capability to generate interacting structures. The structures
formed by language elements interact with one another, and also with the
knowledge structures present in human minds, and with the structures formed
by human societies. It is the complex structures generated by these interactions
that are the source of richness and potency in language.

It is futile, therefore, to try to explain the world by inventing a language
that is better, or more logical, than our natural languages. For, if we cannot
explain a complex phenomenon, the problem is not the imperfection of
our languages but the complexity of the world, and also the lack of certain
knowledge structures in our minds. If we are at all capable of understanding a
certain phenomenon, we will understand it through any language, for the
language structures themselves play only a small part in this process. It is their
interaction with various knowledge structures present in our minds that gives
rise to the intelligence we need to understand a complex phenomenon.

And so it is with our software structures. If our applications fail to answer
our needs (fail, that is, to provide an exact correspondence to the world), the
problem is not the imperfection of our programming languages or devel-
opment tools, but the complexity of the world, and the lack of adequate
knowledge structures (that is, programming skills) in our minds. Conse-
quently, it is futile to seek a solution by improving the programming languages
or the development tools. As is the case with natural languages, the richness
and potency of software derives, not from a capability to mirror the world
perfectly (something no programming language or tool can do), but from its
capability to generate interacting structures; namely, structures that interact
with one another, with the knowledge structures present in our minds, and
with the structures formed by our social and business affairs. It is the complex
structures emerging from these interactions that we observe as software
benefits.

Therefore, when the benefits are not forthcoming, improving the language
structures will not solve the problem; it is the knowledge structures that we
must improve. For, the programming languages themselves play only a small

the common fallacies 303chapter 4



part in this process, and, in any case, they are already adequate. It is not a new
language or a new development system that we need, but greater programming
knowledge.

The Search for the Perfect Language The Search for
the Perfect Language

1 1
Let us start with the philosophies of the seventeenth century. The three great
rationalists, Descartes, Spinoza, and Leibniz, believed that everything can be
represented in the form of a deductive system; namely, as a hierarchical
structure similar to the system of mathematics. Their philosophies varied in
detail, but were all based on the vague notion of substances (the hypothetical
things that make up the world).

Substances are taken to be independent of one another. In particular,
the material world is made of one kind of substance, and mental processes
are made of a different kind. There are objects that occupy physical space,
attributes that can be perceived, and events that can be observed to occur in
time; then, there are their mental counterparts – the notions we hold in the
mind when we are aware of these objects, attributes, and events. The real
things are said to have an extension, while thoughts and feelings do not. There
were difficulties in explaining how the material world interacts with the mental
one (as when a thought causes the movement of a limb), but these difficulties
could usually be resolved by postulating divine intervention in one form
or another.

In their effort to explain the world mathematically – that is, with simple
structures – the rationalists had to assume that it is made up of several
independent aspects, each one consisting of a different substance. They could
not explain the real world – the complex structure – mathematically, so they
extracted various aspects, thinking that by explaining each one separately they
would eventually explain the world. And two aspects they always had to
separate were the material and the mental.

Thus, Descartes’s system “presents two parallel but independent worlds,
that of mind and that of matter, each of which can be studied without reference
to the other.”É Spinoza held that the world is only one substance, one system,

É Bertrand Russell, A History of Western Philosophy (New York: Simon and Schuster,
1972), p. 567.

304 the search for the perfect language chapter 4



but had to separate the physical from the mental anyway. He interpreted them
as two attributes, each one providing “complete and adequate knowledge of the
essence of a single substance. Thought and extension each represents reality as
it essentially is, and each attribute gives a complete account of that reality.”Ê

Leibniz preferred a system called monadology, according to which the world is
a hierarchical structure of monads: atomic entities that form independent
substances while also being related through the mystical quality known as
“pre-established harmony.” Leibniz was trying to explain how physical and
mental structures, which are different substances and do not interact, can
nevertheless influence each other: some of the properties of monads give rise
to physical structures, and others to mental structures, but the pre-established
harmony keeps the two kinds of structures synchronized at all times.

The dichotomy of mind and matter has remained a major problem of
philosophy. This problem can be described as the problem of accounting
for mental phenomena by means of mechanistic theories: explaining how
it is possible for such phenomena as knowledge, consciousness, intelligence,
and emotions, which have no material existence, to arise in a world made
up of material entities. It ought to be obvious that mental phenomena are
complex structures, and thus irreducible to deterministic models; but such an
explanation is inadmissible in a mechanistic culture like ours. So, for more than
three hundred years, one philosophy after another has been advanced in an
attempt to bridge the gap between the mental and the material worlds; that
is, to reduce mental phenomena to physical processes. Today’s theories of
artificial intelligence, for example, are merely the modern equivalent of the
mechanistic fantasies of the seventeenth century: just another attempt to
account for consciousness and intelligence by means of deterministic models.

Returning to the rationalist philosophers, we can understand why they liked
the two-world conception of reality – the separation of reality into a material
world and a mental world. By accepting this notion, they abandoned in
effect the goal of understanding the real world, and replaced it with the lesser
challenge of understanding the material and the mental worlds independently.
Now they were able to apply the mechanistic principles, reductionism and
atomism, to two separate worlds, which individually are simpler than the
real one.

In the material world, this has resulted in the spectacular advances in
science and technology of the last three centuries. In the mental world, the
benefits of the mechanistic methods have been much more modest. The reason
is that mechanistic theories and models, as embodied in mathematical systems
and other simple hierarchical structures, can provide only approximations of

Ê Roger Scruton, Spinoza (Oxford: Oxford University Press, 1986), pp. 56–57.

the search for the perfect language 305chapter 4



reality. In the material world, many phenomena are sufficiently independent –
sufficiently isolated from other phenomena – for these approximations to be
useful. But the phenomena created by human minds cannot be studied in
isolation, because they are closely linked. Moreover, they are linked to the
phenomena of the material world. A mental world separated from the material
world can exist only in our imagination. In practice we cannot observe a
person’s actual thoughts or feelings, but only the phenomena that arise when
those thoughts and feelings interact with the material world.

The conclusion must be that processes occurring in a mind cannot be
studied as we do those involving physical objects. Searching for a theory that
explains mechanistically mental phenomena is an absurd pursuit, so we must
not be surprised that so little progress has been made in disciplines like
psychology and sociology. If there exists a way to explain mental phenomena, it
must involve the study of the complex structures of the real world – structures
created by the interaction of the phenomena of one mind with those of other
minds, and with those occurring in the material world. This may well be an
impossible challenge.

