
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 7: Software Engineering
Section Structured Programming
Subsection The GOTO Delusion

This extract includes the book’s front matter
and part of chapter 7.

Copyright © 2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This subsection examines the fallacies surrounding the GOTO
statement and its prohibition in structured programming.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 7: Software Engineering

The GO TO Delusion

The GOTO Delusion
1 1
There is no better way to conclude our discussion of the structured program-
ming delusions than with an analysis of the GO TO delusion – the prohibition
and the debate.

We have already encountered the GO TO delusion: under the third delusion,
we saw that the reason for transformations was simply to avoid GOTOs; and
under the fourth delusion, we saw that the reason for introducing non-
standard constructs into structured programming was, again, to avoid GO TOs.

586 structured programming chapter 7

The GO TO delusion, however, deserves a closer analysis. The most famous
problem in the history of programming, and unresolved to this day, this
delusion provides a vivid demonstration of the ignorance and dishonesty of
the software theorists. They turned what is the most blatant falsification
of structured programming – the need for explicit jumps in the flow of
execution – into its most important feature: new flow-control constructs that
hide the jumps within them. The sole purpose of these constructs is to perform
jumps without using GOTO statements. Thus, while purposely designed to
help programmers override the principles of structured programming, these
constructs were described as language enhancements that facilitate structured
programming.

Turning falsifications into features is how fallacious theories are saved from
refutation (see “Popper’s Principles of Demarcation” in chapter 3). The GO TO

delusion alone, therefore, ignoring all the others, is enough to characterize
structured programming as a pseudoscience.

Clearly, if it was proved mathematically that structured programming needs
no GO TOs, the very fact that a debate is taking place indicates that structured
programming has failed as a practical programming concept. In the end, the
GO TO delusion is nothing but the denial of this reality, a way for the theorists
and the practitioners to cling to the idea of structured programming years and
decades after its failure.

It is difficult for a lay person to appreciate the morbid obsession that was
structured programming, and its impact on our programming practices.
Consider, first, the direct consequence: programmers were more preoccupied
with the “principles” of structured programming – with trivial concepts like
top-down design and avoiding GO TO – than with the actual applications they
were supposed to develop, and with improving their skills. A true mass
madness possessed the programming community in the 1970s – a madness
which the rest of society was unaware of. We can recall this madness today by
studying the thousands of books and papers published during that period,
something well worth doing if we want to understand the origins of our
software bureaucracy. All universities, all software experts, all computer
publications, all institutes and associations, and management in all major
corporations were praising and promoting structured programming – even as
its claims and promises were being falsified in a million instances every day,
and the only evidence of usefulness consisted of a few anecdotal and distorted
“success stories.”

The worst consequence of structured programming, though, is not what
happened in the 1970s, but what has happened since then. For, the incompe-
tence and irresponsibility engendered by this worthless theory have remained
the distinguishing characteristic of our software culture. As programmers and

the goto delusion 587chapter 7

managers learned nothing from the failure of structured programming, they
accepted with the same enthusiasm the following theories, which suffer in fact
from the same fallacies.

2

2
Recall what is the GOTO problem. We need GOTO statements in order to
implement explicit jumps in the flow of execution, and we need explicit jumps
in order to create non-standard flow-control constructs. But explicit jumps and
non-standard constructs are forbidden under structured programming. If we
restrict ourselves to the three standard constructs, the theorists said at first, we
will need no explicit jumps, and hence no GO TOs. We may have to subject our
requirements to some awkward transformations, but the benefits of this
restriction are so great that the effort is worthwhile.

The theorists started, thus, by attempting to replace the application’s flow-
control structures with structures based on shared data or shared operations; in
other words, to replace the unwanted flow-control relations between elements
with relations of other types. Then, they admitted that it is impractical to
develop applications in this fashion, and rescued the idea of structured
programming by permitting the use of built-in non-standard constructs; that
is, constructs already present in a particular programming language. These
constructs, specifically prohibited previously, were described now as extensions
of the original theory, as features of structured programming. Only the use of
GO TO – that is, creating our own constructs – continued to be prohibited.

The original goal of structured programming had been to eliminate all
jumps, and thereby restrict the flow-control relations between elements to
those defined by a single hierarchical structure. This is what the restriction to a
nesting scheme of standard flow-control constructs was thought to accomplish
– mistakenly, as we saw under the second delusion, because the implicit jumps
present in these constructs already create multiple flow-control structures.
Apart from this fallacy, though, it is illogical to permit built-in non-standard
constructs while prohibiting our own constructs. For, just as there is no real
difference between standard constructs and non-standard ones, there is no
real difference between built-in non-standard constructs and those we create
ourselves. All these constructs fulfil, in the end, the same function: they create
additional flow-control structures in order to provide alternatives to the flow
of execution established by the nesting scheme. Thus, all that the built-in
constructs accomplish is to relate elements through implicit rather than
explicit jumps. So they render the GO TOs unnecessary, not by eliminating the
unwanted jumps, but by turning the explicit unwanted jumps into implicit

588 structured programming chapter 7

unwanted ones. The unwanted relations between elements, therefore, and the
multiple flow-control structures, remain.

The goal of structured programming, thus, was now reversed: from the
restriction to standard constructs – the absence of GO TO being then merely a
consequence – to searching for ways to replace GO TOs with implicit jumps; in
other words, from avoiding non-standard constructs, to seeking and praising
them. More and more constructs were introduced, but everyone agreed in the
end that it is impractical to provide GOTO substitutes for all conceivable
situations. So GOTO itself was eventually reinstated, with the severe admonition
to use it “only when absolutely necessary.” The theory of structured program-
ming was now, in effect, defunct. Incredibly, though, it was precisely at this
point that it generated the greatest enthusiasm and was seen as a programming
revolution. The reason, obviously, is that it was only at this point – only after
its fundamental principles were annulled – that it could be used at all in
practical situations.

The GO TO delusion, thus, is the belief that the preoccupation with GO TO is
an essential part of a structured programming project. In reality, the idea of
structured programming had been refuted, and the use or avoidance of
GOTO is just a matter of programming style. What had started as a precise,
mathematical theory was now an endless series of arguments on whether GO TO

or a transformation or a built-in construct is the best method in one situation
or another. And, while engaged in these childish arguments, the theorists and
the practitioners called their preoccupation structured programming, and
defended it on the strength of the original, mathematical theory.É

�

Let us see first some examples of the GOTO prohibition – that part of the
debate which claims, without any reservation, that GOTO leads to bad program-
ming, and that structured programming means avoiding GO TO: “The primary
technique of structured programming is the elimination of the GOTO statement

É For example, as late as 1986, and despite the blatant falsifications, the theorists were
discussing structured programming just as they had been discussing it in the early 1970s: it
allows us to prove mathematically the correctness of applications, write programs that work
perfectly the first time, and so on. Then, as evidence, they mention a couple of “success
stories” (using, thus, the type of argument used to advertise weight-loss gadgets on
television). See Harlan D. Mills, “Structured Programming: Retrospect and Prospect,” in
Milestones in Software Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA:
IEEE Computer Society Press, ©1990 IEEE), pp. 286–287 – paper originally published in
IEEE Software 3, no. 6 (1986): 58–66. See also Harlan D. Mills, Michael Dyer, and Richard C.
Linger, “Cleanroom Software Engineering,” in Milestones, eds. Oman and Lewis, pp. 217–218
– paper originally published in IEEE Software 4, no. 5 (1987): 19–24.

