
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 7: Software Engineering
Section Object-Oriented Programming

This extract includes the book’s front matter
and part of chapter 7.

Copyright © 2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This section analyzes the theory of object-oriented programming
and its mechanistic fallacies, and shows that it is a pseudoscience.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 7: Software Engineering

Object-Oriented Programming Object-Oriented Programming
The Quest for Higher Levels

The Quest for Higher Levels

Mechanistic software theories attempt to improve programming productivity
by raising the level of abstraction in software development; specifically, by
introducing methods, languages, and systems where the starting elements are
of a higher level than those found in the traditional programming languages.
But the notion of higher starting levels is a delusion. It stems from the two
mechanistic fallacies, reification and abstraction: the belief that we can separate
the structures that make up a complex phenomenon, and the belief that we
can represent a phenomenon accurately even while ignoring its low-level
elements.

The similarity of software and language, we saw, can help us to understand
this delusion. We cannot start from higher levels in software development for
the same reason we cannot start with ready-made sentences in linguistic
communication. In both cases, when we ignore the low levels we lose the ability
to implement details and to link structures. The structures are the various
aspects of an idea, or of a software application. In language, therefore, we must
start with words, and create our own sentences, if we want to be able to express
any idea; and in programming, we must start with the traditional software
elements, and create our own constructs, if we want to be able to implement
any application.

In a simple structure, the values displayed by the top element reflect
the combinations of elements at the lower levels. So, the lower the starting
elements, the more combinations are possible, and the larger is the number of
alternatives for the value of the top element. In a complex structure even
more values are possible, because the top element is affected by several
interacting structures. Software applications are complex structures, so the
impoverishment caused by starting from higher levels can be explained as a
loss of both combinations and interactions: fewer combinations are possible
between elements within the individual structures, and fewer interactions
are possible between structures. As a result, there are fewer possible values
for the top element – the application. (See “Abstraction and Reification” in
chapter 1.)

While starting from higher levels may be practical for simple applications,
or for applications limited to a narrow domain, for general business applica-
tions the starting level cannot be higher than the one found in the traditional

614 object-oriented programming chapter 7

programming languages. Any theory that attempts to raise this level must be
“enhanced” later with features that restore the low levels. So, while praising the
power of the high levels, the experts end up contriving more and more low-
level expedients – without which their system, language, or method would be
useless.

We already saw this charlatanism in the previous section, when non-
standard flow-control constructs, and even GOTO, were incorporated into
structured programming. But because structured programming was still based
on the traditional languages, the return to low levels was not, perhaps, evident;
all that the experts had to do to restore the low levels was to annul some of the
restrictions they had imposed earlier. The charlatanism became blatant,
however, with the theories that followed, because these theories restrict
programming, not just to certain constructs, but to special development
systems. Consequently, when the theories fail, the experts do not restore the
low levels by returning to the traditional programming concepts, but by
reproducing some of these concepts within the new systems. In other words,
they now prevent us from regaining the freedom of the traditional languages,
and force us to depend on their systems.

In the present section, we will see how this charlatanism manifests itself
in the so-called object-oriented systems; then, in the next section, we will
examine the same charlatanism in the relational database systems. Other
systems belonging to this category are the fourth-generation languages and
tools like spreadsheets and database query, which were discussed briefly in
chapter 6 (see pp. 441–442, 444–445, 452–453).

If we recall the language analogy, and the hypothetical system that would
force us to combine ready-made sentences instead of words, we can easily
imagine what would happen. We would be unable to express a certain idea
unless the system happened to include the required sentences. So the experts
would have to offer us more and more sentences, and more and more methods
to use them – means to modify a sentence, to combine sentences, and so forth.
We would perceive every addition as a powerful new feature, convinced that
this was the only way to have language. We would spend more and more
time with these sentences and methods, and communication would become
increasingly complicated. But, in the end, even with thousands of sentences
and features, we would be unable to express ourselves as well as we do now,
simply by combining words.

While it is hard to see how anyone could be persuaded to depend on a
system that promises higher starting levels in language, the whole world is
being fooled by the same promise in software. And when this idea turns out to
be a delusion, we continue to be fooled: we agree to depend on these systems
even as we see them being modified to reinstate the low levels.

the quest for higher levels 615chapter 7

At first, the software experts try to enhance the functionality of their system
by adding more and more high-level elements: whenever we fail to implement
a certain requirement by combining existing elements, they provide some new
ones. But we need an infinity of alternatives in our applications, and it is
impossible to provide enough high-level elements to generate them all. So the
experts must also add some low-level elements, similar to those found in the
traditional languages. By then, their system ceases to be the simple and elegant
high-level environment they started with; it becomes an awkward mixture of
high and low levels, built-in functions, and odd software concepts.

And still, many requirements remain impossible or difficult to implement.
There are two reasons for this. First, the experts do not restore all the low-level
elements we had before; and without enough low-level elements we cannot
create all the combinations needed to implement details and to link the
application’s structures. Second, the low-level elements are provided as an
artificial extension to the high-level features, so we cannot use them freely.
Instead of the simple, traditional way of combining elements – from low to high
levels – we must now use some contrived methods based on high-level features.

In conclusion, these systems are fraudulent: not only do they fail to provide
the promised improvement (programming exclusively through high-level
features), but they make application development even more difficult than
before. Their true purpose is not to increase productivity, but to maintain
programming incompetence and to prevent programming freedom. The
software elites force us to depend on complicated, expensive, and inefficient
development environments, when we could accomplish much more with
ordinary programming languages. (We discussed the fallacy of high-level
starting elements in “The Delusion of High Levels” in chapter 6.)

The Promise

The Promise

Like structured programming before it, object-oriented programming was
hailed as an entirely new approach to application development: “OOP –
Object-Oriented Programming – is a revolutionary change in programming.
Without a doubt, OOP is the most significant single change that has occurred
in the software field.”É “Object technology . . . represents a major watershed in
the history of computing.”Ê “Object-oriented technology promises to produce

É Peter Coad and Jill Nicola, Object-Oriented Programming (Englewood Cliffs, NJ: PTR
Prentice Hall, 1993), p. xxxiii.

Ê Paul Harmon and David A. Taylor, Objects in Action: Commercial Applications of
Object-Oriented Technologies (Reading, MA: Addison-Wesley, 1993), p. 15.

616 object-oriented programming chapter 7

a software revolution in terms of cost and quality that will rival that of
microprocessors and their integrated circuit technologies during the 1980s.”Ë

“The goal is not just to improve the programming process but to define an
entirely new paradigm for software construction.”Ì “Object orientation is . . .
the technology that some regard as the ultimate paradigm for the modelling of
information, be that information data or logic.”Í “The paradigm shift we’ll
be exploring . . . is far more fundamental than a simple change in tools or
terminology. In fact, the shift to objects will require major changes in the way
we think about and use business computing systems, not just how we develop
the software for them.”Î

Thus, while structured programming had been just a revolution, object-
oriented programming was also a new paradigm. Finally, claimed the theorists,
we have achieved a breakthrough in programming concepts.

If the promise of structured programming had been to develop and prove
applications mathematically, the promise of object-oriented programming was
“reusable software components”: employing pieces of software the way we
employ subassemblies in manufacturing and construction. The new paradigm
will change the nature of programming by turning the dream of software reuse
into a practical concept. Programming – the “construction” of software – will
be simplified by systematically eliminating all repetition and duplication.
Software will be developed in the form of independent “objects”: entities
related and classified in such a way that no one will ever again need to program
a piece of software that has already been programmed. One day, when enough
classes of objects are available, the development of a new application will entail
little more than putting together existing pieces of software. The only thing we
will have to program is the differences between our requirements and the
existing software.

Some of these ideas were first proposed in the 1960s, but it was only in the
1980s that they reached the mainstream programming community. And it was
in the 1990s, when it became obvious that structured programming and the
structured methodologies did not fulfil their promise, that object-oriented
programming became a major preoccupation. A new madness possessed the
universities and the corporations – a madness not unlike the one engendered

Ë Stephen Montgomery, Object-Oriented Information Engineering: Analysis, Design, and
Implementation (Cambridge, MA: Academic Press, 1994), p. 11.

Ì David A. Taylor, Object-Oriented Technology: A Manager’s Guide (Reading, MA:
Addison-Wesley, 1990), p. 88.

Í John S. Hares and John D. Smart, Object Orientation: Technology, Techniques, Manage-
ment and Migration (Chichester, UK: John Wiley and Sons, 1994), p. 1.

Î Michael Guttman and Jason Matthews, The Object Technology Revolution (New York:
John Wiley and Sons, 1995), p. 13.

the promise 617chapter 7

by structured programming in the 1970s. Twenty years later, we hear the same
claims and the same rhetoric: There is a software crisis. Software development
is inefficient because our current practices are based, like those of the old
craftsmen, on personal skills. We must turn programming into a formal
activity, like engineering. It is concepts like standard parts and prefabricated
subassemblies that make our manufacturing and construction activities so
successful, so we must emulate these concepts in our programming activities.
We must build software applications the way we build appliances and houses.

Some examples: “A major theme of object technology is construction from
parts, that is, the fabrication, customization, and assembly of component parts
into working applications.”Ï “The software-development process is similar
in concept to the processes used in the construction and manufacturing
industries.”Ð “Part of the appeal of object orientation is the analogy between
object-oriented software components and electronic integrated circuits. At
last, we in software have the opportunity to build systems in a way similar to
that of modern electronic engineers by connecting prefabricated components
that implement powerful abstractions.”Ñ “Object-oriented techniques allow
software to be constructed of objects that have a specified behavior. Objects
themselves can be built out of other objects, that in turn can be built out of
objects. This resembles complex machinery being built out of assemblies,
subassemblies, sub-subassemblies, and so on.”ÉÈ

�

For some theorists, the object-oriented idea goes beyond software reuse.
The ultimate goal of object-oriented programming, they say, is to reduce
programming to mathematics, and thereby turn software development into an
exact, error-free activity. Thus, because they failed to see why the earlier idea,
structured programming, was mistaken despite its mathematical aspects, these
theorists are committing now the same fallacy with the object-oriented idea.
Here is an example: “For our work to become a true engineering discipline, we
must base our practices on hard science. For us, that science is a combination
of mathematics (for its precision in definition and reasoning) and a science of

Ï Daniel Tkach and Richard Puttick, Object Technology in Application Development
(Redwood City, CA: Benjamin/Cummings, 1994), p. 4.

Ð Ed Seidewitz and Mike Stark, Reliable Object-Oriented Software: Applying Analysis and
Design (New York: SIGS Books, 1995), p. 6.

Ñ Meilir Page-Jones, What Every Programmer Should Know about Object-Oriented
Design (New York: Dorset House, 1995), p. 66.

ÉÈ James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), pp. 4–5.

618 object-oriented programming chapter 7

information. Today we are starting to see analysis methods that are based on
these concepts. The Shlaer-Mellor method of OOA [object-oriented analysis],
for example, is constructed as a mathematical formalism, complete with
axioms and theorems. These axioms and theorems have been published as
‘rules’; we expect that as other methods become more fully developed, they,
too, will be defined at this level of precision.”ÉÉ

And, once the analysis and design process is fully formalized, that elusive
dream, the automation of programming, will finally be within reach. With the
enormous demand for software, we can no longer afford to squander our
skills constructing software by hand. We must alter the way we practise
programming, from handcrafting software, to operating machines that make
software for us: “We as practitioners must change. We must change from highly
skilled artisans to being software manufacturing engineers. . . . We cannot
afford to sit in front of our workstations and continue to build, fit, smooth, and
adjust, making by hand each part of each subassembly, of each assembly, of
each product. . . . How far away is this future? Not very far. . . . Our New Year’s
resolution is to continue this effort and, working with commercial toolmakers,
to put meaningful automation in your hands by year’s end. I think we can
do it.”ÉÊ

Thus, the mechanistic software ideology – the belief that software develop-
ment is akin to manufacturing, and the consequent belief that it is not better
programmers that we need but better methods and tools – did not change.
What was perceived as a shift in paradigms was in reality only a shift in
preoccupations, from “structured” to “object-oriented.”

This shift is also reflected in the accompanying rhetoric: as all the claims
and promises made previously for structured programming were now being
made for object-oriented programming, old slogans could be efficiently
reused, simply by replacing the term “structured” with “object-oriented.” Thus,
we now have object-oriented techniques, object-oriented analysis, object-
oriented design, object-oriented methodologies, object-oriented modeling,
object-oriented tools, object-oriented user interface, object-oriented project
management, and so forth.

There is one striking difference, though: the use of the term “technology.”
While structured programming was never called a technology, expressions like

ÉÉ Sally Shlaer, “A Vision,” in Wisdom of the Gurus: A Vision for Object Technology, ed.
Charles F. Bowman (New York: SIGS Books, 1996), pp. 219–220.