�

When the rationalist philosophers addressed themselves to the problem of
language, they naturally tried to solve it as they had tried to solve the problem
of mind: by separating language from the complex reality. Just as they had
separated the real world into mental and material worlds, they treated language
as yet another world – a third kind of substance, capable of independent
existence. They believed that if such matters as grammar and word meaning
were fairly well understood on their own, there was no reason why they
could not discover a complete theory of language, a model that explained
with precision every aspect of it. And, needless to say, “they held that a
truly systematic conception and formation of language could be obtained
only through the application of the method and standards of mathematics.”Ë

Language, they believed, is a mechanistic phenomenon, a system of things
within things, and must be investigated in the same way as the phenomena of
the material world.

Language, however, is a complex structure, the result of many interacting
structures; and it involves not only linguistic structures like syntax and
semantics, but also various knowledge structures present in the mind, and the
structures that make up the context in which it is used. Since they could not

Ë Ernst Cassirer, The Philosophy of Symbolic Forms, vol. 1, Language (New Haven: Yale
University Press, 1955), p. 127.

306 the search for the perfect language chapter 4



explain the whole phenomenon of language, the rationalists attempted to
create exact linguistic models by reducing language to one of its component
structures; typically, a structure based on grammar, or one based on word
meaning. But this reification can yield only a crude approximation of the whole
phenomenon.

The rationalist philosophies of the seventeenth century ended up depicting
reality, thus, as three independent structures: the material, the mental, and the
linguistic. These three structures were seen as three parallel worlds, each one
reflecting reality, and each one being a reflection of the others.

But the notion of three parallel and independent worlds did not originate
with the rationalists. It went back, in fact, at least to the thirteenth century,
when a group of scholars called Modistae “asserted a relation of specular
correspondence between language, thought and the nature of things. For them,
it was a given that the modi intelligendi [i.e., mental forms] and, consequently,
the modi significandi [i.e., symbolic forms] reflected the modi essendi [i.e.,
actual forms] of things themselves.”Ì They believed, in other words, that
the linguistic symbols we use to express knowledge correspond to both the
knowledge held in the mind and the actual things depicted by that knowledge.

It is this fallacy – the idea that language structures can map mental struc-
tures and material structures perfectly, coupled with the idea that all three are
neat hierarchical structures and hence amenable to mechanistic treatment –
that we can recognize in all the theories we are examining here, down to the
theories of our own time. The fallacy can manifest itself in one of two ways: the
philosophers believe that natural languages form simple structures, and
therefore any language, if carefully employed, can reflect perfectly the mental
world or the material world (also taken to form simple structures); or they
believe that an artificial language based on a simple structure can be invented
– a language which would reflect perfectly the mental or the material world.
Let us start by examining how these two beliefs influenced the philosophies of
the seventeenth century; then, we will study their influence in the twentieth
century, and how they gave rise to the current software delusions.

2

2
The most naive manifestation of the language fallacy was the belief that it is
possible to use ordinary language to build systems of logical concepts, simply
by arranging these concepts into neat hierarchical structures that emulate the
deductive method of mathematics.

Ì Umberto Eco, The Search for the Perfect Language (Oxford: Blackwell, 1997), p. 44.

the search for the perfect language 307chapter 4



In a mathematical system we start with a small number of axioms, and
derive simple theorems by showing that their validity can be logically deduced,
or demonstrated, from these axioms. Then, we derive more complex theorems
by deducing them from the simple ones; and we continue this process with
more and more complex theorems, on higher and higher levels. Ultimately, by
creating a hierarchical structure of theorems, we can confidently determine the
validity of very difficult ones.

The rationalist philosophers believed, as we saw, that language can provide
an exact, one-to-one correspondence to the material and the mental worlds,
and that all three can be represented with simple hierarchical structures. So,
they concluded, if they expressed their arguments in ordinary language very
carefully, the resulting sentences would function just like the axioms and
theorems of mathematics: they would start with simple assertions about the
world – assertions whose truth no one doubts, and which could therefore act
as axioms; then, they would formulate more and more ambitious statements by
moving up, one level at a time, and expressing each statement as a logical
combination of statements from the previous level.

This method, they believed, is identical to the deductive method employed
in mathematics, so it should allow us to determine the truth of the most
difficult statements. But language mirrors reality, so these demonstrations will
function at the same time as demonstrations of certain states of affairs that exist
in the world. Simply by manipulating sentences, then, we will be able to
determine the validity of any concept, including concepts that cannot be
verified directly.

Thus, with this method Descartes needed only a few pages of text to
“establish the existence of God, and the distinction between the mind and
body of man.”Í The logic system through which he “establishes” these facts
includes: ten definitions (for example, definition I is “By the term thought . . .
I comprehend all that is in us, so that we are immediately conscious of it. . . .”Î);
seven postulates, which preface and explain ten axioms (for example, axiom I
is “Nothing exists of which it cannot be inquired what is the cause of its
existing. . . .”Ï); and four theorems, or propositions, with their demonstrations.

Similarly, in the Ethics, Spinoza presented his entire philosophy in this
fashion. The book consists of definitions, postulates, axioms, propositions,
demonstrations, and corollaries, arranged in five hierarchical structures, just
like mathematical systems. Spinoza addresses such topics as the existence of
God, knowledge and emotions, the relation between matter and mind, the
power of reason over passion, and human freedom. And Samuel Clarke,

Í René Descartes, A Discourse on Method (London: Dent, 1912), p. 229. Î Ibid.
Ï Ibid., p. 232.

308 the search for the perfect language chapter 4



another philosopher of that period, presented in the form of a mathematical
system his ideas on religion and morals.

We are not concerned here with the content or merit of these theories, but
only with their mathematical pretences. These philosophers were convinced
that, by mimicking in ordinary language the deductive methods of mathe-
matics, they were actually proving their “theorems.” This delusion is easy to
understand if we remember their belief that the knowledge embodied in a set
of sentences can form a self-contained system, an independent structure. They
fail to see that the reason we can comprehend these sentences at all – the reason
they can communicate their ideas to us through language – is the common
knowledge structures that both they and we already hold in our minds. Thus,
it is the combination of this previous knowledge and the knowledge found in
the new sentences that forms, in reality, their philosophical systems.