the goto delusion 589chapter 7

and its replacement with a number of other, well-structured branching and
control statements.”Ê “The freedom offered by the GO TO statement has been
recognized as not in keeping with the idea of structures in control flow. For
this reason we will never use it.”Ë “If a programmer actively endeavours to
program without the use of GO TO statements, he or she is less likely to make
programming errors.”Ì “By eliminating all GO TO statements, we can do even
better, as we shall see.”Í “In order to obtain a simple structure for each segment
of the program, GOTO statements should be avoided.”Î “Using the techniques of
structured programming, the GO TO or branch statement is avoided entirely.”Ï

And the Encyclopedia of Computer Science offers us the following (wrong
and silly) analogy as an explanation for the reason why we must avoid GO TO:
it makes programs hard to read, just like those articles on the front page
of a newspaper that are continued (with a sort of “go to”) to another page.
Then the editors conclude: “At least some magazines are more considerate,
however, and always finish one thought (article) before beginning another.
Why can’t programmers? Their ability to do so is at the heart of structured
programming.”Ð

It is not difficult to understand why the subject of GOTO became such
an important part of the structured programming movement. After all the
falsifications, what was left of structured programming was just a handful
of trivial concepts: top-down design, hierarchical structures of software
elements, constructs with only one entry and exit, etc. These concepts were
then supplemented with a few other, even less important ones: indenting the
nested elements in the program’s listing, inserting comments to explain the
program’s logic, restricting modules to a hundred lines, etc. The theorists
call these concepts “principles,” but these simple ideas are hardly the basis
of a programming theory. Some are perhaps a consequence of the original
structured programming principles, but they are not principles themselves.

Ê Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975), p. 145.

Ë J. N. P. Hume and R. C. Holt, Structured Programming Using PL/1, 2nd ed. (Reston, VA:
Reston, 1982), p. 82.

Ì Ian Sommerville, Software Engineering, 3rd ed. (Reading, MA: Addison-Wesley,
1989), p. 32.

Í Gerald M. Weinberg et al., High Level COBOL Programming (Cambridge, MA:
Winthrop, 1977), p. 43.

Î Dennie Van Tassel, Program Style, Design, Efficiency, Debugging, and Testing, 2nd ed.
(Englewood Cliffs, NJ: Prentice Hall, 1978), p. 78.

Ï Nancy Stern and Robert A. Stern, Structured COBOL Programming, 7th ed. (New York:
John Wiley and Sons, 1994), p. 13.

Ð Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1308.

590 structured programming chapter 7

To appreciate this, imagine that the only structured programming concepts
we ever knew were top-down design, hierarchical structures, indenting state-
ments, etc. Clearly, no one would call it a programming revolution on the
strength of these concepts. It was the promise of precision and rigour that
made it famous – the promise of developing and proving software applications
mathematically.

So, now that what was left of structured programming was only the trivial
concepts, the preoccupation with GO TO provided a critical substitute for the
original, strict principles: it allowed both the theorists and the practitioners to
delude themselves that they were still pursuing a serious idea. GOTO-less
programming is the only remnant of the formal theory, so it serves as a link to
the original claims, to the promise of mathematical programming.

The formal theory, however, was about structures of standard constructs,
not about avoiding GOTO. All the theory says is that, if we adhere to these
principles, we will end up with GO TO-less programs. The defenders of struc-
tured programming violate the strict principles (because impractical), and
direct their efforts instead to what was meant to be merely a consequence of
those principles. By restricting and debating the use of GOTO, and by contriving
substitutes, they hope now to attain the same benefits as those promised by the
formal theory.

Here are some examples of the attempt to ground the GOTO prohibition
on the original, mathematical principles: “A theorem proved by Böhm and
Jacopini tells us that any program written using GOTO statements can be
transformed into an equivalent program that uses only the [three] structured
constructs.”Ñ “Böhm and Jacopini showed that essentially any control flow
can be achieved without the GO TO by using appropriately chosen sequential,
selection, and repetition control structures.”ÉÈ “Dijkstra’s [structured pro-
gramming] proposal could, indeed, be shown to be theoretically sound by
previous results from [Böhm and Jacopini,] who had showed that the control
logic of any flowchartable program . . . could be expressed without GO TOs, using
sequence, selection, and iteration statements.”ÉÉ

We saw under the third delusion that the theorists misrepresent Böhm and
Jacopini’s work (see pp. 557–561). Thus, invoking their work to support the
GO TO prohibition is part of the misrepresentation.

Ñ Doug Bell, Ian Morrey, and John Pugh, Software Engineering: A Programming Approach
(Hemel Hempstead, UK: Prentice Hall, 1987), p. 14.

ÉÈ Ralston and Reilly, Encyclopedia, p. 361.
ÉÉ Harlan D. Mills, “Structured Programming: Retrospect and Prospect,” in Milestones

in Software Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE
Computer Society Press, ©1990 IEEE), p. 286 – paper originally published in IEEE Software
3, no. 6 (1986): 58–66.

the goto delusion 591chapter 7

�

The GOTO preoccupation, then, was the answer to the failure of the formal
theory. By degrading the definition of structured programming from exact
principles to a preoccupation with GO TO, everyone appeared to be practising
scientific programming while pursuing in reality some trivial and largely
irrelevant ideas.

It is important to note that the absurdity of the GO TO delusion is not so much
in the idea of avoiding GO TO, as in the never-ending debates and arguments
about avoiding it: in which situations should it be permitted, and in which ones
forbidden. Had the GOTO avoidance been a strict prohibition, it could have
been considered perhaps a serious principle. In that case, we could have agreed
perhaps to redefine structured programming as programming without the use
of explicit jumps. But, since a strict GOTO prohibition is impractical, what
started as a principle became an informal rule: the exhortation to avoid it “as
much as possible.” The prohibition, in other words, was to be enforced only
when the GO TO alternatives were not too inconvenient.

An even more absurd manifestation of the GO TO delusion was the attempt to
avoid GO TO by replacing it with certain built-in, language-specific constructs,
which perform in fact the same jumps as GOTO. The purpose of avoiding
GOTO had been to avoid all jumps in the flow of execution, not to replace
explicit jumps with implicit ones. Thus, in their struggle to save structured
programming, the theorists ended up interpreting the idea of avoiding GO TO

as a requirement to avoid the phrase “go to,” not the jumps. I will return to this
point later.

Recognizing perhaps the shallowness of the GOTO preoccupation, some
theorists were defending structured programming by insisting that the GO TO

prohibition is only one of its principles. Thus, the statement we see repeated
again and again is that structured programming is “more” than just GO TO-less
programming: “The objective of structured programming is much more far
reaching than the creation of programs without GOTO statements.”ÉÊ “There
is, however, much more to structured programming than modularity and
the elimination of GOTO statements.”ÉË “Indeed, there is more to structured
programming than eliminating the GO TO statement.”ÉÌ

These statements, though, are specious. They sound as if “more” meant
the original, mathematical principles. But, as we saw, those principles were
falsified. So “more” can only mean the trivial principles – top-down design

ÉÊ James Martin and Carma McClure, Structured Techniques: The Basis for CASE, rev. ed.
(Englewood Cliffs, NJ: Prentice Hall, 1988), p. 39.

