
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 6: Software as Weapon
Section A New Form of Domination

This extract includes the book’s front matter
and part of chapter 6.

Copyright ©2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This section shows that the software elites are promoting
mechanistic concepts in order to prevent independence and
expertise in software-related activities.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 6: Software as Weapon

A New Form of Domination A New Form of Domination
The Risks of Software Dependence

The Risks of Software Dependence

I have stated that the elites can control knowledge by means of software just as
they can by means of language, but I must clarify this point. I am not referring
here to the direct use of software to control, acquire, or restrict knowledge.
This discussion is not concerned with such well-known software dangers as
allowing an authority to decide what information is to be stored in databases,
or allowing the centralized collection of information about individuals. Nor is
it concerned with the use of deceptive language in software propaganda, as in
calling everything “technology,” or “solution.” Important as these dangers are,
they are insignificant compared to the dangers we face when an elite controls
the way we create and use software.

The other dangers we understand, and if we understand them we can
perhaps deal with them. But we have yet to understand what it means for
a society to depend on software as much as it depends on language; and
consequently, we do not realize that it is just as important to prevent an elite

the risks of software dependence 407chapter 6

from controlling software as it is to prevent one from controlling language.
This ignorance can be seen in the irresponsible attitudes of our political
leaders, of our corporations and educational institutions, and ultimately of
every one of us: we are watching passively as the software elites are increasing
their power and control year after year; and we continue to trust and respect
them, even as they are creating a world where the only thing left for us to do is
to operate their devices.

Thus, while the other forms of software abuse would lead to familiar forms
of exploitation, what concerns us here is a new form of domination. We are
facing a new phenomenon, a new way to control knowledge and thought,
which could not exist before we had computers. The dependence of a society
on software is a new phenomenon because software and programming are new
phenomena. We have been inventing tools for millennia, but the computer is
unique in that it is programmable to a far greater extent than any other tool we
have had. Software, therefore, is what gives the computer its potency; and the
act of programming is what controls this potency. No other human activity –
save the use of language – is as far-reaching as programming, because no other
activity involves something as potent as software.

This is the first time since humans developed languages that we have
invented something comparable in scope or versatility. Software resembles
language more than anything else: both systems permit us to mirror the world
in our minds and to communicate with it. At the same time, software is
sufficiently different from language to mask the similarity (we can easily invent
new programming languages, for example, but not natural ones). As a result,
we fail to appreciate the real impact that software has on society, and the need
for programming expertise and programming freedom. And we have fallen
victim to the fallacies of the software myth: the belief that software is a kind of
product, and that software applications must be built as we build appliances;
the belief that we need elaborate tools for these manufacturing projects, and
hence a software industry to supply these tools; the belief that development
methodologies and environments can be a substitute for programming exper-
tise; the belief that it is better to program and maintain complex business
systems by employing large teams of inexperienced programmers, analysts,
and managers, instead of one professional; and the belief that the highest
programming skills that human minds can attain, and that society needs, are
those possessed by the current practitioners.

�

It is not surprising that we are unprepared for the consequences of program-
ming, since we did not take sufficient time to learn what programming really is.

408 a new form of domination chapter 6

Originally, we set out merely trying to develop a particular kind of machine –
a fast, programmable calculator. Instead, we stumbled upon a system that gives
us a whole new way to use our minds, to communicate, to represent the world.
But we continue to regard programming as we did originally, as an extension
to the engineering effort required to build the hardware; that is, as an activity
akin to manufacturing, and which must be performed in the same fashion.
We still fail to see that the skills needed to program computers are more akin
to those needed to use language. Programming projects cannot be neatly
broken down, like manufacturing activities, into simpler and simpler tasks.
Programming skills, therefore, entail a capacity for complex structures. They
can be acquired only through lengthy exposure to the phenomena arising from
developing and maintaining large and complex applications.

There can be little doubt that within a few decades humans will interact
with the world around them by means of software as much as they do now
by means of language. Software lends itself to this task just like language,
and there is no reason why we should not depend on our newly discovered
programming capabilities, just as we depend on our linguistic capabilities. We
must ensure, however, the right conditions: first, programmers must have the
same competence with software as normal humans have now with language;
and second, the activities involving programming and software must be, like
those involving language, free from controls or restrictions. A society that
allows an elite to control its software and programming faces the same danger
as a society that allows its language to be controlled: through language or
through software, the elite will eventually control all knowledge and thought,
and will reduce human minds to the level of machines.

The form of domination that we are studying here can emerge, therefore,
when a society depends on software but lacks the necessary programming
competence. As Orwell points out, an elite could achieve complete control
through language only by forcing us to replace our language with an impover-
ished one, like Newspeak, which demands no intelligence. In our present-day
society, exploitation by way of language is necessarily limited, because we are
all competent language users. Few programmers, however, attain a level of
software competence comparable to our linguistic competence. Accordingly,
the world of programming is already an Orwellian world: it resembles a society
that lacks linguistic competence.

Our dependence on programming aids, and on the organizations behind
them, stems from the incompetence of programmers. Programmers need these
devices because they are not permitted to attain the level of programming
competence of which human minds are naturally capable. But programming
aids are only poor substitutes for programming expertise, because, unlike
minds, they can only deal separately with the various aspects of programming.

the risks of software dependence 409chapter 6

As a result, applications based on these substitutes cannot represent the world
accurately, just as statements in Newspeak cannot.

And, just as people restricted to Newspeak cannot realize how limited their
knowledge is, we cannot realize how limited our programming knowledge is,
because this is the only kind of programming we have. Just as the people in
Orwell’s society are forced to depend on the linguistic tools provided by
their elite, and their knowledge is shaped and restricted by these tools, our
programmers are forced to depend on the devices provided by the software
companies, and their knowledge is similarly shaped and restricted. Only
mechanistic software concepts, only beliefs that reinforce the software myth,
can enter their minds. Programming expertise for them means expertise in the
use of substitutes for programming expertise.

By preventing programming competence, then, an elite can use software to
control and exploit society, just as language could be used if we lacked linguistic
competence. The programming aids, and the resulting applications, form a
complex world that parallels the real world but has little to do with it. Their
chief purpose is to support a large software bureaucracy, and to prevent the
emergence of a body of competent and responsible programmers. And if the
software bureaucrats no longer deal with the real world, we have to reshape
our own views to match theirs. To the extent that our society depends on
software, and hence on this software bureaucracy, we all live in an Orwellian
world: we are all forced to perceive our work, our values, our expectations, our
responsibilities, in ways that serve the interests of the software elites.

It is unlikely that Orwell’s extreme form of mind control through language
can ever happen in the real world, but this is unimportant. Orwell’s world is a
model, not a prophesy. We must appreciate its value as model, therefore, rather
than feel self-complacent because it cannot happen. And when we study it, we
recognize that its importance is growing as our dependence on software
is growing, because this dependence increases the possibility of an elite
controlling our minds through software as the elite in the model does through
language.