The sentences themselves may or may not form a perfect hierarchical
structure, but in either case the new knowledge is the result of several inter-
acting structures. What we derive from reading the axioms, propositions,
and demonstrations is not just a new and independent structure of neatly
related concepts, but the complex structure formed by the interaction of these
concepts and many other concepts, which already exist in our minds. For, if this
were not the case, if all the concepts required to understand a philosophical
system were contained in the structure of sentences alone, we could implement
them as a software system – by storing the definitions, axioms, and propositions
in the elements of a hierarchical data structure. Then, simply by interpreting
the high levels of this structure, the computer would understand the idea of
good and evil, or the meaning of reason and passion, or the value of freedom,
just as we do – a preposterous notion.

The delusion becomes obvious, thus, when we represent these verbal
theorems as simple and complex structures. Entities can function as the
starting elements of a simple structure only if atomic and independent,
otherwise they give rise to a complex structure. The rationalist philosophers
invoke the mechanistic principles of reductionism and atomism, but do not, in
fact, follow them rigorously: they employ as starting elements – as definitions,
postulates, and axioms – entities that are neither atomic nor independent. To
use as definition, postulate, or axiom a sentence like the ones previously
quoted, we must know the meaning of its words, understand the facts asserted,
and place these facts in the current context. So we must appreciate its signifi-
cance, and we do this by analyzing and interpreting it on the basis of previous
knowledge – the same knowledge that helps us to appreciate the significance
of the other definitions, postulates, and axioms. Thus, since the starting
elements are interrelated, what these philosophers are building is not an
isolated hierarchical structure but a system of interacting structures.

the search for the perfect language 309chapter 4



These philosophers also fail to see that if they could use the neat, deductive
methods of mathematics with these topics, they wouldn’t need all those
sentences in the first place. They could substitute symbols like x and y for the
starting elements, and then restrict themselves to manipulating these symbols
with equations, as we do in mathematics. It is precisely because they need to
express concepts that cannot be represented mathematically – specifically,
because they want us to link the new structures with some other knowledge
structures – that the philosophers use verbal theorems and demonstrations.
They need the words because it is only through the multiple meanings of words
that we can link these structures. But then, how can they continue to believe
that those verbal hierarchies function as isolated structures, as mathematical
systems? Since their method is unsound, their conclusions are unwarranted,
and this casts doubt on their entire philosophy.

This is what George Boole showed nearly two centuries later.Ð We know
Boole as the mathematician who established modern symbolic logic, and in
particular, what is known today as Boolean logic – the system that provides the
mathematical foundation for (among other things) digital electronics, and
hence computers. In Boolean logic, entities are reduced to the values 0 and 1,
or False and True, and are manipulated with logical operators like AND, OR, and
NOT; large and intricate hierarchical structures can be built starting with these
simple elements and operations.

Like the rationalist philosophers, Boole held that a logic system is not
limited to mathematical problems, but can also be used with general proposi-
tions. Unlike them, however, he recognized that it is adequate only in situations
that can be reduced to a symbolic form. Thus, he criticized Spinoza and Clarke,
showing that the ideas they attempted to prove with deductive methods do not
lend themselves to this treatment. As a result, their philosophical systems –
which continue to be seen even today as impeccable – are not as sound as they
appear: “In what are regarded as the most rigorous examples of reasoning
applied to metaphysical questions, it will occasionally be found that different
trains of thought are blended together; that particular but essential parts of the
demonstration are given parenthetically, or out of the main course of the
argument; that the meaning of a premiss may be in some degree ambiguous;
and, not unfrequently, that arguments, viewed by the strict laws of formal
reasoning, are incorrect or inconclusive.”Ñ

Boole checked some of Spinoza’s and Clarke’s demonstrations by substitut-
ing symbols for their verbal propositions, and then reproducing their verbal
arguments by means of logical formulas. Thus, he notes that some of the

Ð George Boole, The Laws of Thought (New York: Dover, 1958), ch. XIII.
Ñ Ibid., p. 186.

310 the search for the perfect language chapter 4



original definitions and axioms turn out to be vague or ambiguous when we
try to represent them with precise symbols. And, even when they can be
accurately reduced to logical formulas, he notes that some of the conclusions
cannot, in fact, be logically derived from the premises.

3

3
So far we have examined the belief that natural languages can be used like
mathematical systems. The most common manifestation of the language
fallacy, however, is the belief that our natural languages are hopelessly inade-
quate for expressing rational thought; that only a formal system of symbols and
rules can accurately reflect reality; that we must start from scratch, therefore,
and invent a perfect language.

Descartes, who held that the totality of human knowledge can be repre-
sented, as it were, with one giant structure of things within things, envisaged
the possibility of a universal language that would express this knowledge: all
we have to do is create a hierarchical linguistic structure that matches, element
for element, the whole structure of knowledge. He believed that “just as there
is a very definite order among the ideas of mathematics, e.g., among numbers,
so the whole of human consciousness, with all the contents that can ever enter
into it, constitutes a strictly ordered totality. And similarly, just as the whole
system of arithmetic can be constructed out of relatively few numerical signs,
it must be possible to designate the sum and structure of all intellectual
contents by a limited number of linguistic signs, provided only that they
are combined in accordance with definite, universal rules.”ÉÈ Unfortunately,
Descartes admitted, the only way to design such a language is by first deter-
mining all the elements in the hierarchy of knowledge – a task that would
require “the analysis of all the contents of consciousness into their ultimate
elements, into simple, constitutive ‘ideas.’”ÉÉ

Descartes never attempted this project, but his immediate successors did:
“In rapid sequence they produced the most diverse systems of artificial univer-
sal language, which, though very different in execution, were in agreement in
their fundamental idea and the principle of their structure. They all started
from the notion that [the totality of knowledge is ultimately based on] a limited
number of concepts, that each of these concepts stands to the others in a very
definite factual relation of coordination, superordination or subordination,
and that a truly perfect language must strive to express this natural hierarchy
of concepts adequately in a system of signs.”ÉÊ

ÉÈ Cassirer, Symbolic Forms, p. 128. ÉÉ Ibid. ÉÊ Ibid.

the search for the perfect language 311chapter 4



Two language systems designed as a hierarchical classification of concepts
were those of George Dalgarno and John Wilkins.ÉË These men attempted to
classify all known objects, attributes, qualities, relations, actions, etc., into one
giant hierarchical structure. Each one of these entities was believed to occupy
a precise place in the structure of knowledge, and to form therefore one of the
terminal elements in the structure of words that mirrors the structure of
knowledge. But familiar words can be misleading, so Dalgarno and Wilkins
invented elaborate systems of symbols to represent these elements, as well as
rules of grammar to combine them into sentences. It was widely believed that
an artificial language of this kind, designed logically from scratch, would
enable scientists and philosophers to express ideas more effectively than it is
possible with our natural languages. And few doubted that such languages can,
indeed, be invented.