ÉË L. Wayne Horn and Gary M. Gleason, Advanced Structured COBOL: Batch and
Interactive (Boston: Boyd and Fraser, 1985), p. 1. ÉÌ Yourdon, Techniques, p. 140.

592 structured programming chapter 7

and nested constructs, writing and documenting programs clearly, etc. – which
had replaced the original ones.

The degradation from a formal theory to trivial principles is also seen in
the fact that the term “structured” was commonly applied now, not just to
programs restricted to certain flow-control constructs, but to almost any
software-related activity. Thus, in addition to structured programming, we
had structured coding, structured techniques, structured analysis, structured
design, structured development, structured documentation, structured flow-
charts, structured requirements, structured specifications, structured English
(for writing the specifications), structured walkthrough (visual inspection
of the program’s listing), structured testing, structured maintenance, and
structured meetings.

3

3
To summarize, there are three aspects to the GO TO delusion. The first one is the
reversal in logic: from the original principle that applications be developed as
structures of standard constructs, to the stipulation that applications be
developed without GO TO. The GO TO statement is not even mentioned in the
original theory; its absence is merely a consequence of the restriction to
standard constructs. Thus, the first aspect of the GOTO delusion is the belief that
a preoccupation with ways to avoid GO TO can be a substitute for an adherence
to the original principle.

The second aspect is the belief that avoiding GOTO need not be a strict,
formal principle: we should strive to avoid it, but we may use it when its
elimination is inconvenient. So, if the first belief is that we can derive the same
benefits by avoiding GO TO as we could by restricting applications to standard
constructs, the second belief is that we can derive the same benefits if we avoid
GOTO only when it is convenient to do so. The second aspect of the GOTO

delusion can also be described as the fallacy of making two contradictory
claims: the claim that GOTO is harmful and must be banned (which sounds
scientific and evokes the original theory), and the claim that GOTO is sometimes
acceptable (which turns the GO TO prohibition from a fantasy into a practical
method). Although in reality the two claims cancel each other, they appear to
express important programming concepts.

Lastly, the third aspect of the GO TO delusion is the attempt to avoid GO TO,
not by eliminating those programming situations that require jumps in the flow
of execution, but by replacing GOTO with some new constructs, specifically
designed to perform those jumps in its stead. The third aspect, thus, is the
belief that we can derive the same benefits by converting explicit jumps into

the goto delusion 593chapter 7

implicit ones, as we could with no jumps at all; in other words, the belief that
it is not the jumps, but just the GO TO statement, that must be avoided.

�

We already saw examples of the first aspect of the GOTO delusion – those
statements simply asserting that structured programming means programming
without GO TO (see pp. 589–590). Let us see now some examples of the second
aspect; namely, claiming at the same time that GO TO must be avoided and that
it may be used.

The best-known case is probably that of E. W. Dijkstra himself. One of the
earliest advocates of structured programming, Dijkstra is the author of the
famous paper “Go To Statement Considered Harmful.” We have already
discussed this paper (see pp. 508–509), so I will only repeat his remark that
he was “convinced that the GOTO statement should be abolished from all
‘higher level’ programming languages”ÉÍ (in order to make it impossible for
programmers to use it, in any situation). He reasserted this on every oppor-
tunity, so much so that his “memorable indictment of the GOTO statement”
is specifically mentioned in the citation for the Turing award he received
in 1972.ÉÎ

Curiously, though, after structured programming became a formal theory –
that is, when it was claimed that Böhm and Jacopini’s paper vindicated
mathematically the abolition of GO TO – Dijkstra makes the following remark:
“Please don’t fall into the trap of believing that I am terribly dogmatical about
[the GO TO statement].”ÉÏ

Now, anyone can change his mind. Dijkstra, however, did not change his
mind about the validity of structured programming, but only about the
strictness of the GO TO prohibition. Evidently, faced with the impossibility of
programming without explicit jumps, he now believes that we can enjoy the
benefits of structured programming whether or not we restrict ourselves to the
standard constructs. Thus, the popularity of structured programming was
unaffected by his change of mind. Those who held that GO TO must be banned
could continue to cite his former statement, while those who accepted GO TO

could cite the latter. Whether against or in favour of GO TO, everyone could base
his interpretation of structured programming on a statement made by the
famous theorist Dijkstra.

ÉÍ E. W. Dijkstra, “Go To Statement Considered Harmful,” in Milestones, eds. Oman and
Lewis, p. 9. ÉÎ Ralston and Reilly, Encyclopedia, p. 1396.

ÉÏ E. W. Dijkstra, quoted as personal communication in Donald E. Knuth, “Structured
Programming with go to Statements,” in Computing Surveys 6, no. 4 (©1974 ACM, Inc.): 262
(brackets in the original).

594 structured programming chapter 7

One of those who chose Dijkstra’s latter statement, and a famous theorist
and Turing award recipient himself, is Donald Knuth: “I believe that by
presenting such a view I am not in fact disagreeing sharply with Dijkstra’s
ideas”ÉÐ (meaning his new idea, that GO TO is not harmful). Knuth makes this
statement in the introduction to a paper that bears the striking title “Structured
Programming with go to Statements” – a forty-page study whose goal is “to lay
[the GO TO] controversy to rest.”ÉÑ It is not clear how Knuth hoped to accomplish
this, seeing that the paper is largely an analysis of various programming
examples, some with and others without GO TO, some where GO TO is said to be
bad and others where it is said to be good; in other words, exactly what was
being done by every other expert, in hundreds of other studies. The examples,
needless to say, are typical textbook cases: trivial, isolated pieces of software
(the largest has sixteen statements), where GO TO is harmless even if misused,
and which have little to do, therefore, with the real reasons why jumps are good
or bad in actual applications. One would think that if the GO TO controversy
were simple enough to be resolved by such examples, it would have ended long
before, through the previous studies. Knuth, evidently, is convinced that his
discussion is better.

From the paper’s title, and from some of his arguments, it appears at first
that Knuth intends to “lay to rest” the controversy by boldly stating that the use
of GO TO is merely a matter of programming style, or simplicity, or efficiency.
But he only says this in certain parts of the paper. In other parts he tells us that
it is important to avoid GOTO, shows us how to eliminate it in various situations,
and suggests changes to our programming languages to help us program
without GO TO.ÊÈ

By the time he reaches the end of the paper, Knuth seems to have forgotten
its title, and concludes that GOTO is not really necessary: “I guess the big
question, although it really shouldn’t be so big, is whether or not the ultimate
language will have GO TO statements in its higher levels, or whether GO TO will
be confined to lower levels. I personally wouldn’t mind having GOTO in the
highest level, just in case I really need it; but I probably would never use it, if
the general iteration and situation constructs suggested in this paper were
present.”ÊÉ

ÉÐ Donald E. Knuth, “Structured Programming with go to Statements,” in Computing
Surveys 6, no. 4 (©1974 ACM, Inc.): 262. ÉÑ Ibid., p. 291.