In our current software culture, the degree of control that an elite can attain
through software is not limited by an existing condition, as control through
language is limited by our linguistic competence; it rests solely on how much
we depend on software. The reason the software elites do not have complete
control over our minds today is not our software competence, but the fact that
we do not yet depend completely on software. And if our dependence on
software is growing, by the time we depend on software as much as we depend
now on language it will be too late to do anything. At that point, to use
Orwell’s model, we will live in a world where Newspeak finally replaces
English. Our chief means of thinking, of communicating, of representing the

410 a new form of domination chapter 6

world, will be a simple system requiring only mechanistic knowledge – not
because software structures cannot involve complex knowledge, but because
there will be no one to create or use the kind of software that requires the full
capacity of the mind.

Dependence on software, coupled with software ignorance and program-
ming incompetence – this is what the software elites are trying to achieve.
They are persuading us to give up our dependence on knowledge and skills
(means through which we know how to become competent) and to replace it
with a dependence on software (means which they control, and through which
they can prevent us from becoming competent).

The Prevention of Expertise

The Prevention of Expertise
1 1
We probably fail to recognize software domination because the idea of mind
control through software is so incredible. Before we had software, only political
organizations could carry out such a totalitarian project. And we have yet to
accept the fact that an elite can control society through software as effectively
as a political elite could through traditional means of domination.

To understand this danger, we must make the most of what we know today.
We cannot afford merely to wait and see, because the resulting conditions
would likely be irreversible. We must study, for example, the similarity between
the role of software in society and that of language. Since we all agree that
language can be used to control and restrict thought, we must ensure complete
software freedom even if we still cannot see clearly how the software elites can
turn software into a means of domination. We should simply assume that they
will use software as they would language, had they the opportunity to control
language as they do software.

Even more importantly, we must study those aspects of society that are
already controlled by the software elites: those aspects that form the world of
programming itself. Studying the world of programming affords us a glimpse
of the future, of the time when the entire society will be controlled by these
elites. It was easy to degrade the notion of programming expertise because,
this being a new field, there were no established values, as there are in the
traditional professions. As a result, the highest level of expertise we believe
to be needed in programming is one that in other professions would be
considered the level of novices.

�

the prevention of expertise 411chapter 6

We have been involved with software for more than half a century, so by now
we could have had a sufficient number of expert programmers; namely, men
and women whose skills represent the utmost that human minds can attain
in the domain of programming. This is how we define expertise in other
professions, and this is what we should expect of programmers. Instead, what
we find is a software bureaucracy: a social system whose chief doctrine is the
prevention of programming expertise.

We have programmers who are incapable of performing anything but
small and isolated programming tasks, and who are not even expected to do
more. We have managers who read “success stories” in childish computer
publications, and search for ready-made applications and other programming
substitutes instead of allowing their own programmers to gain the necessary
skills. We have professors and gurus who teach the principles of “software
engineering” – which claim that programming is like manufacturing, so what
we need is unskilled labourers who know only how to assemble “prefabricated
software components.” We have software companies that supply practitioners
with an endless series of “software tools” – elaborate development and business
systems that promise to eliminate the need for programming. And, addressing
the incompetence engendered by this corrupt culture, there are thousands
of books, magazines, newspapers, brochures, advertisements, catalogues,
trade shows, newsletters, courses, seminars, and online sources, all offering
“solutions.”

Few people realize that this whole bureaucracy could be replaced with a
relatively small number of real, expert programmers. This is true because only
a fraction of the work performed by the current practitioners is actually useful;
that is, directly related to the creation and maintenance of applications. Most
of their work consists in solving the problems generated by their dependence
on aids and substitutes.

We have no equivalent bureaucracy in other professions. We have surgeons,
pilots, engineers, musicians, military commanders, writers, repairmen, and so
forth. And we understand that, to reach expertise in a difficult profession, an
individual needs many years of education, training, and practice, a sense of
personal responsibility, and perhaps special talents as well. We don’t attempt to
replace a surgeon with a dozen ignorant individuals, and defend the decision
by claiming that the work of a surgeon can be broken down into simpler tasks,
as in manufacturing.

We don’t do this in other professions because we took the time to determine
what is the highest level that human beings can attain in those fields. We made
that level our definition of expertise, and we measure everyone’s performance
against that level. We understand that the more difficult the profession, the
longer it takes to attain expertise, and the fewer the individuals who can

412 a new form of domination chapter 6

succeed; and we give these individuals the time and the opportunity to develop
their capabilities. We never tried to contend with this problem by reducing our
expectations, as we do in programming. We never concluded that, given the
urgent need for surgeons, the answer is to debase the definition of expertise to
match the level of the available, of the inexperienced, individuals.

We treat programming differently from other professions because this
serves the interests of the software elites. In just a few years, an unprecedented
propaganda system has made the software myth the greatest system of belief in
history, and we now take for granted in the domain of programming, notions
that we would dismiss as absurd in other domains. The software practitioners
have become a powerful, self-serving bureaucracy, but we continue to regard
them as saviours. The reason we fail to see that they are exploiting society,
not serving it, is that we have no other form of programming as measure.
Programming controlled by a bureaucracy is the only programming we know,
the only kind we have ever had.

An important element of the software myth is the belief that the typical
work currently performed by programmers represents the highest level of
competence we should expect in this profession. And if they have difficulty
with their applications, it is not greater programming knowledge that they
need, but more programming aids and substitutes. Thus, individuals with just
a year or two of training and experience – which consist largely in the use of
aids and substitutes – have reached the highest knowledge expected of them.
The only knowledge they will acquire from then on is how to use the future aids
and substitutes. This doctrine fits well within the ideology promoted by the
software elites, as it ensures continued incompetence among programmers.
It also ensures the complete dependence of programmers, and of those
using their applications, on the software companies supplying the aids and
substitutes. Lastly, this doctrine serves to weaken the programmers’ sense of
responsibility: what they perceive as their main concern is the problems
generated by the aids and substitutes, rather than the real social or business
problems that software is supposed to solve.

As a result, no matter how many years of practice programmers have behind
them, their real programming experience remains as it was after the first year
or two. This is true because the aids and substitutes limit their work to simple
and isolated bits of programming, whereas successful application development
demands the capacity to deal with many software processes simultaneously.
This incompetence also explains why most applications are inadequate, and
why most programming work consists in replacing existing applications,
which programmers cannot keep up to date.

�

the prevention of expertise 413chapter 6

If we can benefit from studying the similarity of software and language, and
from studying the world of programming and the delusions of the software
myth, then we can benefit even more from studying these topics together;
specifically, from studying the link between the mechanistic ideology and the
incompetence of programmers.

We should regard the world of programming as the result of an unintended
social experiment: an attempt to replace human expertise with software. The
experiment has failed, but we can learn a great deal from this failure. We must
create, to begin with, the social and business environment where a body of
expert programmers can evolve. The software elites are doing everything in
their power to prevent this, of course, since widespread programming incom-
petence is a critical factor in their plan of domination. A true programming
profession will not only stop the flow of trillions of dollars from society to the
software elites and bureaucrats, but will lead to better software and, ultimately,
greater benefits from computers.