Among the seventeenth-century language fantasies, it is Leibniz’s work that
has probably received the most attention. Although Leibniz did not actually
attempt to create a language system, he was preoccupied with the relation
between language and knowledge throughout his career. Leibniz’s work was
guided by two beliefs. First, anything that is complex – mental as much as
material – is necessarily made up of simpler things; and these things, if still
complex, are made up of even simpler things, and so on, ending eventually
with some elements that are no longer divisible into simpler ones. These
elements function, therefore, as an “alphabet”: they are the building blocks
from which everything is made up.

This, of course, is a belief in reductionism and atomism. Applying these
principles to mental entities, Leibniz held that there must exist an “alphabet of
human thought”: a set of simple, elementary concepts that constitute the
building blocks of all knowledge, of all science and philosophy, of all truths
known or yet to be discovered. It is the use of imprecise natural languages to
express ideas that leads us into error and slows down intellectual progress.
With an alphabet of thought we could formulate inquiries logically, solve
problems rationally, and quickly expand our knowledge. All we would have to
do is combine the basic elements of thought into more and more complex
concepts, one level at a time, following precise rules. We could then deal safely
with concepts of any complexity, because their validity would be guaranteed by
the method’s formality.

Leibniz’s second belief, thus, was that a logical language is not limited to
helping us express what we already know, but can also help us attain new
knowledge. The language of mathematics, for example, allows us to represent
very large numbers, or very complex relations, by starting with a small set of

ÉË See, for example, Eco, Perfect Language, chs. 11–12.

312 the search for the perfect language chapter 4



symbols and rules. By combining and manipulating these symbols logically on
paper, we have made great discoveries about the real world; that is, about the
actual, physical entities represented by the symbols. These discoveries, clearly,
could not have been made by observing or manipulating the physical entities
themselves.

Similarly, Leibniz believed, a language based on an alphabet of thought
would enable us to solve problems and to make progress in any domain
that involves rational thinking. He called the symbols used to represent the
elementary concepts characters, and the language universal characteristic. This
language, he believed, would function as a sort of mathematical system: “It is
obvious that if we could find characters or signs suited for expressing all our
thoughts as clearly and exactly as arithmetic expresses numbers or geometrical
analysis expresses lines, we could do in all matters insofar as they are subject to
reasoning all that we can do in arithmetic and geometry. For all investigations
which depend on reasoning would be carried out by the transposition of these
characters and by a species of calculus.”ÉÌ Thus, Leibniz was convinced that it
is possible to invent a language “in which the order and relations of signs would
so mirror the order and relations of ideas that all valid reasoning could be
reduced to an infallible, mechanical procedure involving only the formal
substitution of characters.”ÉÍ

�

The fallacy of these language systems lies in the belief that human knowledge
can be represented with one hierarchical structure. We recognize this as the
fallacy of reification. When a hierarchical classification of concepts is used as
the basis of a universal language, what is wrong is not the classification, which
in itself may be accurate and useful. The reason the system fails is that there are
additional ways to classify the same concepts, on the basis of other attributes,
or characteristics, or criteria (see pp. 98–102).

Only elements that are atomic and independent can function as starting
elements in a simple hierarchical structure; and it is impossible to find such
elements in the phenomenon of knowledge. The concept of a flower, for
example, is an element in many knowledge structures: one that depicts the
botanical aspects of flowers, one that depicts the business of flowers, one that
depicts social customs involving flowers, and so forth. These are not distinct
subsets of a hierarchical structure of knowledge, but different structures that

ÉÌ Gottfried Leibniz, quoted in Donald Rutherford, “Philosophy and Language in
Leibniz,” in The Cambridge Companion to Leibniz, ed. Nicholas Jolley (New York: Cam-
bridge University Press, 1995), p. 234. ÉÍ Rutherford, “Leibniz,” p. 231.

the search for the perfect language 313chapter 4



share some of their elements. The concept of a flower, therefore, is not a
starting element in the structure of knowledge envisaged by mechanists. And
breaking it down into even simpler concepts would not help; for, were the
lower-level elements independent of other knowledge structures, the concept
of a flower itself would be independent.

The same is true of any other concept. When Leibniz attempts to discover
the alphabet of human thought by repeatedly breaking down complex concepts
into simpler ones, what he fails to see is that, at each level, he is taking into
account only one of the attributes that characterize the concepts of that level.
There are always other ways that a concept can be expressed as a combination
of simpler ones. We can stop, in fact, at any level we like and call its elements
the alphabet of thought; but these elements always have other attributes besides
those we took into account, so they are part of other structures too. These
elements, therefore, are not independent, so they cannot function as the
starting elements of a simple hierarchical structure.

When we acquire knowledge, our mind develops structures matching all
these classifications, and their interactions. This is why we can acquire and use
knowledge, while being unable to represent the same knowledge with rules or
diagrams. The knowledge is embodied largely in the interactions between
structures, and it is these interactions that can exist in a mind but not in a
mechanistic model.

It is not difficult, then, to find some building blocks of human thought. But,
while the elements at any level could be called the alphabet of thought, they
would not serve this function as Leibniz hoped (in the way the building blocks
of mathematics are the foundation of mathematical systems). We could indeed
create the entire human knowledge from these elements, but only by taking
into account all their attributes: we would have to combine the elements
through many structures simultaneously, so what we would be building is a
complex structure.