ÊÈ Knuth admits proudly that he deliberately chose “to present the material in this
apparently vacillating manner” (ibid., p. 264). This approach, he explains, “worked beauti-
fully” in lectures: “Nearly everybody in the audience had the illusion that I was largely
supporting his or her views, regardless of what those views were!” (ibid.). What is the point
of this approach, and this confession? Knuth and his audiences are evidently having fun
debating GOTO, but are they also interested in solving this problem? ÊÉ Ibid., p. 295.

the goto delusion 595chapter 7

Note how absurd this passage is: “wouldn’t mind . . . just in case I really need
it; but I probably would never use it” This is as confused and equivocal as a
statement can get. Knuth is trying to say that it is possible to program without
GO TO, but he is afraid to commit himself. So what was the point of this lengthy
paper? Why doesn’t he state, unambiguously, either that the ideal high-level
programming language must include certain constructs but not GOTO, or,
conversely, that it must include GOTO, because we will always encounter
situations where it is the best alternative?

Knuth also says, at the end of the paper, that “it’s certainly possible to write
well-structured programs with GOTO statements,”ÊÊ and points to a certain
program that “used three GOTO statements, all of which were perfectly easy
to understand.” But then he adds that some of these GOTOs “would have
disappeared” if that particular language “had had a WHILE statement.” Again, he
is unable to make up his mind. He notes that the GO TOs are harmless when used
correctly, then he contradicts himself: he carefully counts them, and is pleased
that more recent languages permit us to reduce their number.

One more example: In their classic book, The C Programming Language,
Brian Kernighan and Dennis Ritchie seem unsure whether to reject or accept
GO TO.ÊË It was included in C, and it appears to be useful, but they feel they must
conform to the current ideology and criticize it. First they reject it: “Formally,
the GO TO is never necessary, and in practice it is almost always easy to write
code without it. We have not used GO TO in this book.”ÊÌ We are not told how
many situations are left outside the “almost always” category, but their two
GO TO examples represent in fact a very common situation (the requirement to
exit from a loop that is nested two or more levels within the current one).

At this point, then, the authors are demonstrating the benefits of GO TO. They
even point out (and illustrate with actual C code) that any attempt to eliminate
the GO TO in these situations results in an unnatural and complicated piece of
software. The logical conclusion, thus, ought to be that GOTO is necessary in C.
Nevertheless, they end their argument with this vague and ambiguous remark:
“Although we are not dogmatic about the matter, it does seem that GOTO

statements should be used sparingly, if at all.”ÊÍ

�

ÊÊ The quotations in this paragraph are ibid., p. 294.
ÊË Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood

Cliffs, NJ: Prentice Hall, 1978), pp. 62–63.
ÊÌ Ibid., p. 62. Incidentally, they managed to avoid GOTO in all their examples simply

because, as in any book of this kind, the examples are limited to small, isolated, artificial
bits of logic. But the very fact that the avoidance of GOTO in examples was a priority
demonstrates the morbidity of this preoccupation. ÊÍ Ibid., p. 63.

596 structured programming chapter 7

It is the third aspect of the GO TO delusion, however, that is the most absurd:
eliminating the GO TO statements by replacing them with new constructs that
are designed to perform exactly the same jumps. At this point, it is no longer
the jumps that we are asked to avoid, but just the phrase “go to.”

At first, we saw under the fourth delusion, the idea of structured pro-
gramming was modified to include a number of non-standard constructs –
constructs already found in the existing programming languages. Originally,
these constructs had been invented simply as language enhancements, as
alternatives to the most common jumps. (They simplify the jumps, typically,
by obviating the need for a destination label.) But, as they allowed practitioners
to bypass the restriction to standard constructs, they were enthusiastically
incorporated into structured programming and described as “extensions”
of the theory.

Although the inclusion of language-specific constructs appeared to rescue
the idea of structured programming, there remained many situations where
GO TO could only be eliminated through some unwieldy transformations, and
still others where GO TO-based constructs were the only practical alternative.
So the concept of language-specific constructs – what had been originally
intended merely as a way to improve programming languages – was expanded
and turned by the theorists into a means to eliminate GO TO. Situations easily
implemented with GOTO in any language became the subject of research,
debate, and new constructs. More and more constructs were suggested as GO TO

replacements, although, in the end, few were actually added to the existing
languages.

The theorists hoped to discover a set of constructs that would eliminate
forever the need for GOTO by providing built-in jumps for all conceivable
programming situations. They hoped, in other words, to redeem the idea
of structured programming by finding an alternative to the contrived and
impractical transformations. No such set was ever found, but this failure was
not recognized as the answer to the GOTO delusion, and the controversy
continued.

The theorists justified their attempts to replace GO TO with language-specific
constructs by saying that these constructs facilitate structured programming.
But this explanation is illogical. If we interpret structured programming as
the original theory, with its restriction to standard constructs, the role of
the non-standard constructs is not to facilitate but to override structured
programming. And if we interpret structured programming as the extended
theory, which allows any construct with one entry and exit, we can implement
all the constructs we need by combining standard constructs and GOTO

statements; in this case, then, the role of the non-standard constructs is not to
facilitate structured programming but to facilitate GOTO-less programming.

the goto delusion 597chapter 7

The theorists, therefore, were not inventing built-in constructs out of a concern
for structured programming – no matter how we interpret this theory – but
only in order to eliminate GO TO.

As an example of the attempts to define a set of flow-control constructs that
would make GOTO unnecessary, consider Jensen’s study.ÊÎ Jensen starts by
defining three “atomic” components: “We use the word atomic to character-
ize the lowest level constituents to which we can reduce the structure of a
program.”ÊÏ The three atomic components are called process node, predicate
node, and collector node, and represent lower software levels than do the
three standard constructs of structured programming. Then, Jensen defines
nine flow-control constructs based on these components (the three standard
constructs plus six non-standard ones), proclaims structured programming to
mean the restriction, not to the three standard constructs but to his nine
constructs, and asserts that any application can be developed in this manner:
“By establishing program structure building blocks (akin to molecules made
from our three types of atoms) and a structuring methodology, we can scientif-
ically implement structured programs.”ÊÐ But, even though Jensen discusses the
practical implementation of this concept with actual programming languages
and illustrates it with a small program, the concept remains a theoretical study,
and we don’t know how successful it would be with real-world applications.

An example of a set of constructs that was actually put into effect is found
in a language called Bliss. One of its designers makes the following statement
in a paper presented at an important conference: “The inescapable conclusion
from the Bliss experience is that the purported inconvenience of programming
without a GO TO is a myth.”ÊÑ

It doesn’t seem possible that the GO TO delusion could reach such levels, but
it did. That statement is ludicrous even if we overlook the fact that Bliss
was just a special-purpose language (designed for systems software, so the
conclusion about the need for GOTO is not at all inescapable in the case of other
types of programs). The academics who created Bliss invented a number of
constructs purposely in order to replace, one by one, various uses of GOTO. The
constructs, thus, were specifically designed to perform exactly the same jumps
as GO TO. To claim, then, that using these constructs instead of GO TO proves that
it is possible to program without GO TO, and to have such claims published and
debated, demonstrates the utter madness that had possessed the academic and
the programming communities.

ÊÎ Randall W. Jensen, “Structured Programming,” in Software Engineering, eds. Randall
W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979).