ÉÊ Ibid., pp. 222–223. These statements express perfectly that absurd, long-standing wish
of the software theorists – to reduce software to mechanics: the “parts” that we build, fit, etc.,
in the quotation are software parts; and the “toolmakers” are making software tools, to be
incorporated into software machines (development systems), which will then automatically
make those parts for us.

the promise 619chapter 7

“object technology” and “object-oriented technology” are widespread. What is
just another programming concept is presented as a technology. But this is
simply part of the general inflation in the use of “technology,” which has
affected all discourse (see “The Slogan ‘Technology’” in chapter 5).

�

To further illustrate the object-oriented propaganda, let as analyze a few
passages from a book that was written as a guide for managers:ÉË “We see
object-oriented technology as an important step toward the industrialization
of software, in which programming is transformed from an arcane craft to a
systematic manufacturing process. But this transformation can’t take place
unless senior managers understand and support it.”ÉÌ This is why “this guide is
written for managers, not engineers”:ÉÍ for individuals who need not “know
how to program a computer or even use one.”ÉÎ The guide, in other words, is for
individuals who can believe that, although they know nothing about program-
ming, they will be able to decide, just by reading a few easy pages, whether this
new “technology” can solve the software problems faced by their organization.

Taylor continues by telling us about the software crisis, in sentences that
could have been copied directly from a text written twenty years earlier:
development projects take longer than planned, and cost more; often, the
resulting applications have so many defects that they are unusable; many of
them are never completed; those that work cannot be modified later to meet
their users’ evolving needs.ÉÏ Then, after describing some of the previous
attempts to solve the crisis (structured programming, fourth-generation
languages, CASE, various database models), Taylor concludes: “Despite all
efforts to find better ways to build programs, the software crisis is growing
worse with each passing year. . . . We need a new approach to building software,
one that leaves behind the bricks and mortar of conventional programming
and offers a truly better way to construct systems. This new approach must be
able to handle large systems as well as small, and it must create reliable systems
that are flexible, maintainable, and capable of evolving to meet changing
needs. . . . Object-oriented technology can meet these challenges and more.”ÉÐ

The object-oriented revolution will transform programming in the same
way the Industrial Revolution transformed manufacturing. Taylor reminds us
how goods were produced earlier: Each product was a unique creation of a
particular craftsman, and consequently its parts were not interchangeable with

ÉË David A. Taylor, Object-Oriented Technology: A Manager’s Guide (Reading, MA:
Addison-Wesley, 1990). ÉÌ Ibid., p. iii.

ÉÍ Ibid., p. vii (“engineers,” of course, means programmers). ÉÎ Ibid.
ÉÏ Ibid., pp. 1–2. ÉÐ Ibid., pp. 13–14.

620 object-oriented programming chapter 7

those of another product, even when the products were alike. Goods made
in this fashion were expensive, and their quality varied. Then, in 1798, Eli
Whitney conceived a new way of building rifles: by using standard parts. This
greatly reduced the overall time and cost of producing them; moreover, their
quality was now uniform and generally better. Modern manufacturing is based
on this concept.ÉÑ

The aim of object-oriented technology is to emulate in programming the
modern manufacturing methods. It is a radical departure from the traditional
approach to software development – a paradigm shift, just as the concept of
standard parts was for manufacturing: “Two hundred years after the Industrial
Revolution, the craft approach to producing material goods seems hopelessly
antiquated. Yet this is precisely how we fabricate software systems today. Each
program is a unique creation, constructed piece by piece out of the raw
materials of a programming language by skilled software craftspeople. . . .
Conventional programming is roughly on a par with manufacturing two
hundred years ago. . . . This comparison with the Industrial Revolution reveals
the true ambition behind the object-oriented approach. The goal is not just to
improve the programming process but to define an entirely new paradigm for
software construction.”ÊÈ

Note, throughout the foregoing passages, the liberal use of terms like “build,”
“construct,” “manufacture,” and “fabricate” to describe software development,
without any attempt to prove first that programming is similar to the activities
performed in a factory. Taylor doesn’t doubt for a moment that software
applications can be developed with the methods we use to build appliances. It
doesn’t occur to him that the reason we still have a software crisis after all
these years is precisely this fallacy, precisely because all theories are founded
on mechanistic principles. He claims that object-oriented programming is
different from the previous ideas, but it too is mechanistic, so it too will fail.

This type of propaganda works because few people remember the previous
programming theories, and even fewer understand the reason for their failure.
The assertions made in these passages – presenting the latest theory as salva-
tion, hailing the imminent transition of programming from an arcane craft to
an engineering process – are identical to those made twenty years earlier in
behalf of structured programming. And they are also identical to those made
in behalf of the so-called fourth-generation languages, and CASE. It is because
they didn’t study the failure of structured programming that the theorists and
the practitioners fall prey to the same delusions with each new idea.

Also identical is calling incompetent programmers “skilled software crafts-
people” (as in the last quotation), or “highly skilled artisans” (as in a previous

ÉÑ Ibid., pp. 86–87. ÊÈ Ibid., p. 88.

the promise 621chapter 7

quotation, see p. 619). We discussed this distortion earlier (see pp. 483–485).
The same theorists who say that programmers are messy and cannot even learn
to use GOTO correctly (see pp. 605–607) say at the same time that programmers
have attained the highest possible skills (and, hence, that new methods and
tools are the only way to improve their work). Although absurd – because they
are contradictory, and also untrue – these claims are enthusiastically accepted
by the software bureaucrats with each new theory. Thus, at any given time,
and just by being preoccupied with the latest fantasies, ignorant academics,
managers, and programmers can flatter themselves that they are carrying out
a software revolution.

The Theory

The Theory
1 1
Let us examine the theory behind object-oriented programming. Software
applications are now made up of objects, rather than modules. Objects are
independent software entities that represent specific processes. The attributes
of an object include various types of data and the operations that act on this
data. The objects that make up an application communicate with one other
through messages: by means of a message, one object invokes another and asks
it to perform one of the operations it is capable of performing. Just as in calling
traditional subroutines, a message may include parameters, and the invoked
object may return a value. So it is this structure of objects and messages that
determines the application’s performance, rather than a structure of modules
and flow-control constructs, as was the case under structured programming.

Central to the concept of objects is their hierarchical organization. Recall
our discussion of hierarchical structures and levels of abstraction (in “Simple
Structures” in chapter 1). When we move up from one level to the next, the
complexity of the elements increases, because one element is made up of
several lower-level elements. At each level we extract, or abstract, those
attributes that define the relation between the two levels, and ignore the others;
so the higher-level element retains only those attributes that are common to all
the elements that make it up. Conversely, when we move down, each of the
lower-level elements possesses all the attributes of the higher-level element,
plus some new ones. There are more details as we move from high to low levels,
and fewer as we move from low to high levels. Thus, the levels of a hierarchy
function as both levels of complexity and levels of abstraction.

We saw how the process of abstraction works in classification systems. Take,
for example, a classification of animals: we can divide animals into wild and

622 object-oriented programming chapter 7

domestic, the domestic into types like dogs, horses, and chickens, the dogs into
breeds like spaniel, terrier, and retriever, and finally each breed into the
individual animals. Types like dogs, horses, and chickens possess specific
attributes, and in addition they share those attributes defining the higher-level
element to which they all belong – domestic animals. Similarly, while each
breed is characterized by specific attributes, all breeds share those attributes
that distinguish them as a particular type of animal – dogs, for instance. Finally,
each individual animal, in addition to possessing some unique attributes,
shares with others the attributes of its breed.

Just like the elements in the classification of animals, software objects form
a hierarchical structure. The elements at each level are known as classes, and
the attributes relating one level to the next are the data types and the operations
that make up the objects. A particular class, thus, includes the objects that
possess a particular combination of data types and operations. And each class
at the next lower level possesses, in addition to these, its own, unique data types
and operations. The lower the level, the more data types and operations take
part in the definition of a class. Conversely, the higher the level, the simpler the
definition, since each level retains only those data types and operations that are
common to all the classes of the lower level. So, as in any hierarchical structure,
the levels in the classification of software objects also function as levels of
abstraction.

This hierarchical relationship gives rise to a process called inheritance, and
it is through inheritance that software entities can be systematically reused. As
we just saw, the classes that make up a particular level inherit the attributes (the
data types and operations) of the class that forms the next higher level. And,
since the latter inherits in its turn the attributes of the next higher level, and so
on, each class in the hierarchy inherits the attributes of all the classes above it.
Each class, therefore, may possess many inherited attributes in addition to its
own, unique attributes.

The process of inheritance is, obviously, the process of abstraction observed
in reverse: when following the hierarchy from low to high levels, we note the
abstraction of attributes (fewer and fewer are retained); from high to low levels,
we note the inheritance of attributes (more and more are acquired).

Through the process of inheritance, we can create classes of objects with
diverse combinations of attributes without having to define an attribute more
than once. All we need to do for a new class is define the additional attributes
– those that are not possessed by the higher-level classes. To put it differently,
simply by defining the classes of objects hierarchically, as classes within classes,
we eliminate the need to duplicate attributes: a data type or operation defined
for a particular class will be inherited by all the classes below it. So, as we
extend the software hierarchy with lower and lower levels of classes, we will

the theory 623chapter 7

have classes that, even if adding few attributes of their own, can possess a rich
set of attributes – those of all the higher-level classes.

The classes are only templates, definitions of data types and operations. To
create an application, we generate replicas, or instances of these templates, and
it is these instances that become the actual objects. All classes, regardless of
level, can function as templates; and each one can engender an unlimited
number of actual objects. Thus, only in the application will the data types and
operations defined in the class hierarchy become real objects, with real data
and operations.

2

2
These, then, are the principles behind the idea of object-oriented program-
ming. And it is easy to see why they constitute a new programming paradigm,
a radical departure from the traditional way of developing applications. It is not
the idea of software reuse that is new, but the idea of taking software reuse to
its theoretical limit: in principle, we will never again have to duplicate a
programming task.

We always strove to avoid rewriting software – by copying pieces of software
from previous applications, for example, and by relying on subroutine libraries.
But the traditional methods of software reuse are not very effective. Their
main limitation is that the existing module must fit the new requirements
perfectly. This is why software reuse was limited to small pieces of code, and to
subroutines that perform some common operations; we could rarely reuse a
significant portion of an application. Besides, it was difficult even to know
whether reusable software existed: a programmer would often duplicate a
piece of software simply because he had no way of knowing that another
programmer had already written it.

So code reuse was impractical before because our traditional development
methods were concerned largely with programming issues. Hierarchical soft-
ware classes, on the other hand, reflect our affairs, which are themselves related
hierarchically. Thus, the hierarchical concept allows us to organize and relate
the existing pieces of software logically, and to reuse them efficiently.

The object-oriented ideal is that all the software in the world be part of one
giant hierarchy of classes, related according to function, and without any
duplication of data types or operations. For a new application, we would start
with some of the existing classes, and create the missing functions in the form
of new classes that branch out of the existing ones. These classes would then
join the hierarchy of existing software, and other programmers would be able
to use them just as we used the older ones.

624 object-oriented programming chapter 7

Realistically, though, what we should expect is not one hierarchy but a large
number of separate hierarchies, created by different programmers on different
occasions, and covering different aspects of our affairs. Still, because their
classes can be combined, all these hierarchies together will act, in effect, as one
giant hierarchy. For example, we can interpret a certain class in one hierarchy,
together perhaps with some of its lower-level classes, as a new class that
branches out of a particular class in another hierarchy. The only deviation from
the object-oriented ideal is in the slight duplication of classes caused by the
separation of hierarchies.

The explanation for the exceptional reuse potential in the object-oriented
concept is that a class hierarchy allows us to start with software that is just close,
in varying degrees, to a new requirement – whereas before we could only reuse
software that fitted a new requirement exactly. It is much easier to find software
that is close to our needs than software that matches our needs. We hope, of
course, to find some low-level classes in the existing software; that is, classes
which already include most of the details we have to implement. But even when
no such classes exist, we can still benefit from the existing software. In this case,
we simply agree to start from slightly higher levels of abstraction – from classes
that resemble only broadly our requirements – and to create a slightly larger
number of new classes and levels. Thus, regardless of how much of the
required software already exists, the object-oriented approach guarantees that,
in a given situation, we will only perform the minimum amount of work;
specifically, we will only program what was not programmed before.

Let us take a specific situation. In many business applications we find data
types representing the quantity in stock of various items, and operations that
check and alter these values. Every day, thousands of programmers write pieces
of software that are, in the end, nothing but variations of the same function:
managing an item’s quantity in stock. The object-oriented approach will
replace this horrendous duplication with one hierarchy of classes, designed to
handle the most common situations. Programmers will then start with these
classes, and perhaps add a few classes of their own to implement some unique
functions. Thus, the existing classes will allow us to increment and decrement
the quantity, interpret a certain stock level as too high or too low, and the like.
And if we need an unusual function – say, a history of the lowest monthly
quantities left in stock – we will simply add to the hierarchy our own class, with
appropriate data types and operations, just for this one function.