For example, if we decide that certain words should function as the alphabet
of thought, it is not enough to see them as the elements of one structure. When
words are used to express ideas, their meanings give rise to many structures:
just as the things themselves link, through their attributes, the structures that
constitute reality, the words depicting these things link in our mind the
knowledge structures that mirror reality. Knowledge, therefore, like reality
itself, is a complex structure, and cannot be represented with one hierarchy, as
Leibniz hoped. (We will return to this problem in the next section.)

But perhaps Leibniz did recognize the limitations of simple structures. In
the passage previously quoted, for instance, he emphasizes that his system
would be useful “in all matters insofar as they are subject to reasoning.” His
error, therefore, is perhaps not so much in believing that all knowledge can be

314 the search for the perfect language chapter 4



represented with simple structures, as in failing to see how little can in fact
be so represented; that is, how little is “subject to reasoning,” if we define
reasoning in the narrow sense of mathematical reasoning. For, if we did
that, we would have to declare almost all knowledge as not being subject to
reasoning. His system could indeed work, but only if we restricted our mental
acts to whatever can be accomplished with neat mathematical methods; in
other words, if we restricted human thought to the capabilities of machines.

4

4
We cannot leave this early period without recalling the satire of Jonathan Swift.
Through imaginative writing, Swift ridiculed the society of his time, and
especially the ignorance, hypocrisy, and corruption of the elites. From politics
to religion, from education to morals, from arts to science, he fearlessly
questioned all accepted values. In his best-known work, Gulliver’s Travels, the
hero finds himself in some strange lands, giving Swift the opportunity to
expose the preoccupations of the contemporary British society by projecting
them in modified and exaggerated forms onto the fictional societies of those
lands.

Now, one of the things that Swift detested was the excesses of the mechanis-
tic philosophy, which by the end of the seventeenth century had become for
most scientists practically a new religion: the belief that mechanistic theories
can explain any phenomenon; the obsession with finding a neat model that
would describe the whole world; and, of course, the search for an artificial
language that would mirror reality perfectly.

In his voyage to Laputa, Gulliver has the occasion to visit the Grand
Academy of Lagado, where hundreds of “projectors” are engaged in fantastic
research projects: ideas that promise extraordinary benefits to society, although
so far none of them work. Here Swift is ridiculing the Royal Society and other
institutions, which, in their infatuation with mechanism, were studying quite
seriously all sorts of utopian schemes. And some of these schemes involved the
use of artificial languages. (In 1668, for example, the Royal Society appointed a
commission of distinguished scientists to study the possible applications of the
language invented by John Wilkins, mentioned earlier; see p. 312.ÉÎ)

Swift recognized the absurdity of the mechanistic language theories; specifi-
cally, the belief that the totality of knowledge can be represented with exact,
mathematical systems, which allows us to treat knowledge mechanically. To
satirize these theories, he describes the language machine invented by one of

ÉÎ Eco, Perfect Language, p. 229.

the search for the perfect language 315chapter 4



the professors at the Academy: a mechanical contraption that generates
random combinations of words. Then, simply by selecting those combinations
that form meaningful sentences, any person can create any text in a given
domain: “Every one knows how laborious the usual method is of attaining to
arts and sciences; whereas by his contrivance, the most ignorant person at
a reasonable charge, and with a little bodily labour, may write books in
philosophy, poetry, politics, law, mathematics and theology, without the least
assistance from genius or study.”ÉÏ (We will discuss the delusion of language
machines in greater detail in chapter 6; see pp. 447–450.)

Then, to ridicule the idea that the elements of language mirror the world
through one-to-one correspondence, Swift describes another research project:
abolishing language altogether and communicating instead directly through
physical objects (which would obviate both the need to produce sounds and
the need to translate words from one language into another): “Since words are
only names for things, it would be more convenient for all men to carry about
them such things as were necessary to express the particular business they are
to discourse on.”ÉÐ

Our challenge today is to recognize that our preoccupation with program-
ming languages and systems stems from delusions that are the software
counterpart of the mechanistic language delusions of previous ages. When a
programming theory claims that our affairs constitute a neat hierarchical
structure of concepts, and therefore applications should be built as neat
hierarchical structures of modules, we are witnessing the same fallacy as in
Leibniz’s idea of human knowledge and the mathematical language that would
represent it.

Structured programming methodologies, object-oriented systems, fourth-
generation languages, not to mention pursuits like Chomskyan linguistics and
software models of mind – these are the projects that Gulliver would have
found the professors of the Grand Academy engaged in, had Swift lived in our
time. And the language machine that permits ignorant people to write books
on any subject has its counterpart today in the application development
environments, programming tools, database systems, and other software
devices that promise ignorant programmers and users the power to generate
applications “without writing a single line of code.” (We will study these
delusions in chapters 6 and 7.)

ÉÏ Jonathan Swift, Gulliver’s Travels and Other Writings (New York: Bantam Books,
1981), p. 181. ÉÐ Ibid., p. 183.

316 the search for the perfect language chapter 4



5

5
Let us pass over the dozens of other language proposals and go straight to the
last years of the nineteenth century, when the modern theories of language and
meaning were born. The first thing we notice is that there is little difference
between these theories and the earlier ones, as the passage of two centuries
did not alter the two fundamental beliefs: that there exists a one-to-one
correspondence between language and reality, and that both can be represented
as simple hierarchical structures.

A major concern of twentieth-century philosophy has been the formal
analysis of language structures – not in the linguistic sense, but as regards their
meaning; specifically, the study of the relationship between statements and
reality. One of the aspects of this study has been the attempt to derive and
interpret the meaning of ordinary sentences using the methods of formal logic;
that is, to determine from the grammatical and logical structure of a sentence
whether it describes something that actually exists in the world. This is how
Irving Copi puts it: “The linguistic program for metaphysical inquiry may be
described as follows. Every fact has a certain ontological form or structure.
For a given sentence to assert a particular fact, the sentence must have a
grammatical structure which has something in common with the ontological
structure of the fact. Hence, on the reasonable expectation that sentences are
easier to investigate than the facts they assert, the examination of sentences will
reveal metaphysical truths about the world.”ÉÑ

But, philosophers say, while the world has presumably a neat and logical
structure, our natural languages do not, so we will never be able to understand
the world through ordinary language. We must design, therefore, a special
language: “The relevance of constructing an artificial symbolic language
which shall be ‘ideal’ or ‘logically perfect’ to the program for investigating
metaphysics by way of grammar is clear. If we have a ‘logically perfect’
language, then its structure will have something in common with the structure
of the world, and by examining the one we shall come to understand the
other.”ÊÈ Copi points out, however, that “even if an ‘ideal’ or ‘logically perfect’
language could be devised, the proposed program for investigating the logical
or ontological structure of reality by investigating the syntactical structure of
an ‘ideal’ language is impossible of fulfillment.”ÊÉ The reason is simple: if a

ÉÑ Irving M. Copi, “Artificial Languages,” in Language, Thought, and Culture, ed. Paul
Henle (Ann Arbor: University of Michigan Press, 1965), p. 108. ÊÈ Ibid., p. 109.