ÊÏ Ibid., p. 238. ÊÐ Ibid., p. 241.
ÊÑ William A. Wulf, “A Case against the GOTO,” Proceedings of the ACM Annual

Conference, vol. 2 (1972), p. 795.

598 structured programming chapter 7

Here is how Knuth, in the aforementioned paper, describes this madness:
“During the last few years several languages have appeared in which the
designers proudly announced that they have abolished the GOTO statement.
Perhaps the most prominent of these is Bliss, which originally replaced
GOTO’s by eight so-called ‘escape’ statements. And the eight weren’t even
enough. . . . Other GOTO-less languages for systems programming have similarly
introduced other statements which provide ‘equally powerful’ alternative ways
to jump. . . . In other words, it seems that there is widespread agreement that
GO TO statements are harmful, yet programmers and language designers still
feel the need for some euphemism that ‘goes to’ without saying GO TO.”ËÈ

Unfortunately, Knuth ends his paper contradicting himself; now he praises
the idea of replacing GO TO with new constructs designed to perform the same
operation: “But GOTO is hardly ever the best alternative now, since better
language features are appearing. If the invariant for a label is closely related to
another invariant, we can usually save complexity by combining those two into
one abstraction, using something other than GOTO for the combination.”ËÉ

What Knuth suggests is that we improve our programming languages by
creating higher levels of abstraction: built-in flow-control constructs that
combine several operations, including all necessary jumps. Explicit jumps, and
hence GO TO, will then become unnecessary: “As soon as people learn to apply
principles of abstraction consciously, they won’t see the need for GO TO.”ËÊ

Knuth’s mistake here is the fallacy we discussed under the second and fourth
delusions (see pp. 539–542, 578–579): he confuses the flow-control constructs
with the operations of a hierarchical structure. In the static flow diagram – that
is, in the nesting scheme – these constructs do indeed combine elements to
form higher levels of abstraction. But because they employ conditions, their
task in the flow of execution is not to create higher levels, but to create multiple,
interacting nesting schemes.

The idea of replacing GOTO with higher-level constructs is, therefore,
fallacious. Only an application restricted to a nesting scheme of sequential
constructs has a flow of execution that is a simple hierarchical structure,
allowing us to substitute one construct for several lower-level ones. And no
serious application can be restricted to such a nesting scheme. This is why
no one could invent a general-purpose language that eliminates the need
for jumps. In the end, all flow-control constructs added to programming
languages over the years are doing exactly what GOTO-based constructs are
doing, but without using the phrase “go to.”

ËÈ Knuth, “Structured Programming,” pp. 265–266. ËÉ Ibid., p. 294.
ËÊ Ibid., pp. 295–296.

the goto delusion 599chapter 7

4

4
Because of its irrationality, the GOTO prohibition acquired in the end the
character of a superstition: despite the attempt to ground the debate on
programming principles, avoiding GOTO became a preoccupation similar in
nature to avoiding black cats, or avoiding the number 13.

People who cling to an unproven idea develop various attitudes to rational-
ize their belief. For example, since it is difficult to follow strictly the precepts
of any superstition, we must find ways to make the pursuit of superstitions
practical. Thus, even if convinced that certain events bring misfortune, we will
tolerate them when avoiding them is inconvenient – and we will contrive an
explanation to justify our inconsistency. Similarly, we saw, while GOTO is
believed to bring software misfortune, most theorists agree that there is no
need to be dogmatic: GO TO is tolerable when avoiding it is inconvenient.

Humour is an especially effective way to mask the irrationality of our acts.
Thus, it is common to see people joke about their superstitions – about their
habit of touching wood, for instance – even as they continue to practise them.
So we shouldn’t be surprised to find humorous remarks accompanying the
most serious GO TO discussions. Let us study a few examples.

In his assessment of the benefits of structured programming, Yourdon
makes the following comment: “Many programmers feel that programming
without the GOTO statement would be awkward, tedious, and cumbersome. For
the most part, this complaint is due to force of habit. . . . The only response that
can be given to this complaint comes from a popular television commercial
that made the rounds recently: ‘Try it – you’ll like it!’”ËË This is funny, perhaps,
but what is the point of this quip? After explaining and praising GOTO-less
programming, Yourdon admits that the only way to demonstrate its benefits is
with the techniques of television advertising.

Another example of humour is the statement COME FROM, introduced as an
alternative to GOTO. Although meant as a joke, this statement was actually
implemented in several programming languages, and its merits are being
discussed to this day in certain circles. Its operation is, in a sense, the reverse
of GO TO; for instance, COME FROM L1 tells the computer to jump to the statement
following it when the flow of execution encounters the label L1 somewhere in
the program. (The joke is that, apart from being quite useless, COME FROM is
even more difficult than GOTO to understand and to manage.) It is notable that
the official introduction of this idea was in Datamation’s issue that proclaimed

ËË Yourdon, Techniques, p. 178.

600 structured programming chapter 7

structured programming a revolution (see p. 523). Thus, out of the five articles
devoted to this revolution, one was meant in its entirety as a joke.ËÌ

One expert claims that the GO TO prohibition does not go far enough: the
next step must be to abolish the ELSE in IF statements.ËÍ Since an IF-THEN-ELSE

statement can be expressed as two consecutive IF-THEN statements where the
second condition is the logical negation of the first, ELSE is unnecessary and
complicates the program. The expert discusses in some detail the benefits of
ELSE-less programming. The article, which apparently was not meant as a joke,
ends with this sentence: “Structured programming, with elimination of the
GO TO, is claimed to be a step toward changing programming from an art to a
cost-effective science, but the ELSE will have to go, too, before the promise is a
reality”ËÎ (note the pun, “go, too”).

Knuth likes to head his writings with epigraphs, but from the quotations he
chose for his aforementioned paper on GO TO, it is impossible to tell whether
this is a serious study or a piece of entertainment. Two quotations, from a
poem and from a song, were chosen, it seems, only because they include the
word “go”; the third one is from an advertisement offering a remedy for
“painful elimination.” Also, we find the following remark in the paper: “The
use of four-letter words like GO TO can occasionally be justified even in the best
of company.”ËÏ

The most puzzling part of Knuth’s humour, however, is his allusion to
Orwell’s Nineteen Eighty-Four. He dubs the ideal programming language
Utopia 84, as his “dream is that by 1984 we will see a consensus developing. . . .
At present we are far from that goal, yet there are indications that such a
language is very slowly taking shape. . . . Will Utopia 84, or perhaps we should
call it Newspeak, contain GO TO statements?”ËÐ

Is this a joke or a serious remark? Does Knuth imply that the role of
programming languages should be the same as the role of Newspeak in
Orwell’s totalitarian society – that is, to degrade knowledge and minds? (See
“Orwell’s Newspeak” in chapter 5.) Perhaps this is Knuth’s dream, unless the
following statement, too, is only a joke: “The question is whether we should
ban [GOTO], or educate against it; should we attempt to legislate program
morality? In this case I vote for legislation, with appropriate legal substitutes in
place of the former overwhelming temptations.”ËÑ

As the theorists and the practitioners recognized the shallowness of their
preoccupation with GO TO, humour was the device through which they could

ËÌ R. Lawrence Clark, “A Linguistic Contribution to GOTO-less Programming,” Data-
mation 19, no. 12 (1973): 62–63.