Clearly, we could have a hierarchy of this kind for every aspect of our work.
But we could also have classes for entire processes, even entire applications.
For example, we could have a hierarchy of specialized classes for inventory
management systems. Then, starting with these classes, we could quickly
create any inventory management application: we would take some classes

the theory 625chapter 7

from low levels and others from high levels; we would ignore some classes
altogether; and we would add our own classes to implement details and
unusual requirements. We could even combine classes from several inventory
management hierarchies, supplied by different software vendors.

This is how the experts envisage the future of application development:
“The term software industrial revolution has been used to describe the
move to an era when software will be compiled out of reusable components.
Components will be built out of other components and vast libraries of such
components will be created.”É “In the not-too-distant future, it will probably be
considered archaic to design or code any application from scratch. Instead, the
norm will be to grab a bunch of business object classes from a gigantic,
worldwide assortment available on the meganet, create a handful of new classes
that tie the reusable classes together, and – voilà! – a new application is born
with no muss, no fuss, and very little coding.”Ê

Programming as we know it will soon become redundant, and will be
remembered as we remember today the old manufacturing methods. The
number of available object classes will grow exponentially, so programmers
will spend more and more time combining existing classes, and less and less
time creating new ones. The skills required of programmers, thus, will change
too: from knowing how to create new software, to knowing what classes are
available and how to combine them. Since the new skills can be acquired more
easily and more quickly, we will no longer depend on talented and experienced
programmers. The object-oriented paradigm will solve the software crisis,
therefore, both by reducing the time needed to create a new application and by
permitting a larger number of people to create applications.

The Contradictions

The Contradictions
1 1
We recognize in the object-oriented fantasy the software variant of the lan-
guage fantasies we studied in chapter 4. The mechanistic language theories, we
saw, assume that it is possible to represent the world with a simple hierarchical
structure. Hence, if we invent a language that can itself be represented as
a hierarchical structure, we will be able to mirror the world perfectly in
language: the smallest linguistic elements (the words, for example) will mirror

É James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), p. 5.

Ê Michael Guttman and Jason Matthews, The Object Technology Revolution (New York:
John Wiley and Sons, 1995), p. 76.

626 object-oriented programming chapter 7

the smallest entities that make up the world; and the relations between
linguistic elements will mirror the natural laws that govern the real things. The
hierarchical structure of linguistic elements will then correspond on a one-to-
one basis to the hierarchical structure of real objects, processes, and events. By
combining sentences in this language as we do operations in mathematical
logic, we will be able to explain any phenomenon. Thus, being logically perfect
and at the same time a perfect picture of the world, a language designed as a
simple hierarchical structure will allow us to represent and to understand
the world.

From the theories of Leibniz, Dalgarno, and Wilkins in the seventeenth
century to those of Russell and Carnap in the twentieth, the search for a
logically perfect language has been one of the most persistent manifestations
of the mechanistic myth. The fallacy, we saw, is not so much in the idea of a
logically perfect language, as in the belief that such a language can accurately
mirror the world. It is quite easy, in fact, to design a language in the form
of a hierarchical structure, and to represent in it the entities and levels of
abstraction that exist in the world. The problem, rather, is that there are many
such structures – many different ways to represent the world – all correct and
relevant.

The entities that make up the world possess many attributes, and are
therefore connected through many structures at the same time, one structure
for each attribute. Thus, if our language is to represent reality accurately, the
linguistic elements too must be connected through more than one structure at
the same time. The language mechanists attempt to find one classification, or
one system, that would relate all objects, processes, and events that can exist in
the world. But this is a futile quest. Even a simple object has many attributes –
shape, dimensions, colour, texture, position, origin, age, and so forth. To place
it in one hierarchy, therefore, we would have to choose one attribute and ignore
the others. So, if we cannot represent with one hierarchy even ordinary objects,
how can we hope to represent the more complex aspects of the world?

It is precisely because they are not logically perfect that our natural lan-
guages allow us to describe the world. Here is how: We use words to represent
the real things that make up the world. Thus, since the real things share many
attributes and are linked through many structures, the words that represent
those things will also be linked, in our mind, through many structures. The
words that make up a message, a story, or an argument will form one structure
for each structure formed by the real things.

The mechanistic language theories fail to represent the world accurately
because their elements can be connected in only one way: they attempt to
represent with one linguistic structure the system of structures that is the world.
The mechanists insist on a simple structure because this is the only way to

the contradictions 627chapter 7

have a deterministic system of representation. But if the world is a complex
structure, and is therefore an indeterministic phenomenon, any theory that
attempts to represent it through deterministic means is bound to fail.

�

Since it is the same world that we have to represent through language and
through software, what is true for language is also true for software. To
represent the world, the software entities that make up an application must be
related through many structures at the same time. If we restrict their relations
to one hierarchy, the application will not mirror the world accurately. Thus,
whether we classify all the existing software entities or just the entities of one
application, we need a system of interacting structures. One structure, as in the
object-oriented paradigm, can only represent the relations created by one
attribute (or perhaps by a few attributes, if shared by the software entities in a
limited way).

Recall our discussion of complex structures in chapter 1 (pp. 98–102) and
in chapter 4 (pp. 354–361). We saw that any attempt to represent several
attributes with one structure results in an incorrect hierarchy. Because the
attributes must be shown within one another, all but the first will be repeated
for each branch created by the previous ones; and this is not how entities
possess attributes in reality.

Only when each attribute is possessed by just some of the entities can they
all be included in one hierarchy. Here is how this can be done, if we agree to
restrict the attributes (figure 1-6, p. 101, is an example of such a hierarchy): the
class of all entities is shown as the top element, and one attribute can be shared
by all the entities; on the basis of the values taken by this attribute, the entities
are divided into several classes, thereby creating the lower level; then, in each
one of these classes the entities can possess a second attribute (but they must
all possess the same attribute, and this attribute cannot be shared with entities
from the other classes); on the basis of the values taken by this attribute, each
class is then divided into third-level classes, where the entities can possess a
third attribute, again unique to each class; and so on. (On each level, instead of
one attribute per class, we can have a set of several attributes, provided they are
all unique to that class. The set as a whole will act in effect as one attribute, so
the levels and classes will be the same as in a hierarchy with single attributes.)

The issue, then, is simply this: Is it possible to restrict software entities to the
kind of relations that can be represented through a strict hierarchical structure,
as described above? Do software entities possess their attributes in such a
limited way that we can represent all existing software with one structure? Or,
if not all existing software, can we represent at least each individual application

628 object-oriented programming chapter 7

with one structure? As we saw, the answer is no. To mirror the world, software
entities must be related through all their attributes at the same time; and these
attributes, which reflect the various processes implemented in the application
(see pp. 345–346), only rarely exist within one another. Only rarely, therefore,
can software entities be classified or related through one hierarchical structure.
Whether the classification includes all existing software, or just the objects of
one application, we need a system of structures – perhaps as many structures as
there are attributes – to represent their relations.

The benefits promised by the object-oriented theory can be attained only
with a simple hierarchical structure. Thus, since it assumes that the relations
between software entities can be completely and precisely represented with one
structure, the theory is fundamentally fallacious.

�

Let us recall some of the hierarchies we encountered in previous chapters. The
biological classification of animals – classes, orders, families, genera, species –
remains a perfect hierarchy only if we agree to take into account just a few of
their attributes, and to ignore the others. We deliberately limit ourselves to
those attributes that can be depicted within one another; then, obviously, the
categories based on these attributes are related through a strict hierarchy.
This classification is important to biologists (to match the theory of natural
evolution, for instance); but we can easily create other classifications, based on
other attributes.

The distinction between wild and domestic, for example, cannot be part of
the biological classification. The reason is that those attributes we use to
distinguish an animal as wild or domestic cannot be depicted within those
attributes we use to distinguish it as mammal, or bird, or reptile; nor can the
latter attributes be depicted within the former. The two hierarchies overlap.
Thus, horses and foxes belong to different categories (domestic and wild) in
one hierarchy, but to the same category (class of mammals) in the other;
chickens and dogs belong to the same category (domestic) in one hierarchy,
but to different categories (birds and mammals) in the other. Clearly, if we
restricted ourselves to the biological classification we wouldn’t be able to
distinguish domestic from wild animals. Each classification is useful if we
agree to view animals from one perspective at a time. But only a system of
interacting structures can represent all their attributes and relations: a system
consisting of several hierarchies that exist at the same time and share their
terminal elements, the individual animals.

Similarly, organizations like corporations and armies can be represented as
a strict hierarchy of people only if we take into account one attribute – the role

the contradictions 629chapter 7

or rank of these people. This is the hierarchy we are usually concerned with,
but we can also create hierarchies by classifying the people according to their
age, or gender, or height, or any other attribute. Each classification would likely
be different, and only rarely can we combine two hierarchies by depicting one
attribute within the other.

For example, only if the positions in an organization are gender-dependent
can we combine gender and role in one hierarchy: we first divide the people
into two categories, men and women, and then add their various roles as lower
levels within these two categories. The final classification is a correct hierarchy,
with no repetition of attributes. It is all but impossible, however, to add a third
attribute to this hierarchy without repetition; that is, by depicting it strictly
within the second one. We cannot add a level based on age, for instance,
because people of the same age are very likely found in more than one of the
categories established by the various combinations of gender and role.

Recall, lastly, the structure of subassemblies that make up a device like a car
or appliance. This structure too is a strict hierarchy, and we can build devices
as hierarchies of things within things because we purposely design them so that
their parts are related mainly through one attribute – through their role in the
construction and operation of the device. The levels of subassemblies are then
the counterpart of the levels of categories in a classification hierarchy. But, just
as entities can be the terminal elements in many classifications, the ultimate
parts of a device can be the terminal elements of many hierarchies.

The hierarchy we are usually concerned with – the one we see in engineering
diagrams and in bills of material, and which permits us to build devices as
levels of subassemblies – is the structure established by their physical and
functional relationship. But we can think of many other relations between the
same parts – relations based on such attributes as weight, colour, manufacturer,
date of manufacture, life expectancy, or cost. We can classify parts on the basis
of any attribute, and each classification would constitute a different hierarchy.
Besides, only rarely do parts possess attributes in such a way that we can depict
their respective hierarchies as one within another. Only rarely, therefore, can
we combine several hierarchies into one. (Parts made on different dates, for
example, may be used in the same subassembly; and parts used in different
subassemblies may come from the same manufacturer.)

�

The promise of object-oriented programming is specifically the concept of
hierarchical classes. This concept is well-suited for representing our affairs in
software, the experts say, because the entities that make up the world are
themselves related hierarchically: “A model which is designed using an object-

630 object-oriented programming chapter 7

oriented technology is often easy to understand, as it can be directly related to
reality.”É “The object-oriented viewpoint attempts to more closely reflect the
natural structure of the problem domain rather than the implicit structure of
computer hardware.”Ê “OOP [object-oriented programming] enables pro-
grammers to write software that is organized like the problem domain under
consideration.”Ë “One of the greatest benefits of an object-oriented structure is
the direct mapping from objects in the problem domain to objects in the
program.”Ì “OOP design is less concerned with the underlying computer
model than are most other design methods, as the intent is to produce a
software system that has a natural relationship to the real world situation it is
modelling.”Í “Object orientation . . . should help to relate computer systems
more closely to the real world.”Î “The intuitive appeal of object orientation is
that it provides better concepts and tools with which to model and represent
the real world as closely as possible.”Ï “The models we build in OO [object-
oriented] analysis reflect reality more naturally than the models in traditional
systems analysis. . . . Using OO techniques, we build software that more closely
models the real world.”Ð

But, as we saw, the entities that make up the world are related through many
hierarchies, not one. How, then, can software entities related through one
classification mirror them accurately? The software mechanists want to have
both the simplicity of a hierarchical structure and the ability to mirror the
world. And in their attempt to realize this dream, they commit the fallacy
of reification: they extract one structure from the complex phenomenon,
expecting this structure alone to provide a useful approximation.

Now, it is obvious that hierarchical software classes allow us to implement
such applications as the process of assembling an appliance, or the positions
held by people in an organization, or the biological classification of animals.

É Ivar Jacobson et al., Object-Oriented Software Engineering: A Use Case Driven Approach,
rev. pr. (Reading, MA: Addison-Wesley/ACM Press, 1993), p. 42.

Ê Ed Seidewitz and Mike Stark, Reliable Object-Oriented Software: Applying Analysis and
Design (New York: SIGS Books, 1995), p. 26.

Ë Peter Coad and Jill Nicola, Object-Oriented Programming (Englewood Cliffs, NJ: PTR
Prentice Hall, 1993), p. xxxiii.

Ì Greg Voss, Object-Oriented Programming: An Introduction (Berkeley, CA: Osborne
McGraw-Hill, 1991), p. 30.