ÊÉ Ibid., p. 110.

the search for the perfect language 317chapter 4



language is to mirror reality perfectly, we must understand reality before we
design that language, thus contradicting the original goal of designing the
language in order to understand reality.

These linguistic theories demonstrate once again the circularity that charac-
terizes mechanistic thinking. The philosophers attempt to describe the world
with languages based on simple structures because they assume that the world
has a neat hierarchical structure. They start by assuming the truth of what, in
fact, needs to be proved. For, the structure of the world is what they do not
know, what those languages were meant to uncover. In other words, they use
their mechanistic fantasy about the world to justify their mechanistic fantasy
about language. Actually, the world is not a simple structure but the interaction
of many structures, so it is not surprising that these languages do not work. It is
because they are logically perfect that they cannot mirror the world. Thus, the
mechanistic language dream – a complete analysis of language and knowledge
through mathematical logic – was never attained.

The first philosopher to investigate this possibility was Gottlob Frege,
who rejected the view that a precise language like the symbolic language of
mathematics can represent only the formal aspects of knowledge. He held that
all human thought can be reduced to a precise language – a language that can
“be taken care of by a machine or replaced by a purely mechanical activity.”ÊÊ

Frege, however, “recognized from the very beginning that for most sentences
of natural languages ‘the connection of words corresponds only partially
to the structure of the concepts.’ But instead of drawing Kant’s defeatist
conclusion, Frege attempted to identify what others would call a ‘perfect
language,’ a fragment of German that expressed perspicuously the content of
what we say.”ÊË

The language fragment Frege was seeking had to fulfil two conditions:
“(a) Every German sentence has a translation into this fragment, and (b) the
grammatical form of every sentence in this fragment mirrors isomorphically
the constituents of the content it expresses, as well as their arrangement in that
content. . . . In effect, the idea was to produce a language in which, even though
inference was based on meaning, one need no longer think about meanings . . .
since one could now restrict oneself to the signs ‘present to the senses’ and their
symbolic correlations.”ÊÌ What Frege was seeking, thus, was a symbolic system
that would fulfil for all the knowledge we can express in a natural language like
German, the same function that the symbolic language of mathematics fulfils
for that portion of knowledge we can express mathematically.

ÊÊ Gottlob Frege, quoted in J. Alberto Coffa, The Semantic Tradition from Kant to Carnap
(New York: Cambridge University Press, 1993), p. 65.

ÊË Coffa, Semantic Tradition, p. 64. ÊÌ Ibid., p. 66.

318 the search for the perfect language chapter 4



And, once this perfect language is discovered, the interpretation of the
meaning of sentences will be automatic. By translating all discourse into this
language, we will be able to determine whether a given statement is meaningful
or not “by a purely mechanical activity”: all we will have to do is manipulate
symbols, just as we do in mathematics.

�

In the first two decades of the twentieth century, it was Bertrand Russell and
Ludwig Wittgenstein who made the greatest contribution to the philosophy of
language. And, since the two men collaborated during this period, their
theories have much in common. Wittgenstein’s most important work, however,
was done later. For this reason, and because Wittgenstein’s philosophy is
especially important to us, I will discuss it separately in the next section.

Russell based his philosophy of language on a theory he called logical
atomism – the analysis of language using the principles of atomism and
mathematical logic. He developed and modified this philosophy over a period
of more than forty years, yet his goal remained the same: to find a formal,
mathematical language that can express with preciseness all knowable facts,
and hence all mental processes. His goal, in other words, was to represent
human knowledge and thought with a neat structure of concepts within
concepts. And although the theory never worked, Russell continued to believe
in the possibility of such a language to the end of his life: “There is, I think, a
discoverable relation between the structure of sentences and the structure
of the occurrences to which the sentences refer. I do not think the structure of
non-verbal facts is wholly unknowable, and I believe that, with sufficient
caution, the properties of language may help us to understand the structure of
the world.”ÊÍ

Thus, Russell’s linguistic project is an excellent example of the futile struggle
to reduce complex phenomena to simple structures. It is also an example of
the corruptive effect of our mechanistic culture – the effect I described in
chapter 3 in connection with Chomsky’s work (see p. 280): Russell was a
professional logician and philosopher, but his mechanistic beliefs compelled
him to pursue absurd linguistic theories, not unlike those of crank intellectuals.
He was also a humanist, but at the same time he was convinced that the
phenomena of knowledge and intelligence can be explained with deterministic
theories. He failed to see that what he was trying to prove was, in effect, that
human minds are no different from machines. While as humanist he was

ÊÍ Bertrand Russell, An Inquiry into Meaning and Truth, rev. ed. (London: Routledge,
1995), p. 341.

the search for the perfect language 319chapter 4



concerned with freedom, justice, and peace, as scientist he promoted theories
that, although invalid, undermine our respect for human beings.