ËÍ Allan M. Bloom, “The ‘ELSE’ Must Go, Too,” Datamation 21, no. 5 (1975): 123–128.
ËÎ Ibid., p. 128. ËÏ Knuth, “Structured Programming,” p. 282.
ËÐ Ibid., pp. 263–264. ËÑ Ibid., p. 296.

the goto delusion 601chapter 7

pursue two contradictory ideas: that the issue is important, and that it is
irrelevant. Humour, generally, is a good way to deal with the emotional conflict
arising when we must believe in two contradictory concepts at the same
time. Thus, like people joking about their superstitions, the advocates of
structured programming discovered that humour allowed them to denounce
the irrational preoccupation with GO TO even while continuing to foster it.

5

5
The foregoing analysis has demonstrated that the GOTO prohibition had no
logical foundation. It has little to do with the original structured program-
ming idea, and can even be seen as a new theory: the theory of structured
programming failed, and the GO TO preoccupation took its place. The theorists
and the practitioners kept saying that structured programming is more than
just GOTO-less programming, but in reality the elimination of GOTO was
now the most important aspect of their work. What was left of structured
programming was only some trivial concepts: top-down design, constructs
with one entry and exit, indenting the levels of nesting in the program’s listing,
and the like.

To appreciate this, consider the following argument. First, within the
original, formal theory of structured programming, we cannot even discuss
GOTO; for, if we adhere to the formal principles we will never encounter
situations requiring GO TO. So, if we have to debate the use of GO TO, it means
that we are not practising structured programming.

It is only within the modified, informal theory that we can discuss GO TO at
all. And here, too, the GO TO debate is absurd, because this degraded variant of
structured programming can be practised both with and without GOTO. We
can have structured programs either without GOTO (if we use only built-in
constructs) or with GOTO (if we also design our own constructs). The only
difference between the two alternatives is the presence of explicit jumps in
some of the constructs, and explicit jumps are compatible with the informal
principles. With both methods we can practise top-down design, create
constructs with one entry and exit, restrict modules to a hundred lines, indent
the levels of nesting in the program’s listing, and so forth. Every principle
stipulated by the informal theory of structured programming can be rigorously
followed whether or not we use GO TO.

The use of GO TO, thus, is simply a matter of programming style, or program-
ming standards, which can vary from person to person and from place to place.
Since it doesn’t depend on a particular set of built-in constructs, the informal
style of structured programming can be practised with any programming

602 structured programming chapter 7

language (even with low-level, assembly languages): we use built-in constructs
when available and when effective, and create our own with explicit jumps
when this alternative is better. (So we will have more GO TOs in COBOL, for
example, than in C.)

Then, if GOTO does not stop us from practising the new, informal structured
programming, why was its prohibition so important? As I stated earlier (see
pp. 590–591), the GO TO preoccupation served as a substitute for the original
theory: that theory restricted us to the three standard flow-control constructs
(a rigorous principle that is all but impossible to follow), while the new theory
permits us to use an arbitrary, larger set of constructs (in fact, any built-in
constructs). Thus, the only restriction now is to use built-in constructs rather
than create our own with GOTO. This principle is more practical than the
original one, while still appearing precise. By describing this easier principle as
an extension of structured programming, the theorists could delude them-
selves that they had a serious theory even after the actual theory had been
refuted.

The same experts who had promised us the means to develop and prove
applications mathematically were engaged now in the childish task of studying
the use of GO TO in small, artificial pieces of software. And yet, no one saw this
as evidence that the theory of structured programming had failed. While still
talking about scientific programming, the experts were debating whether one
trivial construct is easier or harder to understand than some other trivial
construct. Is this the role of software theorists, to decide for us which style of
programming is clearer? Surely, practitioners can deal with such matters on
their own. We listened to the theorists because of their claim that software
development can be a formal and precise activity. And if this idea turned out
to be mistaken, they should have studied the reasons, admitted that they
could not help us, and tried perhaps to discover what is the true nature of
programming. Instead, they shifted their preoccupation to the GO TO issue, and
continued to claim that programming would one day become a formal and
precise activity.

The theorists knew, probably, that the small bits of software they were
studying were just as easy to understand with GO TO as they were without it. But
they remained convinced that this was a critical issue: it was important to find
a set of ideal constructs because a flow-control structure free of GO TOs would
eventually render the same benefits as a structure restricted to the three
standard constructs. The dream of rigorous, scientific programming was still
within reach.

The theorists fancied themselves as the counterpart of the old thinkers, who,
while studying what looked like minute philosophical problems, were laying in
fact the foundation of modern knowledge. Similarly, the theorists say, subjects

the goto delusion 603chapter 7

like GOTO may seem trivial, but when studying the appearance of small
bits of software with and without GOTO they are determining in fact some
important software principles, and laying the foundation of the new science of
programming.

�

The GOTO issue was important to the theorists, thus, as a substitute for the
formal principles of structured programming. But there was a second, even
more important motivation for the GO TO prohibition.

Earlier in this chapter we saw that the chief purpose of structured pro-
gramming, and of software engineering generally, was to get inexperienced
programmers to perform tasks that require in fact great skills. The software
theorists planned to solve the software crisis, not by promoting programming
expertise, but, on the contrary, by eliminating the need for expertise: by
turning programming from a difficult profession, demanding knowledge,
experience, and responsibility, into a routine activity, which could be per-
formed by almost anyone. And they hoped to accomplish this by discovering
some exact, mechanistic programming principles – principles that could be
incorporated in methodologies and development tools. The difficult skills
needed to create software applications would then be reduced to the easier
skills needed to follow methods and to operate software devices. Ultimately,
programmers would only need to know how to use the tools provided by the
software elite.

The GOTO prohibition was part of this ideology. Structured programs,
we saw, can be written both with and without GOTO: we use only built-in
flow-control constructs, or also create our own with GOTO statements. The
difference is a matter of style and efficiency. So, if structured programming is
what matters, all that the theorists had to do was to explain the principle of
nested flow-control constructs. Responsible practitioners would appreciate
its benefits, but the principle would not prevent them from developing an
individual programming style. They would use custom constructs when better
than the built-in ones, and the GO TOs would make their programs easier, not
harder, to understand.

Thus, it was pointed out more than once that good programmers were
practising structured programming even before the theorists were promoting
it. And this is true: a programmer who develops and maintains large and
complex applications inevitably discovers the benefits of hierarchical flow-
control structures, indenting the levels of nesting in the program’s listing, and
other such practices; and he doesn’t have to avoid GO TO in order to enjoy these
benefits.

604 structured programming chapter 7

But the theorists had decided that programmers should not be expected to
advance beyond the level attained by an average person after a few months of
practice – beyond what is, in effect, the level of novices. The possibility of
educating and training programmers as we do individuals in other professions
– that is, giving them the time and opportunity to develop all the knowledge
that human minds are capable of – was not even considered. It was simply
assumed that if programmers with a few months of experience write bad
software, the only way to improve their performance is by preventing them
from dealing with the more difficult aspects of programming.