Moreover, by abolishing the software bureaucracy we will prevent the
software elites from corrupting other aspects of society. For they are using the
power gained from controlling the world of software, to degrade other profes-
sions and occupations just as they have degraded programming. If allowed to
continue, they will soon force us all to depend on knowledge substitutes
instead of our minds. Like programmers, we will all be reduced to the level of
novices. As programmers do now, we will all live in a world where expertise is
neither possible nor necessary, where the only thing left to do is to operate the
devices supplied by the software elites.

2

2
To understand the concept of software domination, we must start by recalling
what we learned in chapter 2 about the mind. We can acquire the most diverse
kinds of knowledge and skills: using language, recognizing faces, playing
games, programming computers – the kind of knowledge we all share simply
by living in a society, as well as specialized knowledge related to individual
lifestyles and occupations. But all knowledge and skills, ultimately, involve our
mind’s capacity for complex structures. When exposed to a new phenomenon,
and hence to the new knowledge embodied in that phenomenon, we start by
noting the simple structures that make it up, the patterns and regularities. What
we note, in other words, is those aspects that can be represented with facts,
rules, and methods. Being limited to simple structures, our performance at
this point resembles that of a software device. We progress from novice to
expert by being exposed to that phenomenon repeatedly. This permits our

414 a new form of domination chapter 6

mind to discover, not only more structures, but also the interactions between
structures; and this in turn permits it to create a replica of the complex
structures that make up the phenomenon. Thus, when we reach expertise our
performance exceeds that of software devices, which are forever restricted to
simple structures.

We communicate with the world around us through our senses, which
receive information in the form of simple structures (patterns of symbols and
sounds, for instance). Complex structures, therefore, can exist only in the
phenomenon itself and in the mind; we cannot acquire them through our
senses directly from the phenomenon, or from another mind. Consequently,
the only way to attain expertise in a given domain is by giving our mind the
opportunity to create the complex structures which reflect the phenomena of
that domain. And this the mind can do only through repeated exposure to
those phenomena; in other words, through personal experience.

Human acts require the capacity for complex structures because most
phenomena we face consist of interacting structures. They consist of entities
(objects, persons, processes, events) that have many attributes, and belong
therefore to many structures at the same time – one structure for each attribute.
To put this differently, we can always view ourselves and our environment from
different perspectives, while the entities that constitute our existence are the
same. So the entities form many structures; but the structures interact, because
they share these entities. We rarely find a structure – a particular aspect of our
life – whose links to the other structures are so weak that it can be extracted
from the complex whole without distorting it or the others.

This recapitulation was necessary in order to remind ourselves of the
conclusion reached in chapter 2, and its significance. We note that most mental
processes, most knowledge and skills, involve complex structures. And we note
also that software devices are based on simple structures. As substitutes for
human intelligence, therefore, software devices are useful only for the rare
tasks that can be represented with simple structures; specifically, those tasks
that can be separated from others.

On the one hand, then, practically everything we do involves the full
capacity of the mind, and cannot be broken down into simpler mental pro-
cesses. On the other hand, we agree to depend more and more, in almost
every domain, on software devices – which attempt to eliminate the need for
expertise by reducing knowledge to simple structures. How can we explain this
contradiction?

Our software delusions stem from our mechanistic delusions. Our most
popular theories of mind claim that human intelligence can be represented
with mechanistic models – models based on precise diagrams, rules, methods,
and formulas. And, even though these theories keep failing, we also believe

the prevention of expertise 415chapter 6

now that it is possible to represent intelligence with mechanistic software
models. Thus, the promoters of mind mechanism can claim, for the first time,
to have actual devices – software devices – that emulate human intelligence.
Anyone with a computer can now perform any task, including tasks requiring
knowledge that he lacks. All he needs to do is purchase a software device which
contains that knowledge.

We have always used tools to simplify tasks, or to improve our performance;
so the idea that a device can enhance certain types of knowledge and skills, or
help us perform some tasks faster or better, is not new. If we view software as a
device of this kind, the claims are easily justified: the computer, with the
programs that run on it, is the most versatile tool we have ever invented; and
it can enhance our capabilities in many tasks.

The software claims, though, do not stop at the kind of claims traditionally
advanced for devices. The claims are extended to encompass intelligent acts;
that is, acts involving non-mechanistic knowledge, and hence complex knowl-
edge structures. But devices can represent only simple structures. So, to replace
those acts with software, we must first separate the complex knowledge
structure into several simple ones.

Software domination, thus, starts when we are tempted to commit the
fallacy of reification. We believe the claim that knowledge and skills can be
replaced with software devices because we already believe that intelligent acts
can be broken down into simpler intelligent acts. This belief tempts us to reify
the phenomenon of intelligence, and commit therefore, with software, the
fallacy already committed by the mechanistic theories of mind: the separated
knowledge structures are no longer what they were when part of the complex
knowledge; they lose the interactions, so even when we manage to represent
them faithfully with software, the knowledge embodied in them is not the same
as the original, complex knowledge.

But reification is only the first step. Now that we have independent struc-
tures, we are tempted to start from higher levels of abstraction within each
structure as we replace it with software. We can be more productive, the
experts tell us, if we avoid the low levels of software and start with higher-level
elements – with elements that already contain the lower levels. Thus, we also
commit the second fallacy, abstraction: we believe that we can accomplish the
same tasks as when starting with low-level elements. Starting from higher
levels impoverishes the structure by reducing the number of alternatives for the
value of the top element; that is, the top element of a software structure that is
already a reified, and hence inaccurate, representation of the real knowledge.
What this means in practice is that an inexperienced person will accomplish
by means of software devices only a fraction of what an experienced person
will with his mind alone.

416 a new form of domination chapter 6

The two fallacies can be seen clearly in the domain of programming. We are
told that the most effective way to develop applications is by starting from high
levels of abstraction. Specifically, we should avoid programming as much as
possible, and use instead software entities that already include many elements:
ready-made applications (or, at least, ready-made modules and components),
and the built-in operations provided by development tools and environments.
To benefit from these high levels, however, we must view our applications,
mistakenly, as separable software processes. Each business or software practice,
each case of shared data or operations, is a process; and each process represents
one aspect of the application, one structure (see “Software Structures” in
chapter 4). These structures exist at the same time and use the same software
entities, so it is their totality that constitutes the application. If we separate
them, we may indeed manage to program each structure starting from higher-
level elements; but the resulting application will reflect only poorly the original
requirements. We can create applications that mirror reality, but only if we have
the expertise to start from low levels and to deal with all the processes together.

3

3
We are now in a position to understand the concept of software domination.
The software elites are exploiting our mechanistic delusions; specifically, our
belief that software can be a substitute for non-mechanistic knowledge. We see
software successfully replacing human minds in some tasks, and we trust the
elites when they promise us similar success in other tasks. We believe that there
is only a quantitative, not a qualitative, difference between the knowledge
involved in mechanistic and non-mechanistic tasks, and we allow the elites to
exploit this belief.