�

Russell stresses the mechanistic nature of his philosophy of language. The
principles of reductionism and atomism figure prominently in his theory, and
it is obvious that the formal language he is seeking would form a simple
hierarchical structure: “My own logic is atomic, and it is this aspect upon which
I should wish to lay stress.”ÊÎ Thus, Russell maintains that there are two kinds
of entities, “simples” and “complexes.”ÊÏ Simples are the atoms of thought,
what we find at the limit of analysis, and are represented in language with
symbols (or names). Complexes are those entities that can still be divided into
simpler ones; they are not represented with symbols, since they are merely
combinations and relations of simples: “I confess it seems obvious to me (as it
did to Leibniz) that what is complex must be composed of simples, though the
number of constituents may be infinite.”ÊÐ

We have yet to discover this symbolic language, Russell admits, but we can
assume that it will have several levels of abstraction, and that the levels will
reflect the actual facts: the complexity of the elements at each level will match
the complexity of the facts described by these elements: “I shall therefore . . .
assume that there is an objective complexity in the world, and that it is
mirrored by the complexity of propositions.”ÊÑ Basic language elements will
represent simple facts directly, and combinations of elements will represent
complex facts: “In a logically perfect language the words in a proposition would
correspond one by one with the components of the corresponding fact, with
the exception of such words as ‘or,’ ‘not,’ ‘if,’ ‘then,’ which have a different
function. In a logically perfect language, there will be one word and no more
for every simple object, and everything that is not simple will be expressed by
a combination of words.”ËÈ

The simplest facts are those that are not deduced from other facts; that is,
facts of which we are aware through direct knowledge or perception. (Russell’s
term for this awareness is acquaintance.) An example of a simple fact is “the
possession of a quality by some particular thing.”ËÉ More complex facts occur
when two or more facts are combined with relations; for example, “A gives B
to C.”ËÊ Russell calls all these facts atomic facts, and the language elements
that express them atomic sentences. He then defines certain operations –

ÊÎ Bertrand Russell, The Philosophy of Logical Atomism (Peru, IL: Open Court, 1985),
p. 157. ÊÏ Ibid., p. 173. ÊÐ Ibid. ÊÑ Ibid., p. 58.

ËÈ Ibid. ËÉ Ibid., p. 59. ËÊ Ibid.

320 the search for the perfect language chapter 4



substitution, combination, generalization – by means of which increasingly
complex propositions can be built.ËË For example, the operation of combina-
tion connects atomic sentences with words like or, and, not, and if-then, and
yields molecular sentences; thus, “the truth or falsehood of a molecular sentence
depends only upon that of its ‘atoms.’”ËÌ

Russell calls “the assemblage of sentences obtained from atomic judgments
of perception by the three operations of substitution, combination, and gener-
alization, the atomistic hierarchy of sentences.”ËÍ The principle of atomicity
“asserts that all propositions are either atomic, or molecular, or generalizations
of molecular propositions; or at least, that [if this is not true of ordinary
languages] a language of which this is true, and into which any statement is
translatable, can be constructed.”ËÎ

Russell’s mistake, like Leibniz’s, is the mistake we note in all mechanistic
delusions; that is, whenever scientists attempt to represent complex phenom-
ena with simple structures (see pp. 313–315). They praise reductionism and
atomism, but the starting elements in their structures are not atomic and
independent, as starting elements must be. Russell calls his theory atomic, but
his “atomic facts” are not atomic at all: they are relatively high-level elements.
His logical atomism could perhaps work, but only if the reduction ended with
some truly atomic and independent entities. Russell cannot perform such a
reduction, so he starts his structure from certain “facts.” But even those facts
that he assumes to be perceived directly (like the possession of a quality
by an object) are not really “simple”: we appreciate their significance by
relying on previous experiences and on the current context; that is, on the
same knowledge we use to understand other facts. These facts are, therefore,
interrelated. They derive from elements and interactions occurring at lower
levels, so they form multiple, interacting structures. They are not the starting
elements of a simple structure, as Russell assumes.

6

6
Let us turn next to the philosophical school called logical positivism (also
known as logical empiricism), which flourished between the 1920s and the
1950s. Its best-known members were Moritz Schlick, Friedrich Waismann,
Rudolf Carnap, Otto Neurath, and A. J. Ayer. Logical positivism was concerned
with verifiability; namely, ways to determine from the logical structure of a
sentence whether the facts it describes can actually occur.

ËË Russell, Meaning and Truth, pp. 194–197. ËÌ Ibid., p. 195. ËÍ Ibid., p. 197.
ËÎ Ibid., p. 266.

the search for the perfect language 321chapter 4



The logical positivists held that a sentence is meaningful only if what it says
can be logically broken down into a combination of some basic statements –
statements simple enough to verify through direct observation. A sentence is
true if the basic statements are found to be true, and false otherwise; but in
either case it is meaningful. And sentences that cannot be reduced to such basic
statements must be considered, not just false, but meaningless. This view of
meaningfulness (which is similar to that found in other mechanistic theories
of knowledge) is useless as criterion of demarcation, however.

The logical positivists were attempting to establish a revolutionary ideology:
a scientific philosophy, grounded entirely on verifiable propositions. As
part of this project, they were trying to reduce all knowledge to a system
of propositions related through the precise rules of symbolic logic. And
they believed that a strict criterion of demarcation is essential, in order to
ensure that the system includes all the scientific propositions and none of the
metaphysical or meaningless ones. Their criterion, however, was so strict that
it ended up labeling as meaningless practically all sentences, including the
theories of empirical science. The reason is that only trivial statements and
theories can be reduced to facts that are verifiable through direct observation.
Almost all knowledge is based, ultimately, on various hypotheses about the
world; that is, on assertions which cannot be verified.

Consequently, much of the subsequent work of the logical positivists
consisted in searching for a way to resolve this difficulty, and to formulate a
practical criterion of demarcation. But, as Popper showed, it is impossible
to determine with absolute certainty the truth or falsehood of empirical
propositions. Popper criticized the logical positivist project, and held that a
criterion of demarcation must be based on falsifiability, not verifiability (see
“Popper’s Principles of Demarcation” in chapter 3).

Logical positivism was committed to the mechanistic principles of reduc-
tionism and atomism. Its chief contribution to the mechanistic culture was
the linguistic interpretation of science: the attempt to reduce all scientific
knowledge to a logical analysis of sentences. Thus, the mechanistic principles
were to be applied, not directly to scientific knowledge, but to the sentences
in which this knowledge is expressed (on the familiar assumption that linguis-
tic structures mirror through one-to-one correspondence the reality they
describe).

The logical positivists believed that there is no need to take into account
such imprecise information as the context in which a sentence is used. They
held that the logical structure of a sentence, if properly analyzed, contains all
the information we need to determine whether what it expresses is meaningful
or not. And if this is not entirely true of natural languages, they argued, we can
undoubtedly invent a precise language into which and from which we can

322 the search for the perfect language chapter 4



translate our sentences. Then, by expressing knowledge in this language, we
will automatically restrict ourselves to meaningful propositions.