Í Mark Mullin, Object-Oriented Program Design (Reading, MA: Addison-Wesley,
1989), p. 5.

Î Daniel Tkach and Richard Puttick, Object Technology in Application Development
(Redwood City, CA: Benjamin/Cummings, 1994), p. 17.

Ï Setrag Khoshafian and Razmik Abnous, Object Orientation: Concepts, Languages,
Databases, User Interfaces (New York: John Wiley and Sons, 1990), p. 6.

Ð James Martin and James J. Odell, Object-Oriented Analysis and Design (Englewood
Cliffs, NJ: Prentice Hall, 1992), p. 67.

the contradictions 631chapter 7

But these are artificial structures, the result of a design that deliberately
restricted the relations between elements to certain attributes: we can ignore
the other structures because we ensured that the relations caused by the other
attributes are much weaker. These structures, then, do not represent the actual
phenomenon, but only one aspect of it – an aspect that can be depicted with
one hierarchy. So, like any mechanistic concept, hierarchical software classes
are useful when the problem can indeed be approximated with one structure.

The object-oriented promise, though, is that the concept of hierarchical
classes will help us to implement any application, not just those that are already
a neat hierarchy. Thus, since the parts that make up our affairs are usually
related through several hierarchies at the same time, the object-oriented
promise cannot possibly be met. Nothing stops us from restricting every
application to what can be represented with one hierarchy; namely, relations
based on one attribute, or a small number of carefully selected attributes. But
then, our software will not mirror our affairs accurately.

As we saw under structured programming, an application in which all
relations are represented with one hierarchy is useless, because it must always
do the same thing (see p. 533). Such an application can have no conditions
or iterations, for example. Whether the hierarchy is the nesting scheme
of structured programming, or the object classification of object-oriented
programming, each element must always be executed, always executed once,
and always in the same relative sequence. This, after all, is what we expect to
see in any system represented with one hierarchy; for instance, the parts
and subassemblies that make up an appliance always exist, and are always
connected in the same way.

Thus, after twenty years of structured programming delusions, the software
experts started a new revolution that suffers, ultimately, from the same fallacy:
the belief that our affairs can be represented with one hierarchical structure.

2

2
What we have discussed so far – the neatness of hierarchical classes, the
benefits of code reuse, the idea of software concepts that match our affairs – is
what we see in the promotion of object-oriented programming; that is, in
advertisements, magazine articles, and the introductory chapters of textbooks.
And this contrasts sharply with the reality of object-oriented programming:
what we find when attempting to develop actual applications is difficult, non-
intuitive concepts. Let us take a moment to analyze this contradiction.

As we saw, the theorists promote the new paradigm by claiming that it lets
us represent our affairs in software more naturally. Here are some additional

632 object-oriented programming chapter 7

examples of this claim: “The models built during object-oriented analysis
provide a more natural way to think about systems.”Ñ “Object-oriented pro-
gramming is built around classes and objects that model real-world entities in
a more natural way. . . . Object-oriented programming allows you to construct
programs the way we humans tend to think about things.”ÉÈ “The object-
oriented approach to computer systems is . . . a more natural approach for
people, since we naturally think in terms of objects and we classify them into
hierarchies and divide them into parts.”ÉÉ

The illustrations, too, are simple and intuitive. One book explains the idea
of hierarchical classes using the Ford Mustang car: there is a plain, generic
model; then, there is a base model and an improved LX model, each one
inheriting the features of the generic model but also adding its own; and there
is the GT sports model, derived from the LX but with some features replacing
or enhancing the LX features.ÉÊ Another book explains the object-oriented
concepts using the world of baseball: objects are entities like players, coaches,
balls, and stadiums; they have attributes like batting averages and salaries,
perform operations like pitching and catching, and belong to classes like teams
and bases.ÉË

The impression conveyed by the promotion of object-oriented program-
ming, thus, is that all we have to do is define our requirements in a hierarchical
fashion – an easy task in any event, since this is how we normally view the
world and conduct our affairs – and the application is almost done. The power
of this new technology is ours to enjoy simply by learning a few principles and
purchasing a few tools.

When we study the actual object-oriented systems, however, we find
an entirely different reality: huge development environments, complicated
methodologies, and an endless list of definitions, rules, and principles that we
must assimilate. Hundreds of books had to be written to help us understand
the new paradigm. In one chapter after another, strange and difficult concepts
are being introduced – concepts which have nothing to do with our program-
ming or business needs, but which must be mastered if we want to use
an object-oriented system. In other words, what we find when attempting

Ñ James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), p. 3.

ÉÈ Andrew C. Staugaard Jr., Structured and Object-Oriented Techniques: An Introduction
Using C++, 2nd ed. (Upper Saddle River, NJ: Prentice Hall, 1997), p. 29.

ÉÉ John W. Satzinger and Tore U. Ørvik, The Object-Oriented Approach: Concepts,
Modeling, and System Development (Cambridge, MA: Course Technology, 1996), p. 11.

ÉÊ Khoshafian and Abnous, Object Orientation, pp. 8–10.
ÉË Donald G. Firesmith, Object-Oriented Requirements Analysis and Logical Design: A

Software Engineering Approach (New York: John Wiley and Sons, 1993), pp. 5–9.

the contradictions 633chapter 7

to practise object-oriented programming is the exact opposite of what its
promotion says.

To make matters worse, the resulting applications are large, unwieldy, and
difficult to manage. What can be programmed with just a few statements in a
traditional language ends up as an intricate system of classes, objects, defini-
tions, and relations when implemented in an object-oriented environment.

The theorists agree. After telling us that object-oriented programming is a
natural, intuitive concept, they tell us that it is in fact difficult, and that it
requires much time and effort to learn: “Many experienced and intelligent
information systems developers have difficulty understanding and accepting
this new point of view.”ÉÌ “Those who have programmed before may well find
OOP [object-oriented programming] strange at first. It may take a while
to forget the ways you have learned, and to [master] another method of
programming.”ÉÍ “To use OO [object-oriented] technology well, much careful
training is needed. It takes time for computer professionals to think in terms
of encapsulation, inheritance, and the diagrams of OO analysis and design. . . .
Good use of inheritance and reusable classes requires cultural and organiza-
tional changes.”ÉÎ

Claiming at the same time that the object-oriented principles are simple and
that they are difficult is not as absurd as it sounds; for, in reality, the theorists
are describing two different things. When praising the simplicity of these
principles, they are referring to the original idea – the fantasy of combining
and extending hierarchically classes of objects. And indeed, implementing
applications as strict hierarchies of objects is easy and intuitive. Very few
applications, however, can be implemented in this fashion, because very few
aspects of the world are mechanistic. So, since most applications must be
implemented as systems of hierarchies, the original idea was worthless. To
make object-oriented programming practical, the means to create multiple,
interacting hierarchies had to be restored. But this capability – a natural part of
the traditional programming concepts – can only be added to an object-
oriented system through contrived, awkward extensions. And it is these
extensions, as opposed to the simple original idea, that the theorists have
in mind when warning us that the object-oriented principles are hard to
understand.

The difficulties caused by the object-oriented systems are due, thus, to the
reversal of a fundamental programming principle: instead of creating high-
level software elements by starting with low-level ones, we are asked to start

ÉÌ Satzinger and Ørvik, Object-Oriented Approach, p. 3.
ÉÍ David N. Smith, Concepts of Object-Oriented Programming (New York: McGraw-Hill,

1991), pp. 11–12. ÉÎ Martin, Object-Oriented Analysis, p. 45.

634 object-oriented programming chapter 7

with high-level elements (classes of objects) and to add, where required, lower-
level ones. But this is rarely practical. Only by starting with low-level elements
can we create all the elements we need at the higher levels. Starting with
low-level elements is, therefore, the only way to implement the interacting
structures that make up a serious application. The object-oriented theory
claimed that we can start with classes of objects because it assumed that we
can restrict ourselves to isolated, non-interacting structures; but then, it
was extended to permit us to link these structures. So now we must create
the interactions by starting with high-level elements, which is much more
complicated than the traditional way – starting with low-level ones.

3

3
If a theory expects us to represent our affairs with one hierarchy, while our
affairs can only be represented with a system of interacting hierarchies, we
must either admit that the theory is invalid, or modify it. The original object-
oriented theory was falsified again and again, every time a programmer failed
to represent with a strict hierarchical classification a real-world situation. The
experts responded to these falsifications, however, not by doubting the theory,
but by expanding it: they added more and more “features” to make it cope with
those situations that would have otherwise refuted it. The theory became, thus,
unfalsifiable. As is usually the case with a pseudoscientific theory, the experts
saved it from refutation by turning its falsifications into new features. And it is
these features, rather than the original concepts, that constitute the actual
theory – what is being practised under the object-oriented paradigm.

The new features take various forms, but their ultimate purpose is the same:
to help us override the restrictions imposed by the original theory. The actual
theory, thus, is the set of features that allow us to create interacting hierarchies.
It is these features, the experts explain, that make the object-oriented paradigm
such a powerful concept. In other words, the power of the theory derives from
those features introduced in order to bypass the theory. We will examine some
of these features shortly.

Structured programming, we recall, became practical only after restoring
the means to create multiple, interacting flow-control structures – precisely
what the original theory had condemned and claimed to be unnecessary. So,
in the end, what was called structured programming was the exact opposite of
the original theory. Similarly, the object-oriented concepts became practical
only after restoring the means to create multiple, interacting class hierarchies.
So what is called now object-oriented programming is the exact opposite of the
original idea. To this day, the object-oriented concepts are being promoted by

the contradictions 635chapter 7

praising the benefits of strict hierarchical relations, and by demonstrating
these benefits with trivial examples. At the same time, the actual object-
oriented systems are specifically designed to help us override this restriction.
But if the benefits are attainable only with a single hierarchy, just as the original
theory said, the conclusion must be that the actual object-oriented systems
offer no benefits.

So the object-oriented paradigm is no better than the other mechanistic
software theories: it gives us nothing that we did not have before, with the
traditional programming concepts and with any programming language. Each
time, the elites promise us a dramatic increase in programming productivity
by invoking the hierarchical model. Ultimately, these theories are nothing but
various attempts to reduce the complex reality to a simple structure: an isolated
flow-control structure, an isolated class structure, and so on. And when this
naive idea proves to be worthless, the elites proceed to “enhance” the theories
so as to allow us to create complex structures again: they restore both the lower
levels and the means to link structures, which is the only way to represent our
affairs in software.

But by the time a mechanistic theory is “enhanced” to permit multiple,
interacting structures, the promised benefits – formal methods for reusing
existing software, for building applications as we build appliances, for proving
their validity mathematically – are lost. Now it is again our minds that we need,
our personal skills and experience, because only minds can process complex
structures. So we are back where we were before the theory. The theory, and
also the methodologies, programming tools, and development environments
based on it, are now senseless. They are even detrimental, because they force
us to express our requirements in more complicated ways. We are told that the
complications are worthwhile, that this is the only way to attain those benefits.
But if the benefits were already lost, all we have now is a theory that makes
programming more difficult than it was before.

Thus, by refusing to admit that their theory has failed, by repeatedly
expanding it and asking us to depend on it, the elites are committing a fraud:
they are covering up the fact that they have nothing to offer us; they keep
promising us an increase in programming productivity, when in reality they
are preventing us from practising this profession and improving our skills.

�

As we did for structured programming, we will study the object-oriented
fantasy by separating it into several delusions: the belief that we can represent
our affairs with a neat, hierarchical classification of software entities; the
belief that, instead of one classification, we can represent the same affairs by

636 object-oriented programming chapter 7

combining many small, independent classifications; the belief that we can use
the object-oriented concepts through traditional programming languages; the
belief that we can modify the concepts of abstraction and inheritance in any
way we like and still retain their benefits; and the belief that we no longer need
to concern ourselves with the application’s flow of execution.

Although the five delusions occurred at about the same time, they can be
seen, like the delusions of structured programming, as stages in a process of
degradation: repeated attempts to rescue the theory from refutation. Each stage
was an opportunity for the software experts to recognize the fallaciousness of
their theory; instead, at each stage they chose to expand it, by incorporating the
falsifications and describing them as new features. The stages, thus, mark the
evolution of the theory into a pseudoscience (see “Popper’s Principles of
Demarcation” in chapter 3).

Also as was the case with structured programming, when the object-
oriented concepts were being promoted as a revolution and a new paradigm,
all five delusions had already occurred. Thus, there never existed a serious,
practical theory of object-oriented programming. What the experts were
promoting was something entirely different: complicated development envi-
ronments that helped us to create precisely what that theory had claimed to be
unnecessary – multiple, interacting software hierarchies.

The First Delusion

The First Delusion

The first object-oriented delusion is the belief that we can represent the world
with a simple structure of software entities. In fact, only isolated aspects of the
world can be represented with simple structures. To represent the world
accurately we need a system of structures. We need, in other words, a complex
structure: a set of software entities that belong to several hierarchies at the
same time.