So the mechanistic delusions act like a trap. If we believe that a given task
can be replaced with software, we do not hesitate to depend on that software
and on the organization behind it. We enthusiastically devote our time to
that software, instead of using it to gain knowledge. But if the task is non-
mechanistic, the time we devote to software will be wasted. By luring us with
the promise of immediate answers to our complex problems, the elites prevent
us from developing our minds. So, not only does software fail to solve those
problems, but it also prevents us from gaining the knowledge whereby we could
solve them. In the end, we have nothing – neither a useful software expedient,
nor the knowledge needed to perform the task on our own. We are caught,
thus, in the software variant of the traditional mechanistic trap: we believe in
the existence of mechanistic solutions for non-mechanistic problems, so we
restrict ourselves to precisely those methods that cannot work.

the prevention of expertise 417chapter 6

We get to depend on software because the promise is so enticing. The
promise is, essentially, that software can solve important problems in a
particular field by acting as a substitute for the knowledge needed in that
field. So, instead of taking the time to acquire that knowledge, we can solve the
problems right away, simply by buying and operating a piece of software. And
the reason we believe this promise is that we see similar promises being
fulfilled in tasks like calculations and data processing, where software does
indeed allow novices to display the same performance as experts. For tasks
involving interacting knowledge structures, however, the promise cannot be
met. Software can be a substitute only for knowledge that can be neatly broken
down into smaller, simpler, and independent pieces of knowledge – pieces
which in their turn can be broken down into even smaller ones, and so on –
because this is the only way to represent knowledge with software.

When we depend on software in situations involving complex knowledge
structures, what we notice is that it does not work as we expected. But,
while software fails to provide an answer, we never question the mechanistic
assumptions. We recognize its inadequacy, but we continue to depend on
it. And this dependence creates a new kind of problems: software-related
problems. We don’t mind these new problems, though, and we gladly tackle
them, because we think that by solving them we will get the software to solve
our original problems. Most software problems involve isolated knowledge
structures, and have therefore fairly simple, mechanistic solutions. Since these
solutions often entail additional software, they generate in their turn software
problems, which have their own solutions, and so on.

The more software problems and solutions we have, the more pleased we
are with our new preoccupations: all the time we seem to be solving problems.
So we spend more and more time with these software problems, when in
fact they are spurious problems generated by spurious preoccupations, in a
process that feeds on itself. We interpret our solutions to software problems as
progress toward a solution to our real problems, failing to see that, no matter
how successful we are in solving software problems, if the original problems
involve complex knowledge we will never solve them with software. In the end,
content with our software preoccupations, we may forget the real problems
altogether.

�

Bear in mind that it is not software dependence in itself that is dangerous, but
the combination of this dependence with software ignorance. There is nothing
wrong in depending on software when we possess software expertise. It is only
when we separate software structures from various knowledge structures, and

418 a new form of domination chapter 6

when we restrict ourselves to high-level elements, that our dependence on
software can be exploited; in other words, when our software knowledge is at
a mechanistic level.

Recall the language analogy. We attain linguistic competence by starting
with low-level linguistic elements – morphemes and words, with all their uses
and meanings – and by creating language structures that interact with various
knowledge structures present in the mind. This is how we form the complex
mental structures recognized as intelligence. No linguistic competence or intel-
ligence would be possible if we had to create our language structures starting
with ready-made sentences and ideas, or if we treated them as independent
structures. Similarly, software expertise can be attained only by starting with
low-level software elements, and by treating the software structures that we
create with our programs, not as independent structures, but as part of the
complex structures that make up our affairs. And this is precisely what the
software elites are preventing us from doing.

We are exploited through software because of the belief that it is possible to
benefit from software without having to develop software expertise. We
understand why we could not benefit from language without having linguistic
competence, but we fail to see this for software. When we trust the elites and
get to create and use software in the manner dictated by them, we end up
with a combination of several weaknesses: programming incompetence;
failure to solve our problems with software, because of the inadequacy of
our applications; a growing preoccupation with spurious, software-related
problems; and a perpetual dependence on the elites for solutions to both
the real and the spurious problems – a dependence that is futile in any case,
because only we, with our minds, can hope to accomplish those tasks that
require complex knowledge. It is not difficult for the elites, then, to exploit us.

The Lure of Software Expedients

The Lure of Software Expedients
1 1
Software domination is based on a simple stratagem: consuming people’s time.
Forcing us to waste our time is the simplest way to keep us ignorant, since, if
we spend this time with worthless activities, we cannot use it to improve our
minds. The software elites strive to keep us ignorant because only if ignorant
can normal people be turned into bureaucrats, into automatons.

Our time, in the end, is all we have, our only asset. Whether we count the
hours available in a day or the years that constitute a life, our time is limited.
What we do with our time, hour by hour, determines what we make of our

the lure of software expedients 419chapter 6

lives. We can squander this time on unimportant pursuits, or use it to expand
as much as we can our knowledge and skills. In the one case we will accomplish
whatever can be done with limited knowledge, and we will probably live a dull
life; in the other case we will make the most of our minds, and we have a good
chance to live a rich life and to make a contribution to society.

It is not too much to say that, as individuals living in a free society, we are,
each one of us, responsible for a human life – our own – and we have an
obligation to make the most of it. Like freedom itself, realizing our human
potential is a right we all have; but, just like freedom, this right is also a duty, in
that we are all responsible for its preservation by defending it against those who
want to destroy it. Specifically, we must strive to expand our minds despite the
attempts made by an elite to keep us ignorant. Only thus, only when each
individual and each mind counts, can the idea of freedom survive.

Conversely, preventing an individual from realizing his or her potential,
from making the most of his or her mind, amounts in effect to an attempt to
destroy a life; so it must be considered a crime nearly as odious as murder. Seen
from this perspective, our software elites could be described as criminal
organizations, since forcing us to squander our time is one of the principles of
their ideology.

The software elites consume our time by creating an environment where our
activities are far below our natural mental capabilities. When we depend on
their concepts and devices, we end up spending most of our time acquiring
isolated bits of knowledge, or solving isolated problems. Being simple and
mechanistic, these activities do not allow us to create complex knowledge
structures in our minds – the kind of knowledge that constitutes skills and
experience. We can recognize this in that our capabilities do not progress on a
scale from novice to expert, as they do in the traditional fields of knowledge.
(Thus, no matter how many of these problems we solve, the next one will
demand about as much time and effort.) In any case, mechanistic concepts
cannot help us to solve our complex problems; so we are wasting our time both
when acquiring the mechanistic knowledge and when using it.

Without exception, the software devices are presented as simple, easy to use,
requiring little knowledge, and demanding an investment of just a few minutes,
or perhaps a few hours. It is a sign of our collective naivety that, in a world
which is becoming more complex by the day, we believe in the existence of
some devices that can provide immediate answers to our problems, and that
this power is ours to enjoy just for the trouble of learning how to operate them.
This childish belief can be understood only by recognizing it as the software
variant of our eternal craving for salvation: the performance of some simple
acts, we think, will invoke the assistance of fabulous powers. This is the same
belief that permitted so many other elites to exploit us in the past.