Many attempts were made over the years, especially by Carnap and Neurath,
to design that precise language upon which all knowledge could be based.
Some theories, for example, involved “protocol sentences”: isolated statements
that describe such simple and verifiable facts as the position of an object, a
particular attribute, a movement, or the time of day. Since reality is ultimately
made up of such simple facts, it was argued, the sentences describing these
facts can act as the basic elements of discourse. We should be able, then, to
express any proposition as a combination of these sentences. Other theories
claimed that the language of physics must be considered the basic language of
knowledge. The basic elements would then be sentences that describe simple
processes in space and time. Since everything in the world is ultimately based
on elementary physical processes, we should be able to reduce all propositions
to linguistic structures built from sentences that describe basic physical
processes.

None of these theories worked, but this did not stop the logical positivists
from promoting an ambitious project – called the unity of science – which,
they claimed, would be one of the benefits of a precise language. The unity
of science is the culmination of the scientistic dream: a reduction of all
knowledge, of all the theories from all sciences, to a common, universal
representation. Carnap believed that this is the only way for science to advance,
and that only the language of physics can provide a universal representation.
We may well develop other universal languages, he says, but such languages
would always be reducible to the language of physics: “Every systematic
language of this kind can be translated into the physical language. . . . Because
the physical language is thus the basic language of Science the whole of Science
becomes Physics.”ËÏ

Needless to say, the phenomena studied by sciences like biology, psychology,
and sociology must also be reduced to the language of physics. The reason we
have not been as successful in these disciplines as we have in physics is that
their languages are specialized, and hence limited, unlike the language of
physics, which is universal. Their reduction to the language of physics is,
therefore, the only way to make progress in these disciplines.ËÐ

Recall the discussion of formal reductionism in chapter 1 (pp. 76–78):
mechanists claim that everything in the world – from material entities to
biological phenomena, mental acts, and social life – can ultimately be reduced
to physics; and physics can be reduced to mechanics, to the motion of bits of

ËÏ Rudolf Carnap, The Unity of Science (Bristol: Thoemmes, 1995), p. 97.
ËÐ Ibid., p. 100.

the search for the perfect language 323chapter 4



matter. Viewed in this light, logical positivism, along with the concept of the
unity of science, is just another manifestation of the reductionistic project – but
in a linguistic dress. Since these philosophers believe that language structures
can mirror the world through one-to-one correspondence, they inevitably
invent theories that postulate, instead of the traditional reduction of biology,
psychology, and sociology to the motion of bits of matter, the reduction of the
sentences employed in these disciplines to sentences describing bits of matter.

7

7
The language delusions of the first half of the twentieth century are reflected
in the software delusions of the second half. Our software delusions stem from
the same fallacy: the belief that a language – a formal system of rules and
symbols – can generate hierarchical structures that mirror reality perfectly.
This was the belief of Russell and Carnap, but, while the language delusions are
limited to theories, we are actually implementing their software counterpart.

The software counterpart of the search for the perfect language is the search
for the perfect programming language, or the perfect development system, or
the perfect database model, or the perfect application. We recognize it in the
endless succession of programming theories, methodologies, environments,
languages, and tools, and the perpetual changes, versions, and “generations.”

The belief in a perfect language, like the mechanistic doctrine of which it is
part, has undoubtedly influenced our conception of language and knowledge,
of mind and society. But this is where the harm ended. Its software counterpart
– the belief in a perfect programming system – is just as fallacious, yet the
mechanists are now asking us to alter our lives, and to lower our expectations,
in order to conform to software theories based on this fallacy. Despite the
continued belief in a logically perfect language, we never downgraded our
conception of human capabilities to what can be represented with simple
structures – the only structures possible in such a language. But this is precisely
what we do with software when we agree to depend on mechanistic concepts
(theories, methodologies, programming aids, ready-made applications), whose
express purpose is to restrict us to simple knowledge structures.

It bears repeating: The potency of language and software derives from
their ability to mirror reality. They do not mirror reality, however, through
structures that provide a one-to-one correspondence to the world. The world
consists of complex structures, whereas the entities that make up language and
software give rise to simple structures. What mirrors reality is the interactions
between the structures of language or software, and between these and various
knowledge structures.

324 the search for the perfect language chapter 4



The greatest thinkers of the twentieth century fell victim to the language
fallacy and could not see that their ideas were practically identical to the
language fantasies of earlier times. So we should not be surprised that so many
people today fall victim to the software and programming fallacies. Russell and
Carnap built elaborate logic systems, which may even be faultless, but which
cannot represent reality – because the premises of one-to-one correspondence
between language and reality, and of a simple hierarchical structure that can
represent all knowledge, are both invalid. Similarly, mechanistic software
theories may be faultless as logic systems, but are useless in practice, because
they start from the same invalid premises. They cannot represent reality any
better than can the language theories.

Russell, even after forty years of futile search for a language that would
represent logically all knowledge, still did not admit that human minds hold
types of knowledge which cannot be reduced to simple structures of symbols.ËÑ
But, as we saw in chapter 2, practically all types of knowledge consist, in fact,
of complex structures. No one has managed to represent the act of recognizing
contexts, for example, as a precise structure of elementary mental acts; yet
recognizing contexts is something we all do, continually and effortlessly. Thus,
the knowledge involved in this act cannot be mapped perfectly in a language
like the one proposed by Russell. It cannot be mapped in any language, because
it consists of interacting structures, and a neat system of symbols can only map
individual structures.

Similarly, the concepts of software engineering – the relational database
model, object-oriented systems, structured programming, and the like – claim
that the reality we want to represent with software can be mapped perfectly
into hierarchical structures of symbols. But these concepts cannot work,
because reality consists of interacting structures. For software as for language,
it is the interactions that are lost when we attempt to map reality with precise
systems of symbols. And when these interactions are important, the resulting
systems can provide only a poor approximation of reality.

The language and software theories, thus, are part of the same project: the
attempt to reduce to neat hierarchical structures the complex phenomena that
make up the world. For software as for language, it is the same world that we
try to map with simple structures of symbols, so there is no reason to expect
the software theories to succeed where the language theories have failed.

ËÑ Russell, Meaning and Truth, pp. 327–330.

the search for the perfect language 325chapter 4




	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 4: Language and Software
	The Common Fallacies
	1
	2

	The Search for the Perfect Language
	1
	2
	3
	4
	5
	6
	7