And, since the theorists believed that the flow-control structure is the most
important aspect of the application, the conclusion was obvious: programmers
must be forced to use built-in flow-control constructs, and prohibited from
creating their own. In this way, even inexperienced programmers will create
perfect flow-control structures, and hence perfect applications. Restricting
programmers to built-in constructs, the theorists believed, is like starting with
subassemblies rather than basic parts when building appliances: programming
is easier and faster, and one needs lower skills and less experience to create the
same applications. (We examined this fallacy earlier; see pp. 578–579.) Thus,
simply by prohibiting mediocre programmers from creating their own flow-
control constructs, we will attain about the same results as we would by
employing expert programmers.

�

It is clear, then, why the theorists could not just advise programmers to follow
the principles of structured programming. Since their goal was to control
programming practices, it was inconceivable to allow the programmers to
decide whether to use a built-in construct or a non-standard one, much less to
allow them to design a construct. With its restriction to the three standard
constructs, the original theory had the same goal, but it was impractical. So
the theorists looked for a substitute, a different way to control the work of
programmers. With its restriction to built-in constructs – constructs sanc-
tioned by the theorists and incorporated into programming languages – the
GO TO prohibition was the answer.

We find evidence that this ideology was the chief motivation for the GO TO

prohibition in the reasons typically adduced for avoiding GO TO. The theorists
remind us that its use gives rise to constructs with more than one entry or exit,
thereby destroying the hierarchical nature of the flow-control structure;
and they point out that it has been proved mathematically that GOTO is
unnecessary. But despite the power of these formal explanations, they ground
the prohibition, ultimately, on the idea that GOTO tempts programmers to

the goto delusion 605chapter 7

write “messy” programs. It is significant, thus, that the theorists consider the
informal observation that GOTO allows programmers to create bad software
more convincing than the formal demonstration that GO TO is unnecessary.

Here are some examples: “The GO TO statement should be abolished” because
“it is too much an invitation to make a mess of one’s program.”ÌÈ “GOTO

instructions in programs can go to anywhere, permitting the programmer to
weave a tangled mess.”ÌÉ “It would be wise to avoid the GOTO statement
altogether. Unconditional branching encourages a patchwork (spaghetti code)
style of programming that leads to messy code and unreliable performance.”ÌÊ

“The GOTO can be used to produce ‘bowl-of-spaghetti’ programs – ones
in which the flow of control is involuted in arbitrarily complex ways.”ÌË

“Unrestricted use of the GO TO encourages jumping around within programs,
making them difficult to read and difficult to follow.”ÌÌ “One of the most
confusing styles in computer programs involves overuse of the GOTO state-
ment.”ÌÍ “GO TO statements make large programs very difficult to read.”ÌÎ

What these authors are saying is true. What they are describing, though, is
not programming with GO TO, but simply bad programming. They believe that
there are only two alternatives to software development: bad programmers
allowed to use GO TO and writing therefore bad programs, and bad program-
mers prevented from using GOTO. The possibility of having good programmers,
who write good programs with or without GO TO, is not considered at all.

The argument about messy programs is ludicrous. It is true that, if used
incorrectly, GOTO can cause execution to “go to anywhere,” can create an
“arbitrarily complex” flow of control, and can make the program “difficult
to follow.” But the GOTO problem is no different from any other aspect of
programming: bad programmers do everything badly, so the messiness of their
flow-control constructs is not surprising. Had these authors studied other
aspects of those programs, they would have discovered that the file operations,
or the definition of memory variables, or the use of subroutines, or the
calculations, were also messy. The solution, however, is not to prohibit bad
programmers from using certain features of a programming language, but to
teach them how to program; in particular, how to create simple and consistent

ÌÈ Dijkstra, “Go To Statement,” p. 9.
ÌÉ Martin and McClure, Structured Techniques, p. 133.
ÌÊ David M. Collopy, Introduction to C Programming: A Modular Approach (Upper Saddle

River, NJ: Prentice Hall, 1997), p. 142.
ÌË William A. Wulf, “Languages and Structured Programs,” in Current Trends in Pro-

gramming Methodology, vol. 1, Software Specification and Design, ed. Raymond T. Yeh
(Englewood Cliffs, NJ: Prentice Hall, 1977), p. 37.

ÌÌ Clement L. McGowan and John R. Kelly, Top-Down Structured Programming Tech-
niques (New York: Petrocelli/Charter, 1975), p. 43.

ÌÍ Weinberg et al., High Level COBOL, p. 39. ÌÎ Van Tassel, Program Style, p. 78.

606 structured programming chapter 7

flow-control constructs. And if they are incapable or unwilling to improve
their work, they should be replaced with better programmers.

The very use of terms like “messy” to describe the work of programmers
betrays the distorted attitude that the software elite has toward this profession.
Programmers whose work is messy should not even be employed, of course.
Incredibly, the fact that individuals considered professional programmers
create messy software is perceived as a normal state of affairs. Theorists,
employers, and society accept the incompetence of programmers as a necessary
and irremediable situation. And we accept not only their incompetence, but
also the fact that they are irresponsible and incapable of improving their skills.
Thus, everyone agrees that it is futile to teach them how to use GOTO correctly;
they cannot understand, or don’t care, so it is best simply to prohibit them from
using it.

To be considered a professional programmer, an individual ought to display
the highest skill level attainable in the domain of programming. This is how we
define professionalism in other domains, so why do we accept a different
definition for programmers? The software theorists claim that programmers
are, or are becoming, “software engineers.” At the same time, they are redefin-
ing the notions of expertise and responsibility to mean something entirely
different from what they mean for engineers and for other professionals. In the
case of programmers, expertise means acquaintance with the latest theories
and standards, and responsibility means following them blindly. And what do
these theories and standards try to accomplish? To obviate the need for true
expertise and responsibility. No one seems to note the absurdity of this
ideology.

6

6
We must take a moment here to discuss some of the programming aspects of
the GO TO problem; namely, what programming style creates excellent, rather
than messy, GO TO-based constructs. Had the correct use of GO TO demanded
great expertise – outstanding knowledge of computers or mathematics, for
instance – the effort to prevent programmers from creating their own con-
structs might have been justified. I want to show, however, that the correct use
of GOTO is a trivial issue: from the many kinds of knowledge involved in
programming, this is one of the simplest.

The following discussion, thus, is not intended to promote a particular
programming style, but to demonstrate the triviality of the GO TO problem, and
hence the absurdity of its prohibition. This will serve as additional evidence for
my argument that the GOTO prohibition was motivated, not by some valid

the goto delusion 607chapter 7

software concerns, but by the corrupt ideology held by the software theorists.
They had already decided that programmers must remain incompetent, and
that it is they, the elite, who will control programming practices.

�

The first step is to establish, within the application, the boundaries for each set
of jumps: the whole program in the case of a small application, but usually a
module, a subroutine, or some other section that is logically distinct. Thus,
even when the programming language allows jumps to go anywhere in the
program, we will restrict each set of jumps to the section that constitutes a
particular procedure, report, data entry function, file updating operation, and
the like.

The second step is to decide what types of jumps we want to implement with
GOTO. The number of reasons for having jumps in the flow of execution is
surprisingly small, so we can easily account for all the possibilities. We can
agree, for example, to restrict the forward jumps to the following situations:
bypassing blocks of statements (in order to create conditional constructs);
jumping to the point past the end of a block that is at a lower nesting level than
the current one (in order to exit from any combination of nested conditions
and iterations); jumping to any common point (in order to terminate one
logical process and start another). And we can agree to restrict the backward
jumps to the following situations: jumping to the beginning of a block (in
order to create iterative constructs, and also to end prematurely a particular
iteration); jumping to any common point (in order to repeat the current
process starting from a particular operation).