The first delusion is akin to the seventeenth-century belief that it is possible
to represent all knowledge with one hierarchical structure (see pp. 311–315).
What we need to do, said the rationalist philosophers, is depict knowledge in
the form of concepts within concepts. The simplest concepts will function as
terminal elements (the building blocks of the knowledge structure), while the
most complex concepts will form the high levels. Everything that can be known
will be represented, thus, in a kind of classification: a giant hierarchy of
concepts, neatly related through their characteristics.

It is the principle of abstraction that makes a hierarchical classification
possible: at each level, a concept retains only those characteristics common to

the first delusion 637chapter 7

all the concepts that make up the next lower level. This relationship is clearly
seen in a tree diagram: the branches that connect several elements to form a
higher-level element signify the operation that extracts the characteristics
shared by those elements; then another operation relates the new element
to others from the same level, forming an element of the next higher level,
and so on.

Similarly, we believe that it is possible (in principle, at least) to design a
giant hierarchy of all software entities. This hierarchy would be, in effect, a
classification of those parts of human knowledge that we want to represent in
software – a subset, as it were, of the hierarchy envisaged by the seventeenth-
century philosophers. This idea, whether or not explicitly stated, forms
the foundation of the object-oriented paradigm. For, only if we succeed
in relating all software entities through one hierarchical structure can the
benefits promised by this paradigm emerge. The benefits, we recall, include the
possibility of formal, mechanistic methods for reusing and extending software
entities.

No hierarchy has ever been found that represents all knowledge. This is
because the concepts that make up knowledge are related, not through one, but
through many hierarchies. Similarly, no hierarchy can represent all software,
because the software entities that make up our applications are related through
many hierarchies. So these theories fail, not because we cannot find a hierarchy,
but because we can find many, and it is only this system of hierarchies, with
their interactions, that can represent the world.

The mechanists are encouraged by the ease with which they discover one or
another of these hierarchies, and are convinced that, with some enhancements,
that hierarchy will eventually mirror the world. Any one hierarchy, however,
can only relate concepts or software entities in one particular manner – based
on one attribute, or perhaps on a small set of attributes. So one hierarchy, no
matter how large or involved, can only represent one aspect of the world.

The theory of object-oriented programming was refuted, thus, even before
it was developed. The theorists, however, misinterpreted the difficulty of
relating all existing software entities through one giant hierarchy as a problem
of management: it is impossible for one organization to create the whole
hierarchy, and it is impractical to coordinate the work of thousands of individ-
uals from different organizations. We must simplify the task, therefore, by
dividing that hypothetical software hierarchy into many small ones. And this
is quite easy to do, since any hierarchical structure can be broken down into
smaller structures. For example, if we sever all the branches that connect a
particular element to the elements at the lower level, that element will become
a terminal element in the current structure, and each lower-level element will
become the top element of a new, separate structure.

638 object-oriented programming chapter 7

Thus, concluded the theorists, even if every one of us creates our own,
smaller structures, rather than all of us adding elements to one giant structure,
the totality of software entities will continue to form one giant structure. So the
promise of object-oriented programming remains valid.

To save their theory, the advocates of object-oriented programming rejected
the evidence that the idea of a giant software hierarchy is a delusion, and in so
doing they succumbed to a second delusion.

The Second Delusion

The Second Delusion

If the first delusion is that it is possible to classify all existing software in one
hierarchy, the second delusion – which emerged when this idea failed – is that
it is not necessary, after all, to restrict ourselves to one classification: we can
also create applications formally, as strict hierarchies of software entities, by
combining many small, independent, specialized classifications. But this idea
is even sillier than the first one. For, could we combine these structures, we
would not have had to separate them in the first place. Let us analyze this
problem.

The object-oriented theory assumes that each application is a hierarchy of
software entities, and that this hierarchy is part of the larger hierarchy that is
the classification of all existing software entities. In reality, just like the totality
of existing software, each application is a system of interacting hierarchies. An
application is indeed part of all existing software, but in an indeterministic way;
namely, in the way a complex structure is part of a larger complex one, not
in the way a simple structure is part of a larger simple one. There are no
mechanistic means – no precise, completely specifiable methods – to derive an
application from the system of entities that is the classification of all software.
And this is why the idea of a formal classification of software entities, and a
formal method of software reuse, is fundamentally mistaken.

The second delusion can also be described as the belief that there is a way
around the problems created by the first delusion. But it is no easier to create
an application by combining several smaller hierarchies, than it is to create one
by extracting portions of a larger hierarchy. The difficulty that prevents us from
building one hierarchical classification of all software – the need to relate
software entities through many hierarchies, not one – is also the difficulty that
prevents us from building individual applications as single hierarchies.

Let us see how this problem manifests itself in practice. Let us assume
that we already have a large number of separate classifications, each one
representing an isolated aspect of software applications: display functions,

the second delusion 639chapter 7

database functions, one type or another of accounting functions, one style or
another of reporting, and the like. But it is impossible to create applications
simply by combining these hierarchies; that is, by building a large hierarchy
that incorporates somehow the individual ones. For, the only way to combine
hierarchies in an object-oriented environment is mechanistically, as one within
another. This is true because the only way for an element to possess attributes
from both element A of one hierarchy and element B of another hierarchy is
through inheritance: we make A a lower-level element in the latter hierarchy,
thereby allowing it to inherit attributes from B.

A particular application may require, for example, display, database, and
accounting operations. But even if the three separate hierarchies embodying
these operations are complete and correct, even if they include all the details
that we are likely to need, they are useless for generating serious accounting
applications. The reason is that, in an application, the display operations are
not always performed within the database or accounting operations; nor
are the accounting operations performed within the display or database
operations, or the database operations within the display or accounting opera-
tions. What we need is software entities that can invoke the three types of
operations freely; and we cannot create such entities if restricted to hierarchical
combinations. To put this differently, the hierarchical combinations represent
only a fraction of all possible relations between the elements of the three
structures. Missing are those combinations we would see in a system of
interacting structures – the kind of system that is impossible to create through
object-oriented programming.

We must also bear in mind that it is more than three hierarchies that we
have to combine when creating an application. We may be able to represent
with one hierarchy such functions as display or database, which are artificial
and restricted by our mechanistic computing means in any case. But it is
impossible to represent with one hierarchy all our accounting processes, for
instance. These processes reflect business, social, and personal affairs, which
can only be represented as interacting structures of entities. To create a serious
accounting application, therefore, we must combine hundreds of different
hierarchies, not three; and few of these combinations can be depicted as one
hierarchy within another.

Another thing to bear in mind is that it doesn’t matter whether we start
with hierarchies that embody separately the three types of operations –
display, database, and accounting – or with hierarchies that are already a
combination of these operations. The best approach may well be to have whole
accounting hierarchies, each one embodying a certain aspect of accounting.
Each hierarchy would include, therefore, not just accounting operations, but
also the associated display and database operations. Even then, however, to

640 object-oriented programming chapter 7

create an application we would have to combine these hierarchies by non-
mechanistic means, because the various aspects of accounting do not exist as
one within another.

The Third Delusion

The Third Delusion

We saw that the idea of combining several class hierarchies into one is a fallacy.
Only very simple applications can be created in this fashion: those for which
we can restrict ourselves to hierarchical combinations of elements. This idea,
we recall, was thought to be a solution to the failure of the original object-
oriented idea – which idea was to represent with one hierarchy all software, not
just individual applications. (And the original idea is, in fact, the only way to
derive the benefits promised by the object-oriented paradigm.)

Thus, to deal with the problems created by the first delusion, the theorists
felt justified to modify the object-oriented concept; but the new idea is as
fallacious as the first, so it became the second delusion. Just as they failed to
recognize the first delusion as a falsification of the object-oriented concept,
they failed to recognize the second one as a new falsification. And, just
as they modified the theory in response to the first delusion, they now
introduced additional modifications, to deal with the problems created by
the second one.

Because it is impossible to relate software entities freely through one
hierarchy, the theorists had to provide the means to build systems of interacting
hierarchies. All the modifications, then, have one purpose: to enable us to
relate software entities through several hierarchies at the same time; in other
words, to bypass the restriction to one hierarchy. Faithful to the pseudoscien-
tific tradition, these modifications – which are, in fact, blatant violations of the
object-oriented principles – are described as new features, or enhancements.
Here we will discuss only the simplest enhancement, the use of traditional
programming languages; then, under the fourth and fifth delusions, we will
study the others.

The traditional languages do provide, of course, the means to relate software
entities freely. Here is how: Each element in the application is affected by
various processes (calling certain subroutines, using certain memory variables
and database fields, being part of certain practices). Each element is related,
therefore, to the other elements affected by the same processes. And we
can design these relations – which become ultimately a system of interacting
structures – in any way we like. (Software processes were introduced in
chapter 4; see pp. 345–346.)

the third delusion 641chapter 7

So the simplest way to combine hierarchies is by creating modules, blocks
of statements, conditional constructs, and the like, by means of a traditional
language, and then picking whatever classes we need from the various hierar-
chies. We use the class hierarchies, thus, not as originally intended – as a formal
representation of the whole application – but in the manner of subroutine
libraries. In this way, any element in the application can inherit attributes from
several hierarchies, simply by invoking several classes. So, by using classes as
we use subroutines, any element can possess any combination of attributes we
need: we are no longer restricted to combining attributes hierarchically, one
within another, as stipulated by the object-oriented principle of inheritance.

Recall the earlier problem: combining classes from three hierarchies –
display, database, and accounting operations – but not as one within another.
While impossible under the object-oriented paradigm, this requirement is
easily implemented once we extend the use of classes so as to invoke them
freely: directly rather than hierarchically, wherever needed, just as we invoke
subroutines.

The first modification, then, was to turn the object-oriented concept
from a formal, autonomous programming method, supported by special
programming languages, into a mere extension to the traditional methods and
languages. And this was accomplished by adding object-oriented capabilities
to some of the popular languages (C and COBOL, for instance). The enhanced
variants are known as hybrid languages. (The reverse is also true: special
languages like Simula and Smalltalk, originally intended as pure object-
oriented environments, were later enhanced with traditional capabilities.)

Thus, there are no strict object-oriented languages in existence, simply
because one adhering to the object-oriented principles would be totally
impractical. The theorists invented a new term to describe what is in reality not
a new feature, but the reinstatement of old, well-established concepts: “hybrid”
sounds as if these languages added a new quality to the object-oriented
principles, when in fact they are a reversal of these principles. No one wondered
why, if object-oriented programming is the revolutionary concept the experts
say it is, we still need to rely on the old languages. The experts praise the power
of the object-oriented paradigm, even as everyone can see that this paradigm
is useless, and that its power derives from the freedom we regain when
reverting to the traditional concepts.

In the end, no application was ever based on the true object-oriented
principles. Programmers believe that they are practising object-oriented pro-
gramming, when what they are practising in reality is traditional programming
– supplemented here and there, when not too inconvenient, with some object-
oriented concepts.

642 object-oriented programming chapter 7

The Fourth Delusion

The Fourth Delusion
1 1
The most important “features” and “improvements” added to the object-
oriented theory are those that alter the very nature of a hierarchical structure.
We saw that the theory had to be modified in order to give us the means to
combine class hierarchies, and that using class hierarchies from within a
traditional language is the simplest way to accomplish this. But if we had to rely
on this method alone to combine hierarchies, we would find little use for the
actual object-oriented features. All we would have then is some class libraries
that, apart from providing perhaps better hierarchical links, are identical to the
traditional subroutine libraries.

In order to permit us to relate class hierarchies freely within the object-
oriented paradigm, the very notion of a class hierarchy had to be modified. In
the end, the theory of object-oriented programming was rescued by annulling
its most celebrated principle – the restriction to classes related hierarchically
through inherited attributes.

Inheritance, we recall, is that property of hierarchical structures whereby an
element derives some of its attributes from the higher levels. Thus, in the case
of software class hierarchies, each element, in addition to possessing its own
attributes, inherits the attributes of the higher-level class – the class to which it
is directly subordinate. And, since the latter inherits the attributes of the class
to which it is subordinate, and so on, each element will possess the attributes
of all the classes above it.

This property is not new to the object-oriented theory, but common to all
hierarchical systems. This is so obvious, in fact, that inheritance is rarely
mentioned as a hierarchical feature. It is the property of abstraction that is
usually described as the distinguishing quality of hierarchical structures.
Abstraction means that, as we move from low to high levels, an element at a
given level retains only those attributes that are common to all the elements of
the next lower level. Inheritance, therefore, is not a separate quality, but merely
the process of abstraction observed in reverse. We can reverse the last sentence,
for instance, and say that all the elements at a given level inherit the attributes
possessed by the element of the next higher level. Both statements describe the
same relationship.