420 a new form of domination chapter 6

Many of these devices are indeed simple, just as their promoters claim. But
they are simple precisely because they are generally useless, because they
cannot solve our complex problems. As we saw, they are based on the delusion
that complex structures – our problems, and the knowledge required to solve
them – can be broken down into simple structures, and hence replaced with
mechanistic expedients like software devices. The mechanistic knowledge
required to use the software, together with the mechanistic capabilities of the
software itself, is believed to provide a practical substitute for the complex
knowledge required to solve the problems. But no combination of simple
structures can replace a complex knowledge structure, because this kind of
knowledge can develop only in a mind, and only after much learning and
practice.

�

When we trust the software elites, we are exploited more severely and in more
ways than we think. For, the waste of time and the prevention of knowledge
reinforce each other, impoverishing our lives and degrading our minds to the
point where we can no longer understand what is happening to us. This is an
important point, and we must dwell on it.

We saw that the promise of immediate solutions to our problems tempts
us to depend on mechanistic software expedients – ready-made pieces of
software, or software tools and aids. Complex knowledge becomes both
unnecessary and impossible, as all we need to do is select and combine
various operations within the range of alternatives permitted by a device. We
agree to depend on mechanistic expedients because we believe this is the
most effective way to accomplish a given task, when in fact most tasks require
non-mechanistic knowledge.

But it is important to note that there is a second process at work here: if we
spend our time engaged in activities requiring only mechanistic thinking, we
lose the opportunity to develop complex, non-mechanistic knowledge. We have
the capacity for non-mechanistic knowledge, but we will not take the time to
develop it as long as we believe that the simpler, mechanistic knowledge
suffices. So our knowledge remains at mechanistic levels, and we continue to
depend on the mechanistic expedients, even though they are inferior to our
own capabilities.

What distinguishes human minds from devices is the capacity to develop
complex knowledge. But, as we saw in chapter 2, the only way to attain
complex knowledge is through personal experience: by engaging in activities
that require that knowledge, by being exposed repeatedly to the complex
phenomena that embody it. Thus, in some domains we need many years of

the lure of software expedients 421chapter 6

learning and practice to attain the knowledge levels recognized as expertise.
Mechanistic knowledge, on the other hand, can be acquired fairly quickly. (See
pp. 155–157.)

The promise of mechanistic solutions to complex problems is, then, a
trap. When inexperienced, and hence limited to mechanistic knowledge, the
mechanistic expedients do indeed exceed our skills. It is only later, when we
develop non-mechanistic knowledge, that we will outperform them. But we
will never reach that level if we get to depend on mechanistic expedients from
the start, because this very dependence deprives us of the opportunity to
develop non-mechanistic knowledge.

This degradation – restricting us to mechanistic thinking, to a fraction of
our mental capabilities – is the goal of the software elites when tempting us
with mechanistic expedients. The prevention of non-mechanistic knowledge
is a critical element in their plan of domination, because they must ensure that
we remain inferior to their devices, and hence dependent on them.

We can choose only one of the two alternatives: either pursue activities
demanding mechanistic knowledge (because they are easy and immediately
accessible), or take the time to develop non-mechanistic knowledge. Mecha-
nistic knowledge (following rules and methods, operating a software device)
we can quickly acquire at any time, while non-mechanistic knowledge (the
experience to perform complex tasks, the creativity to solve important prob-
lems) requires many years of learning and practice.

The software elites encourage us to choose the first alternative. This choice
brings immediate rewards and is hard to resist, but it restricts us forever to
mechanistic thinking. To prefer the second alternative, we must appreciate the
potential of our minds. This choice amounts, in effect, to an investment in
ourselves: we decide to forgo some easy and immediate benefits, and, instead,
take the time to develop our minds. But we can make this choice only if
we already have an appreciation of non-mechanistic knowledge, only if we
realize how much more we can accomplish later, when we attain this type of
knowledge. And we can develop this appreciation only if, when young or when
novices in a particular field, we note around us both mechanistic and non-
mechanistic knowledge, and learn to respect those who possess the latter –
because their skills exceed ours by far.

The software elites, however, are creating a culture that fosters mechanistic
thinking – a culture where non-mechanistic capabilities offer no benefits, as
we are all expected to stay at about the same skill level. More and more, in
one occupation after another, the only thing we have to know is how to
use a software system. The notions of expertise, creativity, professionalism,
and responsibility are being degraded to mean simply the skill of following
methods and operating devices. As we depend increasingly on mechanistic

422 a new form of domination chapter 6

knowledge alone, non-mechanistic knowledge is becoming redundant: we
have fewer and fewer opportunities to either develop it or use it.

By creating a culture where all we need is mechanistic knowledge, the elites
make it impossible for us to discover the superiority of non-mechanistic
knowledge. We are trapped in a vicious circle: we start by being inexperienced
and hence limited to mechanistic knowledge; at this point our performance is
inferior to their devices, so the elites easily persuade us that the only way
to improve is by using devices; as we get to depend on devices, the only
knowledge we acquire is the mechanistic knowledge required to operate them;
so our skills remain below the level of devices, and we believe that we must
continue to depend on them. The only way to escape from this trap is by
developing non-mechanistic knowledge, and thus becoming superior to the
devices. But this takes time, and time is precisely what we do not have if we
squander it on a preoccupation with devices. As long as we trust the elites,
therefore, we are condemned to using only the mechanistic capabilities of our
minds; we are condemned, in other words, to staying at novice levels forever.

Let me put this differently. To control our life, the software elites must
induce a state of permanent ignorance and dependence. And they achieve this
by persuading us to trust their mechanistic expedients – concepts, theories,
methods, devices – while these expedients can rarely solve our real problems.
Consuming our time by keeping us preoccupied with their expedients is a
critical factor in the process of domination, because the elites must prevent
us from using this time to develop our minds. And promoting worthless
expedients is an integral part of this process: they wouldn’t give us useful ones
even if they could. Only expedients that do not work can be employed to
consume our time; only by not solving our problems can they add to our
spurious, software-related preoccupations. No domination would be possible
if we were asked to depend on the elites only in those few situations where
their expedients are indeed superior to our minds (that is, where a complex
phenomenon can be usefully approximated with simple structures).

Promoting mechanistic expedients, thus, ensures our continued dependence
in two ways at once: by restricting our knowledge and skills to levels even lower
than those attained by the expedients, and by consuming our time with the
endless preoccupations generated by the expedients.

2

2
It may be useful to recall our software preoccupations, although we are already
spending so much time with them that they are well known. Installing new
software, seeking technical support, downloading updates, studying lists of

the lure of software expedients 423chapter 6

“frequently asked questions,” checking the latest notes on a website, reading
computer magazines, discovering “undocumented features,” running virus
protection utilities, printing online manuals, trying to get different pieces of
software to work together – these are some of the activities we must perform
when involved with software. But these are only the incidentals. We must also
include the time required to learn to use the software (the features and options
we have to assimilate, how to specify and combine them, keeping up with
changes from one version to the next), and the time we take to actually use it,
once we get to depend on it.

These activities require almost exclusively mechanistic knowledge: they
consist of isolated and fairly simple tasks, which cannot help us to develop an
important body of knowledge or skills. We note this in that almost everyone,
regardless of age or experience, has to deal with the same kind of problems; and
almost everyone manages to solve them. We also note it in that, no matter how
many of these problems we faced in the past, we will still face similar ones in
the future. In other words, the proportion of time we must devote to software-
related problems does not decrease significantly with experience.