We need, thus, less than ten types of jumps; and by combining jumps we can
create any flow-control constructs we like. We will continue to use whatever
built-in constructs are available in a particular language, but we will not depend
on them; we will simply use them when more effective than our own. Recall
the failed attempts to replace all possible uses of GO TO with built-in constructs.
Now we see that this idea is impractical, not because of the large number of
types of jumps, but because of the large number of combinations of jumps. And
the problem disappears if we can design our own constructs, because now we
don’t have to plan in advance all conceivable combinations; we simply create
them as needed.

Lastly, we must agree on a good naming system for labels. Labels are
those flow-control variables that identify the statement where execution is to
continue after a jump. And, since each GOTO statement specifies a label, we can
choose names that link logically the jump’s origin, its destination, and the
purpose of the jump. This simple fact is overlooked by those who claim that

608 structured programming chapter 7

jumps unavoidably make programs hard to follow. If we adopt an intelligent
naming system, the jumps, instead of confusing us, will explain the program’s
logic. (The compiler, of course, will accept any combination of characters as
label names; it is the human readers that will benefit from a good naming
convention.)

Here is one system: the first character or two of the name are letters
identifying that section of the program where a particular set of jumps and
labels are in effect; the next character is a letter identifying the type of jump;
and these letters are followed by a number identifying the relative position of
the label within the current set of jumps. In the name RKL3, for example, RK is
the section, L identifies the start of a loop, and 3 means that the label is found
after labels with numbers like 1 or 25, but before labels with numbers like 31 or
6. Similarly, T could identify the point past the end of a loop, S the point past a
block bypassed by a condition, E the common point for dealing with an error,
and so on.ÌÏ

Note that the label numbers identify their order hierarchically, not through
their values. For example, in a section called EM, the sequence of labels might
be as follows: EMS2, EML3, EMS32, EMS326, EML35, EMT36, EMT4, EME82. The
advantage of hierarchical numbering is that we can add new labels later
without having to modify the existing ones. Note also that, while the numbers
can be assigned at will, we can also use them to convey some additional
information. For example, labels with one- or two-digit numbers could signify
points in the program that are more important than those employing labels
with three- or four-digit numbers (say, the main loop versus an ordinary
condition).

Another detail worth mentioning is that we will sometimes end up with two
or more consecutive labels. For example, a jump that terminates a loop and one
that bypasses the block in which the loop is nested will go to the same point in
the program, but for different reasons. Therefore, even though the compiler
allows us to use one label for both jumps, each operation should have its own
label. Also, while the order of consecutive labels has no effect on the program’s
execution, here it should match the nesting levels (for the benefit of the human
readers); thus, the label that terminates the loop should come before the one
that bypasses the whole block (EMT62, EMS64).

Simple as it is, this system is actually too elaborate for most applications.
First, since the jump boundaries usually parallel syntactic units like subrou-
tines, in many languages the label names need to be unique only within each

ÌÏ In COBOL, labels are known as paragraph names, and paragraphs function also as
procedures, or subroutines; but the method described here works the same way. (It is poor
practice to use the same paragraph both as a GOTO destination and as a procedure, except
for jumps within the procedure.)

the goto delusion 609chapter 7

section; so we can often dispose of the section identifier and start all label
names in the program with the same letter. Second, in well-designed programs
the purpose of most jumps is self-evident, so we can usually dispose of the type
identifier too. (It is clear, for instance, whether a forward jump is to a common
error exit or is part of a conditional construct.) The method I have followed for
many years in my applications is to use even-numbered labels for forward
jumps (EM4, EM56, EM836, etc.) and odd-numbered ones for backward jumps
(EM3, EM43, EM627, etc.). I find this simplified identification of jump types
adequate even in the most intricate situations.ÌÐ

It is obvious that many other systems of jump types and label names are
possible. It is also obvious that the consistent use of a particular system is more
important than its level of sophistication. Thus, if we can be sure that every
jump and label in a given application obeys a particular convention, we will
have no difficulty following the flow of execution.

�

So the solution to the famous GOTO problem is something as simple as a
consistent system of jump types and label names. All the problems that the
software theorists attribute to GO TO have now disappeared. We can enjoy the
benefits of a hierarchical flow-control structure and the versatility of explicit
jumps at the same time.

The maintenance problem – the difficulty of understanding software created
by others – has also disappeared: no matter how many GO TOs are present in the
program, we know now for each jump where execution is going, and for each
label where execution is coming from. We know, moreover, the purpose of each
jump and label. Designing an effective flow-control structure, or following the
logic of an existing one, may still pose a challenge; but, unlike the challenge of
dealing with a messy structure, this is now a genuine programming problem.
The challenge, in fact, is easier than it is with built-in constructs, because we
have the actual, self-documented jumps and labels, rather than just the implicit
ones. So, even when a built-in construct is available, the GO TO-based one is
often a better alternative.

Now, it is hard to believe that any programmer can fail to understand a
system of jumps and labels; and it is also hard to believe that no theorist ever
thought of such a system. Thus, since a system of jumps and labels answers all
the objections the theorists have to using GOTO, why were they trying to
eliminate it rather than simply suggesting such a system? They describe the

ÌÐ Figures 7-13 to 7-16 (pp. 680, 683–685) exemplify this style. Note that this method also
makes the levels of nesting self-evident, obviating the need to indent the loops.

610 structured programming chapter 7

harmful effects of GOTO as if the only way to use it were with arbitrary
jumps and arbitrary label names. They say nothing about the possibility of an
intelligent and consistent system of jumps, or meaningful label names. They
describe the use of GOTO, in other words, as if the only alternative were to have
incompetent and irresponsible programmers. They appear to be describing a
programming problem, but what they are describing is their distorted view of
the programming profession: by stating that the best solution to the GOTO

problem is avoidance, they are saying in effect that programmers will forever
be too stupid even to follow a simple convention.

�

Structured programming, and the GO TO prohibition, did not make program-
ming an exact activity and did not solve the software crisis. Programmers who
had been writing messy programs before were now writing messy GO TO-less
programs: they were messy in the way they were avoiding GOTO, and also in the
way they were implementing subroutines, calculations, file operations, and
everything else. Clearly, programmers who must be prohibited from using
GOTO (because they cannot follow a simple system of jumps and labels) are
unlikely to perform correctly any other programming task.

Recall what was the purpose of this discussion. I wanted to show that the
GO TO prohibition, while being part of the structured programming movement,
has little to do with its principles, or with any other programming principles.
It is just another aspect of a corrupt ideology. The software elites claim
that their theories are turning programming into a scientific activity, and
programmers into engineers. In reality, the goal of these theories is to turn
programmers into bureaucrats. The programming profession, according to the
elites, is a large body of mediocre workers trained to follow certain methods
and to use certain tools. Structured programming was the first attempt to
implement this ideology, and the GO TO prohibition in particular is a blatant
demonstration of it.

the goto delusion 611chapter 7

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 7: Software Engineering
	The GO TO Delusion
	1
	2
	3
	4
	5
	6