The object-oriented theory, though, presents the property of inheritance as
an important and powerful feature. We are left with the impression that this
feature is somehow additional to the hierarchical relations between software
classes. And, once inheritance is perceived as a separate feature, it is only
natural to try to enhance it. But this idea is absurd. The property of inheritance

the fourth delusion 643chapter 7

cannot be enhanced; like abstraction, it is implicit in the notion of a hierarchy,
a reflection of the relations between the structure’s elements. One cannot have
a hierarchy where the concept of inheritance is different in any way from its
original meaning.

�

The first modification was to allow a class to change, and even to omit, an
inherited attribute. The capability to add its own, unique attributes remains,
but the class no longer needs to possess all the attributes possessed by the class
of the next higher level. In other words, the attributes of a class, and hence its
relations with the other classes, are no longer determined by its position in the
class hierarchy. If what we need is indeed a hierarchical relationship with the
higher-level classes, we let it inherit all their attributes, as before; but if what we
need is a different relationship, we can change or omit some of these attributes.

The attributes of a class are its data types and operations. So what this
modification means is that each class in the application can now have any data
types and operations we like, not necessarily those inherited from the classes
above it.

Attributes, as we know, relate entities by grouping them into hierarchical
structures (see “Software Structures” in chapter 4). In a software application,
each attribute generates a different structure by relating in a particular way the
entities that make up the application. Clearly, then, what has been achieved
with the new feature is to eliminate the restriction to one hierarchy. Since
classes can now possess any attributes, they can be related in any way we want,
so they can form many structures at the same time. The structure we started
with – the class hierarchy – is no longer the only structure in the application.
When we study this structure alone, the application’s classes still appear to be
related through a neat hierarchy. But if the relations that define the class
hierarchy are now optional, if each class can also be related to the others
through different attributes, the application is no longer a simple structure; it
is a complex structure, and the class hierarchy is just one of the structures that
make it up.

�

We can also appreciate the significance of the new feature by imagining that we
had to implement the additional relations without the ability to change and
omit attributes. Thus, for each inherited attribute that we were going to change
or omit in a particular class, we would have to go up in the hierarchy, to the
level just above the class where that attribute is defined. We would create there

644 object-oriented programming chapter 7

a new class, at the same level as the first one, and identical to it in all respects
except for that attribute; in its stead, we would define the changed attribute (or
we would omit the attribute). We would then duplicate, below the new class,
the entire section of the hierarchy that lies below the first class. All the lower-
level classes here would be identical to those in the original section, but they
would inherit the new attribute instead of the original one (or no attribute, if
omitted). The application would now be a larger hierarchy, consisting of both
the original and the new sections. And in the new section, the counterpart of
our original, low-level class would indeed possess the changed attribute (or no
attribute), just as we wanted.

With this method, then, we can create classes with changed or omitted
attributes but without the benefit of the new feature; that is, without modifying
the concept of inheritance. We would have to repeat this procedure, however,
for each attribute that must be changed or omitted. So the hierarchy would
grow exponentially, because for most attributes we would have to duplicate a
section of the hierarchy that is already the result of previous duplications.

It is not the impracticality of this method that concerns us here, though, but
the repetition of attributes. Every time we duplicate a section, along with
the classes defined in that section we must also duplicate their attributes.
Moreover, some of the duplicated attributes will be duplicated again for the
next attribute (when we duplicate a section of the new, larger hierarchy), and
so on. And we already know that if we repeat attributes, we are creating an
incorrect hierarchy: this repetition gives rise to relations that are additional
to the strict hierarchical relations, and indicates that we are attempting to
represent with one hierarchy a complex structure (see pp. 98–102, 358–360).

What we were trying to accomplish in this imaginary project was to
implement through the original inheritance concept the kind of relations that
we can so easily implement through the modified concept, by changing or
omitting inherited attributes. Thus, if one method gives rise to a complex
structure, the conclusion must be that the other method does too. The non-
hierarchical relations may not be obvious when implemented by modifying the
concept of inheritance, but we are only deluding ourselves if we believe that the
class hierarchy is still the only structure. After all, the very reason for changing
and omitting attributes is that we cannot create applications while restricted to
one structure. The purpose of the new feature, thus, is to allow us to create
multiple, interacting structures.

�

But even allowing us to change and omit inherited attributes did not make
object-oriented programming a practical idea. A second feature had to be

the fourth delusion 645chapter 7

introduced – a second modification to the concept of inheritance. Through this
feature, a class can inherit attributes, not just from the higher levels of its
own hierarchy, but also from other hierarchies. Called multiple inheritance,
this feature is seen as an especially powerful enhancement. There are no
limitations, of course; a class is not restricted to inheriting only certain
attributes from certain hierarchies, or required to inherit all the attributes
above a certain level. We can now simply add, to any class we want, whichever
attributes we need, from any class, from any hierarchy. And this feature can be
combined with the first one; that is, after picking the attributes we need, we can
change them in any way we like.

Recall the problem we discussed under the second delusion – the need to
combine attributes from several hierarchies (database, display, and accounting,
for instance). Multiple inheritance is the answer, as we can now select attributes
from these hierarchies freely, and thereby create classes with any combination
of data types and operations. Without this feature, we saw, the only way to
combine attributes is by combining classes: we must employ a traditional
language and invoke – in the same module, in the manner of subroutines –
classes from several hierarchies.

�

In conclusion, modifying the concept of inheritance has downgraded it: from
a formal property of hierarchical structures, to the informal act of copying an
attribute from one class to another. And as a result, the relationship between
the application’s classes has been relaxed: from a strict hierarchy, to multiple
and unrestricted connections. If the attributes of a class can be unique, or can
be taken from the higher levels, or can be taken from higher levels but changed,
or can even be taken from other hierarchies, then what we have is simply
classes that can possess any attributes. The attributes of a class are no longer
determined by its position in the hierarchy, or by the attributes of the other
classes.

The theorists continue to use terms like “hierarchy” and “inheritance,”
but if a class can possess any attributes we like, these terms have lost their
original meaning. What they describe now is not a formal class hierarchy, but
software entities that possess whatever attributes we need, and are therefore
related in whatever ways we need, to implement a particular application.
What the modifications have accomplished, in other words, is to restore the
programming freedom we had before object-oriented programming – the
freedom that the new paradigm had attempted to eliminate in its quest for
formality and precision.

646 object-oriented programming chapter 7

2

2
We recognize in the modified concept of inheritance the pseudoscientific
stratagem of turning falsifications into features: the theory is saved from
refutation by expanding it – by incorporating, in the guise of new features,
capabilities that were explicitly excluded originally. The original claim was that
applications can be developed as strict hierarchies of software classes: either
classes that already exist, or classes that can be generated hierarchically from
existing ones. The only relations between the classes used in an application,
then, would be those established by a hierarchical structure. This restriction is
essential if we want to classify and extend software through exact principles,
and, ultimately, turn software development into a formal and predictable
activity.

The promise, thus, was to turn software development into an activity
resembling the design and manufacture of appliances. But this promise
can only be fulfilled if software applications, as well as their design and
implementation, are restricted to entities and processes that can be represented
with isolated hierarchical structures – as are indeed our appliances, and their
design and manufacture.

Software applications, though, cannot be developed in this fashion, so
the object-oriented theory was refuted. But instead of admitting that it has
no practical value, its supporters modified it: they added, in the guise of
enhancements, the means to create multiple structures – the very feature that
the original theory had prohibited. The need to relate software entities through
more than one hierarchy is a falsification of the object-oriented theory; but the
modifications are presented as new and powerful features of the theory. These
“features” make the theory practical, but they achieve this by contradicting its
original principles. It is absurd, therefore, to say that these features enhance the
theory, when their very purpose is to bypass the restrictions imposed by the
theory.

�

The fourth delusion, thus, is the belief that what we are practising now, after
these modifications, is still object-oriented programming; in other words,
the belief that the “power” we gained from the new features is due to the
object-oriented principles. In reality, the power derives from abolishing these
principles, from lifting their restrictions and permitting us to create complex
software structures again.

the fourth delusion 647chapter 7

While regaining this freedom, however, we lose the promised benefits. For,
those benefits can only emerge if we restrict ourselves to one hierarchy, or
perhaps multiple but independent hierarchies – as we do in manufacturing and
construction. The theorists praise the benefits of the hierarchical concept,
and claim that the object-oriented paradigm is turning programming into a
mechanistic activity, but at the same time they give us the means to bypass the
mechanistic restrictions. They believe that we can enjoy the promised benefits
– formal, exact programming methods – without the rigours demanded by the
original theory.

So what we are doing after the fourth delusion is merely a more complicated
version of what we were doing before the object-oriented paradigm. As was the
case with structured programming earlier, what started as an ambitious,
formal theory ended up as little more than a collection of programming tips.
We are again creating complex software structures, and what is left of the
object-oriented principles is just the exhortation to restrict software classes to
hierarchical relations, and to avoid other links between them, “as much as
possible.”

It is indeed a good idea to relate software entities hierarchically. But because
our applications consist of multiple, interacting hierarchies, this idea cannot
be more than an informal guideline; and, in any case, we can also create
hierarchical relations with traditional programming means.

In the end, since the idea of independent software structures is a fantasy, the
object-oriented theory makes programming more complicated and more
difficult, while offering us nothing that we did not already have. We are not
developing applications through exact, formal methods – the way the experts
had promised us. We are creating systems of interacting structures, just as
before; so we depend on the non-mechanistic capabilities of our mind, on
personal skills and experience, just as before. But by using terms like “objects,”
“classes,” and “inheritance,” we can delude ourselves that we are programming
under a new paradigm.

The Fifth Delusion

The Fifth Delusion
1 1
The most fantastic object-oriented delusion is undoubtedly the fifth one. The
fifth delusion is the belief that we no longer need to concern ourselves
with the application’s flow of execution: the important relations between
the application’s objects are those of the class hierarchy, so the relations
determining the sequence of their execution can be disregarded.

648 object-oriented programming chapter 7

The application’s flow of execution, we recall, was the chief preoccupation
of structured programming. The fallacy there was the belief that it is possible
to represent applications with one flow-control structure. The flow-control
structure, according to that theory, is the application’s nesting scheme: the
hierarchical arrangement of modules that makes up the application, plus
the hierarchical arrangement of flow-control constructs that makes up each
module. And the nesting scheme is depicted by the application’s flow diagram.
The theorists failed to see that the flow diagram depicts only one of the
nesting schemes; that the dynamic structures created by conditional and
iterative constructs at run time consist in fact of multiple, overlapping nesting
schemes, so the application’s flow-control structure is the complex structure
that comprises all these nesting schemes; and that, moreover, the application’s
elements are connected through many other types of structures – the structures
formed by the multitude of software processes that make up the application.
(Software processes were introduced in chapter 4; see pp. 345–346. The
dynamic structures were discussed under structured programming’s second
delusion; see pp. 542–546.)

The structured programming theory, thus, while mistaken, at least recog-
nized the importance of the flow of execution. The object-oriented theory,
on the other hand, ignores it completely. There are no flow diagrams in
object-oriented programming. We don’t find a single word about conditional
and iterative constructs, or about constructs with one entry and exit, or
about a restriction to standard constructs. All the problems that structured
programming attempted to solve are now neglected. And if an expert mentions
them at all, it is only in order to criticize them: It was wrong to represent
applications with flow diagrams and flow-control constructs, because these are
artificial concepts, designed to match the way computers work. These concepts
force us to view our affairs unnaturally, and hence develop software that is very
different, logically, from the way we deal with the actual issues. By replacing
the structured programming principles with the concept of class hierarchies,
the object-oriented paradigm helps us to build software structures that closely
match the real world. Unlike the relations between modules and between flow-
control constructs, the relations between software classes are very similar to
the way we normally view our affairs.

To verify this claim, let us first recall what are the objects of an application.
Each object is an instance of one of the classes defined in the class hierarchy;
so the static relationship between objects reflects indeed the hierarchical
relationship that links the classes. The sequence in which objects are executed,
however, is determined, not by the class hierarchy, but by the messages they
send and receive at run time. An object is executed only when receiving a
message from another object in the application. The various operations that an

the fifth delusion 649chapter 7

object is designed to perform are called methods, and the particular method
selected by the receiving object depends on the parameters accompanying the
message. While performing its operations, an object may send messages to
other objects, asking those objects to perform some of their operations, and so
on. Following each message, execution returns to the object and operation that
sent the message. Thus, messages, as well as the operations performed in
response to messages, are nested hierarchically. And it is this hierarchy of
messages and operations – which is different from the class hierarchy – that
constitutes the application’s flow of execution.