Anyone who encountered software-related problems is familiar with the
feeling of satisfaction experienced when finally uncovering the answer. The
answer is usually a simple fact; for instance, learning that we must select one
option rather than another in a particular situation. But instead of being
outraged that we had to spend time with an activity so simple that we could
have performed it as children, we perceive it as an essential aspect of our work,
so we believe that we have learned something important. Although we don’t
think of this activity as a form of amusement, we experience the satisfaction
of solving a puzzle. And even if it is true that we must now spend a great
part of our time solving puzzles instead of addressing real problems, it is
significant that these are trivial puzzles, demanding only a fraction of our
mental capabilities. Clearly, there is no limit to the number of software-related
puzzles that we can find, and hence the time we must take to deal with them,
if we agree to depend on concepts and products that cannot solve our real
problems to begin with.

�

Any activity, method, or tool entails some incidental preoccupations, so we
cannot expect to benefit from software without investing some time; and we
may even have to spend part of this time dealing with trivial issues. Thus, what
I am trying to show here is not that our collective preoccupation with software
is too great relative to the benefits we derive from it. Such deficiency we could
attribute to the novelty of software and to our inexperience. We could then

424 a new form of domination chapter 6

conclude that this condition is transient, and that we will eventually become as
able in our software pursuits as human beings can be – just as we have become
in other domains.

What I am trying to show, rather, is that this interpretation is wrong, that
our incompetence is getting worse not better, that our software preoccupations
do not reflect a natural process of intellectual evolution. On the contrary:
the incompetence is deliberately fostered by the software elites as part of a
monstrous plan of domination founded on our mechanistic delusions, and
made possible by our growing dependence on computers – a plan whose goal
is to degrade the mind of every human being on earth.

Our continued ignorance in software-related matters – programming,
in particular – is essential in this plan of domination, because software
knowledge, like linguistic knowledge, is related to all other types of knowledge.
Software ignorance and dependence, thus, are only the means to bring about
total ignorance and dependence. It is in order to induce this collective igno-
rance and dependence that the software elites are exploiting our mechanistic
delusions, and the consequent software delusions. For, as long as we believe
that knowledge and skills can be replaced with mechanistic concepts, we will
inevitably conclude that we must depend on organizations that produce
devices based on these concepts – just as we depend on organizations that
produce appliances, detergents, or electricity.

In reality, to succeed in software-related activities – programming, in
particular – we need skills. And, like other skills, these new skills depend on our
own capabilities and experience. Also like other skills, they demand the full
capacity of the mind, and, to attain expertise, many years of learning and
practice.

The software elites are promoting the notion of knowledge substitutes
precisely because these substitutes are worthless. It is precisely because they
cannot replace skills, and hence fail to solve our problems, that we constantly
need new ones and spend so much time with them. By consuming our time
with the petty preoccupations generated by these substitutes, the elites are
preventing us from developing skills, thus ensuring our continued incompe-
tence and dependence.

Were we permitted, as society, to develop software skills as we develop skills
in other domains – were we permitted, in other words, to attain the highest
level that human minds can attain in software-related matters – the issues of
incompetence and waste of time would not even arise. We would then be, quite
simply, as good in these new skills as we can possibly be; and we would take as
much time with our software preoccupations as is justifiable. This is how we
progressed in other domains, and there is no reason to view software and
programming differently. It is unlikely that we have already reached the highest

the lure of software expedients 425chapter 6

level, or that we are advancing in that direction, since we are using now mostly
mechanistic knowledge; in other domains, it is our non-mechanistic capabilities
that we use when we attain expertise. The software elites can persuade us to
prefer their mechanistic substitutes to our own minds only because, as society,
we have no idea how good we can actually be in software-related matters: we
never had the opportunity to find out.

All skills – whether easy or difficult, acquired early in life or later – entail
the same mental processes. Interpreting visual sensations, recognizing social
contexts, diagnosing diseases, playing musical instruments, flying airplanes,
repairing appliances, teaching children, managing warehouses – we can
acquire almost any skill, but the only way to acquire it is by performing the
activities involved in that skill, and by allowing our mind to discover the
complex knowledge structures which constitute that skill. For no other skills
can we find an elite that prevents us from using the full capacity of our mind,
or forces us to use methods and devices instead of expanding our knowledge,
or redefines expertise to mean expertise in the use of substitutes for expertise.
From all the skills we can acquire, only those associated with software and
programming seem to have engendered such notions, and the reason is
simple: these skills are more complex than the others, and hence misunder-
stood. They are so complex, in fact, that they permit us to use our mind and
view the world in entirely new ways. They are comparable in scope only to
our linguistic skills.

So it is the complexity itself that allows charlatans to deceive us. We became
infatuated with software too quickly, without taking the time to appreciate the
true meaning and the implications of software knowledge. We still do not
understand what can happen when a society depends on software while
software is controlled by an authority. This is why we continue to accept the
absurd notions promoted by the software elites; in particular, the notion that
we must depend, in all software-related affairs, on systems produced by
software companies. It is precisely because software knowledge is so difficult
that we are tempted by theories which tell us that we can enjoy the benefits of
software without taking the time to develop software knowledge.

3

3
Our preoccupation with ease of use deserves a brief analysis. Software –
applications, development systems, utilities – is always promoted with the
claim that it is easy to use. I want to show, however, that the belief in easy-to-
use software is a mechanistic delusion. The notion “easy to use” is, strictly
speaking, meaningless.

426 a new form of domination chapter 6

Like any tool or device, a piece of software cannot be any easier to use than
whatever effort is required to accomplish a given task. The only sensible claim,
therefore, is that it is well-designed. A lathe, for example, even if well-designed,
is necessarily more difficult to use than a chisel. And so it is with software: all
we can expect of a particular business application, or a particular development
tool, is that it be well-designed. Once this requirement is fulfilled, the notion
“easy to use” becomes irrelevant: that software will be as easy or as difficult to
use as software can be in a particular situation.

Now, we see the claim “easy to use” for all types of software – for business
and for home, for programmers and for end users. We never see software
described, for example, with the warning that we need much knowledge, or
many months of study and practice, in order to enjoy its features. Thus, as we
are becoming dependent on software in practically everything we do, if all this
software is also easy to use, we reach the absurd conclusion that human beings
will never again have to face a challenging situation.

The delusion of easy-to-use software becomes clearer if we recall the other
quality commonly claimed for software – power. Just as all software devices are
said to be easy to use, they are also said to be powerful. The two qualities are
often claimed together, in fact, as in the famous phrase “powerful yet easy to
use.” By combining the two qualities, the following interpretation presents
itself: we believe that software devices embody a certain power, and we perceive
ease of use as the ease of invoking this power.

The only power that can inhere in a software device is its built-in operations;
that is, higher levels of abstraction for our starting elements. And it is the
higher levels that also make the device easy to use. The power and ease of use
are illusory, however: high starting levels make the device convenient when our
needs match the built-in operations, but awkward or useless otherwise.

We saw this with the language analogy: we have less power when starting
with ready-made sentences; we must start with words if what we want is the
capability to express any conceivable idea. Similarly, if true software power is
the capability of a system to handle any situation, the only way to have this
power is by starting with low-level entities. Like claiming ease of use, therefore,
claiming power for a software device is nonsensical: what is usually described
as power is the exact opposite of software power. Moreover, since ease of use
can be attained only by providing higher starting levels, and hence by reducing
the power of the device, claiming both power and ease of use at the same time
is especially silly.

Putting all this together, it is obvious that the software elites want us to think
of software as an assortment of devices that have the power to solve our
problems, while all we have to do is use them. The only thing left for us to do
from now on is operate software devices; and this we can learn in a matter of

the lure of software expedients 427chapter 6

hours. This notion is absurd, as we just saw, but we enthusiastically accept it.
The elites are plainly telling us that we will no longer have the opportunity to
use the full capacity of our minds, that our sole responsibility will be to
perform tasks so simple that anyone can learn to perform them in a short time.
But instead of being outraged, we welcome this demotion; and, to rationalize
it, we interpret our diminished responsibility as a new kind of expertise.

�

The elites also claim that software devices will enhance our creativity, by taking
over the dull, routine activities. With higher starting levels, the elites tell us, we
can reach the top element of a given structure much sooner. Why waste our
time and talents with the details of the low levels, when the functions built
into these devices already include all the combinations of low-level elements
that we are likely to need? When starting from low levels we squander our
superior mental capabilities on trivial and repetitive tasks; let the computer
perform this tedious work for us, so that we have more time for those tasks
demanding creativity. Just as successful managers and generals deal only with
the important decisions and leave the details to their subordinates, we should
restrict ourselves to high-level software entities and leave the details to the
computer.

It is easy to show the absurdity of these claims. We are told to give up the
details, and to use instead ready-made entities, so that we have more time for
the important work, more time to be creative. But our work is the development
of high-level entities from low-level ones. In one occupation after another, the
software elites are redefining the concept of work to mean the act of combining
the high-level entities provided by their devices. To be creative, however, we
must be able to arrive at any one of the possible alternatives; and this we can do
only by starting with low-level entities. Moreover, we are offered software
devices in all fields of knowledge, so we cannot even hope that the time we
perhaps save in one type of work will permit us to be more creative in another.

Returning to the language analogy, if a writer used ready-made sentences
instead of creating new ones, starting with words, we would study his work
and recognize that he is not being more but less creative. Clearly, fewer ideas
can be expressed by selecting and combining ready-made sentences than
by creating our own, starting with words. And this is true for all types
of knowledge: the higher the level we start with, the greater the effect of
reification and abstraction, and the fewer the alternatives for the top element.
So it is absurd to claim that we can be more creative by avoiding the low levels,
seeing that it is precisely the low levels that make creativity possible.

Managers and generals who make good decisions only appear to start from

428 a new form of domination chapter 6

high levels. In reality, their decisions involve knowledge structures that interact
at low levels, at the level of details. But this is largely intuitive knowledge, so
all we can observe is the top element of the complex structure; that is, the
final decision. (See “Tacit Knowledge” in chapter 2.) They developed their
knowledge over many years, by dealing with all structures and all levels, low
and high. This is the essence of personal experience. Were their knowledge
limited to the high levels, to those selections and combinations that can be
observed, then anyone could quickly become a successful manager or general
– simply by learning to select and combine some high-level concepts.

This delusion is also the basis of the software devices known as expert
systems – one of the sillier ideas in artificial intelligence. Expert systems claim
that it is possible to capture, in a specially structured database, the knowledge
possessed by a human expert in a given domain. The database consists of
answers that the expert provides to certain questions – questions formulated so
as to simulate various decision-making situations. Then, for a real problem,
simply by interrogating the system, anyone should be able to make the same
decisions that the expert would make. The fact that such devices are being
considered at all demonstrates the degradation in the notions of expertise and
responsibility that we have already suffered. As we saw in “Tacit Knowledge,”
expertise is the level where a person does not have to rely on rules, methods,
and databases of facts (see pp. 157–158). Thus, the device can capture only the
mechanistic aspects of the expert’s knowledge; and consequently, a person
using it will not emulate an expert but a novice.

Another claim we see is that software devices enhance our creativity by
giving us new forms of expression. And this claim, too, is empty. Software does
indeed allow us to express ourselves and to view the world in new ways, as does
language. But, as in the case of language, we can only enjoy this quality if we
develop our structures starting with low-level entities. For, only then can we
discover all possible interactions between the software structures, between
software structures and the other structures that exist in the world, and
between software structures and the knowledge structures present in our
minds. If we get to depend on software devices, and hence on high-level
software entities, we will not only fail to develop all possible alternatives in the
new, software-related matters, but we will lose alternatives in the knowledge
and skills that we had in the past. In the end, we will have fewer alternatives
than before, fewer ways to express ourselves. Thus, far from enhancing our
creativity, software devices are in fact degrading our minds, by forcing us
to spend more and more time with activities requiring largely mechanistic
knowledge.

�

the lure of software expedients 429chapter 6

Power and ease of use, thus, are specious qualities. The elites tell us that
software devices can have these qualities because they want to replace our
traditional conception of expertise with a dependence on these devices. They
want us to believe that all the knowledge that matters inheres now in software
devices, so all we have to know is how to operate them. The implicit promise
is that, thanks to these devices, we don’t need to know anything that we don’t
already know – or, at least, anything that we cannot learn in a short time.

So the elites are downgrading our conception of expertise by reducing to a
minimum the range from novice to expert. If all we have to know is how to
operate software devices, the difference between novice and expert is just the
time taken to acquire this knowledge. Where we thought that one needs many
years of study and practice to attain expertise in a difficult field, we are told that
this type of knowledge is obsolete. The propaganda makes it seem modern,
sophisticated, and glamorous to perform a task by operating a software
device, and unprofessional or old-fashioned to perform it by using our minds.
Consequently, we are according more importance to our methods and tools
than we do to the results of our work. Increasingly, we are judging a person’s
knowledge and skills by his acquaintance with software devices, instead of his
actual capabilities and accomplishments. Increasingly, it doesn’t even matter
what the results are, as the main criterion for assessing a professional activity
is whether the person is using the latest software devices.

4

4
Recall the pseudosciences we studied in chapter 3. I stated there that our
software delusions belong to the same tradition, that they are a consequence of
the same mechanistic culture. With our software theories we are committing
the same fallacies as the scientists who pursue mechanistic theories in psychol-
ogy, sociology, or linguistics. When we waste our time with the spurious
problems generated by our mechanistic software concepts, we are like the
scientists who waste their time studying the mechanistic phenomena created
by reifying human phenomena. Just as those scientists cannot explain the
complex phenomena of mind and society by explaining separately the simple,
mechanistic phenomena, we cannot solve our complex social or business
problems by solving the simple, software-related problems.