So, from the start, we note the same fallacy as in structured programming:
the belief that the dynamic structure that represents the application’s run-
time performance can mirror the static structure of software entities that
makes up the application (see pp. 532–533). The static structure – what was
the hierarchical flow diagram of modules and constructs in structured pro-
gramming – is now the hierarchy of classes; and the theorists believe that the
neat relations they see in this structure are the only important links between
objects. In structured programming, they failed to see the other types of
structures – those formed by business or software practices, by shared data,
and by shared operations; and they also failed to see the multiple dynamic
flow-control structures. In object-oriented programming, the theorists again
fail to see the many types of structures – they believe that each application, and
even the totality of existing software, can be represented with one class
hierarchy; and they fail to see the flow-control structures altogether, static or
dynamic.

It is true that the theorists eventually removed the restriction to one
hierarchy. They allowed interacting hierarchies, and they modified the concept
of inheritance to create even more interactions. But these ideas contradict the
object-oriented principles, negating therefore their benefits. To study the fifth
delusion, then, we must separate it from the previous ones: we must assume,
with the theorists, that even after modifying the object-oriented principles,
even after expanding them to allow complex structures, we can still enjoy the
promised benefits. In other words, we must forget that the object-oriented
theory has already been refuted. What I want to show here is that the fifth
delusion – the failure to deal with the application’s flow of execution, and,
moreover, the failure to note that it is the same as the flow of execution
generated with any other programming method, including structured pro-
gramming – would alone render the object-oriented theory worthless, even if
the previous delusions had not already done this.

650 object-oriented programming chapter 7

2

2
It is difficult to understand why the theorists ignore the application’s flow of
execution. For, even a simple analysis reveals that there are just as many devia-
tions from a sequential flow as there were under structured programming. If,
for example, we represented with a flow diagram all the conditions, iterations,
and object invocations, we would end up with a diagram that looks just like
the flow diagrams of structured programming. The theorists discuss the
operations performed within each object, and the transfer of control between
objects, but they don’t see all this as a flow of execution.É

Clearly, to perform a particular task the application’s elements must be
executed by the computer in a specific sequence, no matter what method we
use to develop that application. And, since the computer itself cannot be
expected to know this sequence, we must design it. Now, it ought to be obvious
that the relative sequence in which the objects are to be executed cannot be
determined solely by the hierarchical relations between classes. This is true
because class hierarchies are meant to be used in different applications, so the
same objects may have to be executed in a different sequence on different
occasions.Ê Thus, if the flow of execution is a critical part of the application’s
logic but is not determined by the class hierarchy, how are we designing it
under the object-oriented paradigm?

There are two parts to the object-oriented flow of execution: between
objects, and within objects. And, despite the new terminology, both parts are
practically identical to the flow of execution familiar from earlier forms of
programming – namely, between modules and within modules.

Between objects, the transfer of control is implemented by way of messages.
And, clearly, sending a message from one object to another is logically and

É A half-hearted attempt to deal with the flow of execution is found in the so-called state
transition diagrams, used by a few theorists to represent the effect of messages on individual
objects. But, like the flow diagrams of structured programming, these diagrams can only
depict the static aspects of the flow of execution. The dynamic aspects (the combined effect
of messages in the running application) constitute a complex phenomenon, so they cannot
be reduced to an exact, mechanistic representation.

Ê In fact, even if each application had its own class hierarchy, we would need more
than a simple hierarchical structure to represent its flow of execution. As we saw under
structured programming, if the sequence in which the application’s elements are executed
was determined solely by their relative position in the hierarchical nesting scheme, the
application would be useless, because it would always do the same thing (see p. 533).
Similarly now, the sequence in which the objects are executed must be determined by factors
other than their relative position in the hierarchical class structure.

the fifth delusion 651chapter 7

functionally identical to invoking a module or subroutine in traditional
programming. Within objects, we can distinguish between the jump performed
in order to select the so-called method (the object’s response to a particular
message) and the jumps performed by the operations that make up the
method. Selecting a method is in effect a conditional flow-control construct
(where the condition involves the values received as parameters with the
message). Thus, while object-oriented languages may well offer a specialized
construct, we could just as easily implement this selection with traditional
constructs like IF or CASE. As for the operations that make up the methods, they
are, of course, ordinary pieces of software: statements, blocks of statements,
conditions, and iterations. These operations, therefore, are as rich in flow-
control constructs as are the operations found in traditional languages.

But it is important to note that the messages themselves are, in effect,
operations within methods. This is true because a message may be sent
from within a conditional or iterative construct that is part of a method.
Consequently, the execution of objects in a running application is not one
nesting scheme but a system of nesting schemes. Just like the modules invoked
in structured programming, the nested invocations of objects would form a
simple hierarchical structure only if the methods included sequential con-
structs alone. Just as in structured programming, the purpose of conditional
and iterative constructs is to create multiple dynamic nesting schemes (see
pp. 541–544).

The role of the flow-control constructs, thus, is to create complex flow-
control structures not just within methods, but also between objects. So, when
disregarding the effect of the flow-control constructs on the operations within
methods, the theorists also disregard their effect on the flow of execution
between objects. In the end, not only are the application’s objects subject to a
flow of execution, but this execution forms a complex structure, just like the
execution of modules in structured programming.

To conclude, the flow of execution in an application created through object-
oriented programming is identical, for all practical purposes, to the one
implemented through structured programming. And the latter, we recall, after
annulling the restriction to standard flow-control constructs, was identical to
the flow of execution implemented through any other programming method.Ë

Ë The object-oriented flow of execution is, in fact, even more complex than the one in
structured programming (because a message may be sent to several objects simultaneously,
an object may continue execution while waiting for the reply to a message, etc.). So the
number of flow-control structures that we must deal with in our mind is even greater.
Moreover, we must remember that the so-called hybrid languages (employed, actually, in all
object-oriented systems) provide also the traditional concept of modules and subroutines,
thereby adding to the number of flow-control structures.

652 object-oriented programming chapter 7

�

Both structured programming and object-oriented programming promised to
revolutionize software development by restricting applications to a simple
hierarchical structure. And when this idea turned out to be a fantasy, both
theories were expanded so as to provide the means to create complex software
structures again; in particular, complex flow-control structures. Thus, like all
pseudoscientific theories, they ended up restoring the very features they had
excluded in the beginning, and on the exclusion of which they had based their
claims. So what we have in the end, after all the “enhancements,” is some
complicated programming concepts that offer us exactly what we had, in a
much simpler form, before the theory. Still, no one sees this reversal as a failure
of the theory. The promised benefits, possible only if applications are restricted
to a simple structure, are now lost. The theory, nevertheless, continues to be
promoted with the original claims.

The fifth delusion, thus, is similar to the previous ones: we believe that
we can enjoy the benefits promised by the object-oriented paradigm even
after annulling the object-oriented principles and reinstating the means to
create complex structures. What we are creating now is complex flow-control
structures. First, by introducing the concept of messages into object-oriented
programming, we provide the means to link the application’s objects through
relations that are different from their relations in the class hierarchy. In
other words, the sequence in which the objects are executed by the computer
– the hierarchical nesting scheme that is the flow of execution – need not
depend on their relative position in the class hierarchy. The application’s
objects, then, will belong to two different structures at the same time: a class
hierarchy and a flow-control hierarchy. Second, by allowing messages to be
controlled by conditional and iterative constructs, we turn the flow-control
hierarchy itself into a complex structure: not one nesting scheme, but a system
of nesting schemes.

3

3
Although we are discussing flow-control structures, we must not forget that
objects, like their counterpart, subroutines, also give rise to a different type
of structures. If an object is invoked from several other objects in the applica-
tion, it necessarily links those objects logically. So, like subroutines, objects
constitute a special case of shared operations (see pp. 351–354). For each object,
we can represent with a hierarchical structure the unique way in which the
application’s other objects are affected by it. And the relations created by these

the fifth delusion 653chapter 7

structures will be different from those created by the flow-control structures
or by the class hierarchies.

It is the concept of messages that makes all the additional structures
possible. Without messages, the application’s objects would be related only
through class hierarchies, the way it was originally intended. So the concept of
messages, described as an important object-oriented feature, was introduced
specifically in order to override the limitations of the original principles. The
theorists ignore completely the relations engendered by messages. They give us
the means to link the application’s objects through additional structures, but
they continue to present the object-oriented concept as if the objects were
linked only through class hierarchies. What is the point in designing strict class
hierarchies if we are going to relate the same objects in many other ways, by
means of messages, while the application is running?

In structured programming, the dream was to reduce the flow of execution
to one structure, as this would permit us to represent the running application
mathematically. And this idea failed because it was too restrictive, because
applications must have multiple flow-control structures if they are to represent
the world accurately. The object-oriented model is said to be more powerful.
But when we examine this power, we find that it derives simply from lifting the
restrictions introduced by structured programming; it derives from allowing
us to link objects in any way we want, and in particular, to link them from the
perspective of the flow of execution in any way we want. (Some of these
restrictions had been lifted even under structured programming, when the
theorists allowed us to use non-standard constructs and GOTO.)

By disregarding the effect of conditions and iterations, by refusing to
draw flow diagrams, and by giving old concepts new names, the software
experts managed to persuade us that the application’s elements are related only
through class hierarchies, so we no longer need to concern ourselves with the
sequence of their execution. But, in the end, to create applications we are doing
what we had been doing all along. The only real change is calling subroutines
“objects,” their invocation “messages,” and their internal operations “methods.”

So the power said to inhere in the object-oriented paradigm does not
derive from the new programming concepts, but simply from having more
opportunities to create complex software structures. What the theorists did was
merely restore some of the programming freedom we had before structured
programming, and invent some new terminology. The claim that this freedom
is due to the object-oriented paradigm is a fraud. The freedom to connect the
application’s elements in any way we like is a freedom we always had, through
any programming language – and, besides, without having to depend on
complicated development environments.

654 object-oriented programming chapter 7

The Final Degradation

The Final Degradation
1 1
We saw how, through several delusions, the idea of object-oriented program-
ming was degraded from a strict theory to a set of informal concepts. These
concepts, moreover, are practically identical to those we had before the theory.
But the degradation did not end with those delusions. In addition to the
traditional concepts, a number of new features and principles were added
over the years to the object-oriented idea. Totally unrelated to the original
theory, these enhancements were inspired by various concepts that were being
introduced into programming languages in the same period. In other words,
any concept found useful was labeled “object-oriented,” and was incorporated
into this theory too. Thus, the notion of object-oriented programming became
increasingly vague, and the terms “object” and “object-oriented” were applied
to almost any feature and principle.

The final degradation, then, was the degradation in expectations: from the
original idea of finding a formal way to reuse software, to a preoccupation with
isolated programming concepts. If the theory was promoted at first with
the claim that it would revolutionize programming, in the end, when the
revolution did not materialize, the same theory was promoted by praising
merely its features and principles. Thus, the benefits of individual program-
ming concepts replaced the benefits originally claimed for the theory, as the
ultimate goal of object-oriented programming. Let us briefly study some of
these fallacies.

�

I have already mentioned that the concept of hierarchies, and the related
concepts of inheritance and abstraction, were known and appreciated long
before the object-oriented theory. The concept of abstraction, in particular, is
praised now as if the only way to benefit from it were with classes and objects.
We are told, for example, that the object-oriented paradigm allows us to define
abstract software entities, and then create actual instances of these entities by
adding some lower-level attributes. The instances will differ from one another
in their details, while sharing the broader attributes of the original entities.

Abstraction, however, is not peculiar to the object-oriented theory. It is, in
fact, a fundamental programming principle. We make use of abstraction in any
programming language, and in any programming task. The very essence of
programming is to create data and operations of different levels of abstraction.
Thus, merely calling subroutines hierarchically, and passing data by means of

the final degradation 655chapter 7

parameters, creates in effect levels of abstraction; and merely using variables
and fields, which hold entities that differ in value while sharing certain
attributes, is, again, a form of abstraction. It would be impossible to program
serious applications if we restricted ourselves to software entities that cannot
be altered, or extended, or grouped, or used in different contexts; in other
words, if we did not make use of the concept of abstraction. Structured
programming too, although criticized now, was based on abstraction: the flow-
control constructs perform the same function at different levels of nesting.

Another object-oriented concept that is in reality a fundamental program-
ming principle is information hiding, or encapsulation. We are told that the new
paradigm allows us to hide inside an object the details of its operations, so that
the other objects may know its capabilities without having to know how they
are implemented. One of the benefits of this principle is that if we later modify
an object, we won’t have to modify also the objects that communicate with it.
Object-oriented textbooks praise this principle and show us examples of
situations where extensive modifications are avoided through object-oriented
programming, alleging that this is the first time we can benefit from it. But the
principle is a well-known one, and is found in every programming language
(for example, in the use of subroutines and local variables). Experienced
programmers always strive to keep software entities independent. Only the
terms “information hiding” and “encapsulation” are new.

Along with encapsulation, we are told that keeping the data and the opera-
tions that act on it together, as one entity, is a new concept. This, we are told, is
more natural than the traditional methods, which treated data and operations
as separate entities. Actually, we always designed software in this fashion, when
appropriate. And we didn’t need a special development environment to do it:
we simply ensured that a module uses local variables, or is the only one to use
certain global variables. It is absurd to call this well-known programming style
a new concept.

The very fact that notions like abstraction and encapsulation, understood
and appreciated since the 1950s, are seen as a revolution and a new paradigm
demonstrates the ignorance that the theorists and the practitioners suffer from.
All that the object-oriented environments do is formalize these notions; that is,
provide them in the form of built-in features, forcing us to depend on them.
But, as we saw, this idea failed. It failed because, no matter how useful the
hierarchical model is, we cannot restrict ourselves to hierarchical relations. So,
in the end, the means to use and relate software entities freely – what we had
been doing through traditional programming – had to be restored.

Other claims are even sillier. Polymorphism is the principle of implementing
an operation in several different ways while providing a common interface.
For example, different objects could be designed to print different types of

656 object-oriented programming chapter 7

documents, but this fact would be hidden from the rest of the application; we
would always invoke one object, called “print,” and the appropriate printing
object would be invoked automatically, depending on the type of document to
be printed. This is indeed a good programming technique, but what has it to
do with the object-oriented theory? Polymorphism is described as one of the
most important object-oriented principles, while being in reality a simple and
common programming method, easily implemented in any language by
means of subroutines and conditional constructs. And even if the concept of
classes and objects simplifies sometimes its implementation, this is hardly a
programming revolution. The object-oriented propaganda, though, presents
this simple principle as if without classes and objects we would have to
duplicate pieces of software all over the application every time we had to select
one of several alternatives in a given operation.

Overloading is another concept described as an object-oriented principle,
while being known, in fact, for a long time. Overloading allows us to redefine
the function of a symbol or a name, in order to use it in different ways on
different occasions. The operator plus, for example, is used with numbers; but
we could also use it with character strings, by redefining its function as string
concatenation. In a limited form, this feature is available in most program-
ming languages; and, in any case, it can be easily implemented by means of
subroutines and conditional constructs. Object-oriented languages do provide
greater flexibility, but, again, this is just a language feature, not a programming
revolution; and it has nothing to do with the object-oriented theory.

In conclusion, abstraction, information hiding, polymorphism, and the
rest, are just a collection of programming principles, which can also be added
to a traditional language. And if not directly available in a language, we can
implement these principles by adopting an appropriate programming style.
The software experts describe these principles as if they constituted the object-
oriented theory; but if in one form or another we always had them, in what
sense is this theory a new paradigm?

It is perhaps easier to implement some of these principles with an object-
oriented language (that is, if we overlook the fact that we must first agree to
depend on an enormously complex development environment). But this
quality is not what the experts had promised us as the benefits of the theory.
The promised benefits were not abstraction, encapsulation, or polymorphism,
but the “industrialization” of software: the prospect of creating software
applications the way we build appliances, through a process akin to the
assembly of prefabricated components. It was its promises, not its principles,
that made the object-oriented idea popular; the principles were merely the
means to attain the promised benefits. In any case, after all the delusions,
we no longer have the original theory; what we have now is just a more

the final degradation 657chapter 7

complicated way to program. So, since the promised benefits were lost with the
original theory, the principles alone are perceived now as the benefits of object-
oriented programming.

�

We saw earlier how structured programming underwent a process of degrada-
tion: it started as a formal theory, promising us error-free software; and
it ended as a preoccupation with trivial concepts like top-down design,
constructs with one entry and exit, and avoiding GOTO. Now we see that a
similar process of degradation, from an ambitious theory to a collection of
trivial concepts, also affected object-oriented programming.

It is easy to understand the reason for this degradation. When the benefits
promised by a theory are not forthcoming (we still don’t create applications
mathematically, or by assembling prefabricated software components), we can
either admit that the theory has failed, or attempt to rescue it. The only way to
rescue an invalid theory is by making it unfalsifiable; specifically, by expanding
it, so that events which would normally falsify it no longer do so. And this can
be accomplished by replacing the original principles with broader and simpler
ones, which can be easily implemented. Thus, if we redefine structured
programming or object-oriented programming to mean just a collection of
programming principles, and if some of these principles are useful, then the
redefined theory is indeed valid.

Both structured programming and object-oriented programming became
in the end unfalsifiable, and hence pseudoscientific. Thanks to the various
“enhancements,” and to their degradation from a formal theory to a collection
of principles, they became impossible to refute. Had they retained their
original, exact definition, it would be obvious that they failed, simply because
we are still not enjoying the claimed benefits. But by reducing them to an
assortment of simple and well-known principles, they appear to work even if
the claimed benefits never materialize. Indenting statements, expressing
requirements hierarchically, information hiding, and the like, are indeed
excellent principles; so, if this is what the theories are now, it is impossible to
criticize them.

2

2
The degradation of the object-oriented idea can also be seen in the degradation
of the terms “object” and “object-oriented.” We saw earlier how the term
“structured” was applied to almost any flow-control construct, and to almost

658 object-oriented programming chapter 7

any software-related activity. For example, the theorists allowed into structured
programming any construct that was useful – simply because, after drawing
around it a rectangular box with one entry and one exit, it looked like a
structured construct. This trick worked so well for structured programming
that the theorists repeated it with objects.

In the original theory, objects were formal, precisely defined entities. But
the idea of an object has been degraded to such an extent that the term “object”
can now be used to designate any piece of software. Such entities as data
records, display screens, menus, subroutines, and utilities are called objects –
simply because, like objects, they can be invoked, or possess attributes, or
perform actions. In other words, we can take any software entity, draw a box
around it, and call the result an object.

Even entire programs can be called, if we want, objects. For example,
through a procedure called wrapping, an old application, or part of an applica-
tion, written in a traditional language, can instantly become an object.É The
application itself remains unchanged; but, by “wrapping” it (that is, adding a
little software around it so that it can be invoked in a new fashion), it can
become part of an object-oriented environment: “Wrapper technology . . .
provides an object-oriented interface to legacy code. The wrapped piece of
legacy code behaves as an object.”Ê

Along with the idea of an object, the object-oriented principles themselves
were degraded. Thus, any programming feature, method, or technique that
involves hierarchies, or abstraction, or encapsulation, and any development
system that includes some of these principles, is called “object-oriented.”
We can see this degradation in books, articles, and advertising. And, since
the use of these terms is perceived as evidence of expertise and modernity,
ignorant academics, programmers, and managers employ them liberally in
conversation. Thus, “object” and “object-oriented” are now little more than
slogans, not unlike “technology,” “power,” and “solution.”

In the end, the definition of object-oriented programming was degraded to
the point where the original promises were forgotten altogether, and the
criterion of success became merely whether an application can be developed at
all through object-oriented concepts (or, rather, through what was left of these
concepts after all the delusions). Thus, the success stories we see in the media
are not about companies that achieved a spectacular reuse of existing software
classes, or managed to reduce formally all their business requirements to a class

É See, for example, Daniel Tkach and Richard Puttick, Object Technology in Application
Development (Redwood City, CA: Benjamin/Cummings, 1994), pp. 113–115.

Ê Ibid., p. 148. Note, again, the slogan “technology”: what is in fact a simple programming
concept (code wrapping) is presented as something important enough to name a whole
domain of technology after it.

the final degradation 659chapter 7

hierarchy, but about companies that are merely using a system, language, or
methodology said to be object-oriented.

An example of this type of promotion is Objects in Action.Ë This book
includes nineteen case studies of object-oriented development projects, from
all over the world. For each project, those involved in its implementation
describe in some detail the requirements and the work performed. These
projects were selected, needless to say, because they were exceptional.Ì But,
while presented as object-oriented successes, there is nothing in these descrip-
tions to demonstrate the benefits of object-oriented programming. The only
known fact is that certain developers implemented certain applications using
certain object-oriented systems. There is no attempt to prove, for instance, that
some other developers, experienced in traditional programming, could not
have achieved the same results. Nor is there an attempt to understand why
thousands of other object-oriented projects were not successful. In the end,
there is nothing in these descriptions to exclude the possibility that the
successes had nothing to do with the object-oriented principles, and were due
to other factors (the type of applications, the particular companies where they
were developed, unusual programming skills, etc.).

It is when encountering this kind of promotion that we get to appreciate the
importance of Popper’s idea; namely, that it is not the confirmations of a
theory that we must study, but its falsifications (see “Popper’s Principles of
Demarcation” in chapter 3). As we just saw, if what we want to know is how
useful the object-oriented principles really are, those success stories can tell us
nothing. Promoters use success stories as evidence precisely because such
stories can always be found and are so effective in fooling people. For, few of
us understand why confirmations are worthless. The programming theories,
in particular, are always promoted by pointing to isolated successes and
ignoring the many failures. Thus, the very fact that the elites rely on this type
of evidence demonstrates their dishonesty and the pseudoscientific nature of
their theories.

3

3
The previous theory, structured programming, was promoted with the claim
that it provides certain benefits; and we saw that, in fact, these benefits
can be attained simply through good programming. In other words, those
structured programming principles that are indeed useful can be implemented

Ë Paul Harmon and David A. Taylor, Objects in Action: Commercial Applications of
Object-Oriented Technologies (Reading, MA: Addison-Wesley, 1993).

Ì This is acknowledged in the book: ibid., p. vii.

660 object-oriented programming chapter 7

without the restrictions imposed by this theory. The motivation for structured
programming, therefore, was not a desire to improve programming practices,
but the belief that it is possible to get inexperienced programmers to perform
tasks that demand expertise. What was promoted as an effort to turn program-
ming into an exact activity was in reality an attempt to raise the level of
abstraction in this work, so as to remove both the need and the possibility for
programmers to make important decisions.

The software theorists assumed that the skills acquired after a year or two
of practice represent the highest level that a typical programmer can attain.
Thus, since these programmers create bad software, the conclusion was that
the only way to improve their performance is by reducing programming to
a routine activity. Anyone capable of acquiring mechanistic knowledge –
capable, that is, of following rules and methods – would then create good
software.

And this corrupt ideology was also the motivation for object-oriented
programming. The true goal was, again, not to improve programming prac-
tices, but to raise the level of abstraction, in the hope of getting inexperienced
programmers to perform tasks that lie beyond their capabilities. As we saw,
those object-oriented principles that are indeed useful – abstraction, code
reuse, information hiding, and the like – were always observed by good
programmers. Those principles, moreover, can be implemented through any
programming language. Just as they do not have to avoid GOTO in order to
enjoy the benefits of hierarchical flow-control structures, good programmers
do not have to use an object-oriented environment in order to create software
that is easy to reuse, modify, and extend.

Ultimately, the object-oriented paradigm is merely another attempt to
incorporate certain programming principles into development systems and
methodologies, so as to allow programmers who are incapable of understand-
ing these principles to benefit from them nonetheless. Just as the operator of a
machine can use it to fabricate intricate parts without having to understand
engineering principles, the new systems and methodologies would enable a
programmer to fabricate software parts without having to understand the
principles behind good programming.

Thus, like structured programming before it, object-oriented programming
was not an attempt to turn bad programmers into good ones, but to eliminate
the need for good ones. Each theory claimed to be the revolution that would
turn programmers from craftsmen into modern engineers; but, in reality,
programmers had neither the skills of the old craftsmen before the theory, nor
the skills of engineers after it.

All that mechanistic theories can hope to accomplish is to turn ignorant
programmers into ignorant operators of software devices. But we can only

the final degradation 661chapter 7

incorporate in devices mechanistic principles, while our applications must
mirror non-mechanistic phenomena. So, to permit programmers to create
useful applications, the theories must abandon in the end their restriction to
mechanistic principles. They restore in roundabout and complicated ways the
low levels of abstraction, and the means to link software structures, thereby
bringing back the most challenging aspect of programming – the need to
manage complex structures. Thus, not only do these theories fail to eliminate
the need for non-mechanistic knowledge, but, by forcing programmers to
depend on complicated concepts and systems, they make software develop-
ment even more difficult than before.

Each time they get to depend on a mechanistic theory instead of simply
practising, programmers forgo the only opportunity they have to improve their
skills. Their performance remains at novice levels, and they believe that
the only way to make progress is by adopting the next mechanistic theory.
Professional programming, the elites keep telling them, means being familiar
with the latest concepts and development systems.

Both structured programming and object-oriented programming are an
expression of our mechanistic software ideology – an ideology promoted by
universities and by the software companies. It is in the interest of these elites
to prevent the evolution of a true programming profession. By redefining
programming expertise as the capability to follow methods and to operate
devices, the mechanistic ideology has reduced programmers to bureaucrats.

662 object-oriented programming chapter 7

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 7: Software Engineering
	Object-Oriented Programming
	The Quest for Higher Levels
	The Promise
	The Theory
	1
	2

	The Contradictions
	1
	2
	3

	The First Delusion
	The Second Delusion
	The Third Delusion
	The Fourth Delusion
	1
	2

	The Fifth Delusion
	1
	2
	3

	The Final Degradation
	1
	2
	3