These mechanistic delusions I have called the new pseudosciences, and
we saw that they are similar to the traditional pseudosciences – astrology,
alchemy, and the rest. They are similar in that they too are systems of belief
masquerading as scientific theories, and they too are based on hypotheses that
are taken as unquestionable truth. In the case of the new pseudosciences, the

430 a new form of domination chapter 6

hypothesis is that mechanism can provide useful explanations for complex
phenomena – for phenomena involving human minds and societies, in par-
ticular. The mechanists are, in effect, today’s astrologers and alchemists:
respected thinkers who attract many followers, even though their theories do
not work.

Before we had software, it was only in the academic world that one could
spend years and decades pursuing a mechanistic fantasy. One could hardly
afford to fall prey to mechanistic delusions in business, for instance. But
through software, the ignorance and corruption engendered by mechanistic
thinking is increasingly affecting the entire society: corporations, govern-
ments, individuals. Through software, we are all asked now to accept fantastic
mechanistic theories – theories that promise to solve our problems with
practically no effort on our part. Through software, the entire society is
returning to the irrationality of the Dark Ages: we are increasingly guided by
dogmas instead of logic, by beliefs instead of reason.

When we believe that a software device can replace knowledge, skills,
and experience, we are committing the same mistake as the scientists who
believe that mechanistic theories can explain human intelligence and social
phenomena. So if all of us now, not just the academics, are wasting our time
with pseudoscientific theories, we must ask ourselves: Can we afford this
corruption? Can our civilization survive if all of us engage in futile mechanistic
pursuits? When mechanistic theories fail in the academic world, the harm is
limited to a waste of resources, and perhaps a lost opportunity to improve our
knowledge through better theories. But what price will we pay if we create a
society where all theories fail?

As we are modifying our values and expectations to fit the mechanistic
software ideology, we are adopting, in effect, mechanistic theories – theories
on our capabilities as human beings, or on our responsibilities as professionals.
And since these software-based theories suffer from the same fallacies as the
traditional mechanistic theories, they too must fail. But what does it mean for
these theories to fail? Since what they claim is that we can accomplish more by
depending on software devices than by developing our minds, a failure of these
theories means that we are making a wrong decision about ourselves: we
mistakenly assume that our minds can be no better than some mechanistic
expedients. Thus, when we decide to leave our non-mechanistic capabilities
undeveloped and to depend instead on mechanistic expedients, we are causing,
quite literally, a reversal in our intellectual evolution: we are choosing to
degrade our conception of intelligence to a mechanistic level, and to create a
world where there is no need or opportunity to exceed this level.

Let us interpret the new pseudosciences in another way. The equivalent of a
world where we depend on software while being restricted to mechanistic

the lure of software expedients 431chapter 6

software theories is an imaginary world where the traditional mechanistic
theories – those explaining minds and societies – actually work. Since these
theories fail to explain our real intelligence and behaviour, in the imaginary
world we would have to alter minds and societies to fit the theories. To comply
with the linguistic theory of universal grammar, for example, we would restrict
our sentences, and the associated thoughts, to what can be depicted with exact
diagrams and formulas; similarly, to comply with behaviourism or cognitive
science, we would restrict our behaviour and mental acts to patterns that can
be precisely explained and predicted; and to comply with the theories of
structuralism or the social sciences, we would restrict our institutions, customs,
and cultures to activities that can be described mathematically.

These theories reflect the diminished view that mechanists have of human
beings – the view that our acts can be explained with precision, because our
capabilities are like those of complicated machines. The scientists who invent
and promote mechanistic theories wish them to work, of course. But the
theories can work only if we are indeed like machines, so we must conclude
that these scientists want us to be like machines. And if we, the subjects of these
theories, also wanted them to work – if we agreed, as it were, to satisfy the wish
of their authors – we would have to restrict our capabilities to what these
theories can explain and predict. In other words, we would have to mutate into
automatons.

What has saved us from this fate so far is not wisdom – for, if we had that
wisdom we would have abandoned the mechanistic ideology already – but
the fact that none of these scientists had the power to make us conform to
their theories. Through software, however, it has finally become possible for
the mechanists to realize their dream: a world where human beings can be
designed and controlled as successfully as we design and control machines.
The world that we can only imagine through the traditional mechanistic
theories, we are actually creating through our mechanistic software theories.
Whereas we can still think, learn, speak, and behave while ignoring the
mechanistic theories of mind and society, we are forced to create and use
software according to mechanistic theories. But if we are to depend on software
in all aspects of our life – including those aspects studied by the theories of
mind and society – then by following mechanistic software theories we are, in
effect, mutating into the automatons that the mechanists wish us to be.

Remember, though, that it is not software dependence in itself that is
harmful. On the contrary, if we were permitted to use it freely, as we use
language, software would enhance our mental capabilities, as does language.
The danger lies in the dependence on software while software knowledge is
restricted to its mechanistic aspects – a policy intended to prevent us from
using the full capacity of our minds.

432 a new form of domination chapter 6

�

The decision we are making now is more than a choice; it is a commitment. As
individuals and as society, we are making a commitment; namely, to invest in
software expedients rather than our minds.

As individuals, we reaffirm this commitment when we consent to depend
on software devices that are inferior to our own minds; when we spend
time solving a specious, software-related problem, instead of expanding our
knowledge to deal with the real problem; and when we degrade our conception
of professionalism and responsibility, from the utmost that human beings can
do, to merely knowing how to use software devices. As society, we reaffirm this
commitment when our corporations and governments, instead of encouraging
their workers to develop expertise, spend vast amounts of money on projects
that increase their dependence on the software elites.

As individuals, if we are wrong, our knowledge in, say, ten years will not be
much greater than what it is at present. We will waste that time acquiring
worthless bits of knowledge; specifically, knowledge of ways to avoid the need
for real knowledge. If we make this choice, of course, we will be unable to
recognize our own ignorance in ten years; so for the following ten years we will
make the same choice, and so on, and we will remain for the rest of our lives at
the present level. As society, if we are wrong, within a few decades we will be
where we were centuries ago: in a new dark age, ruled by elites that know how
to exploit our ignorance and irrationality.

The decision we are making now is a commitment because we cannot
choose both alternatives. If software mechanism is our decision, we will need
only mechanistic capabilities; so we will leave our superior, non-mechanistic
capabilities undeveloped. If we are wrong, we cannot reverse this decision later:
if we choose the mechanistic alternative, in any domain, we will not practise;
and practising is the only way to develop non-mechanistic knowledge. If we
lose our appreciation of non-mechanistic knowledge, we will forget, in one
occupation after another, that we are capable of more than just following
methods and operating software devices.

This is precisely what has happened in the domain of programming. The
superior alternative – personal knowledge and skills – is always available, in
principle: any programmer, any manager, any company, could choose to ignore
the official software ideology and treat programming as we do the other
professions. Yet, despite the evidence that programming aids and substitutes
are inferior to human expertise, we continue to trust the software elites and
their mechanistic theories. In the domain of programming, we have already
lost our appreciation of non-mechanistic knowledge.

the lure of software expedients 433chapter 6

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 6: Software as Weapon
	A New Form of Domination
	The Risks of Software Dependence
	The Prevention of Expertise
	1
	2
	3

	The Lure of Software Expedients
	1
	2
	3
	4

