
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 7: Software Engineering
Section The Relational Database Model

Subsections The Basic File Operations, The Lost Integration

This extract includes the book’s front matter
and part of chapter 7.

Copyright ©2013 Andrei Sorin
The digital book and extracts are licensed under the

Creative Commons
Attribution-NonCommercial-NoDerivatives

International License 4.0.

These subsections examine the traditional operations involving
indexed data files, their integration with programming languages,
and their benefits relative to relational databases.

The entire book, each chapter separately, and also selected
sections, can be viewed and downloaded at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013 Andrei Sorin
Published by Andsor Books, Toronto, Canada (January 2013)
www.andsorbooks.com

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

For disclaimers see pp. vii, xv–xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Printed on acid-free paper.

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 92

Complex Structures 98

Abstraction and Reification 113

Scientism 127

Chapter 2 The Mind 142

Mind Mechanism 143

Models of Mind 147

ix

Tacit Knowledge 157

Creativity 172

Replacing Minds with Software 190

Chapter 3 Pseudoscience 202

The Problem of Pseudoscience 203

Popper’s Principles of Demarcation 208

The New Pseudosciences 233

The Mechanistic Roots 233

Behaviourism 235

Structuralism 242

Universal Grammar 251

Consequences 273

Academic Corruption 273

The Traditional Theories 277

The Software Theories 286

Chapter 4 Language and Software 298

The Common Fallacies 299

The Search for the Perfect Language 306

Wittgenstein and Software 328

Software Structures 347

Chapter 5 Language as Weapon 368

Mechanistic Communication 368

The Practice of Deceit 371

The Slogan “Technology” 385

Orwell’s Newspeak 398

Chapter 6 Software as Weapon 408

A New Form of Domination 409

The Risks of Software Dependence 409

The Prevention of Expertise 413

The Lure of Software Expedients 421

Software Charlatanism 440

The Delusion of High Levels 440

The Delusion of Methodologies 470

The Spread of Software Mechanism 483

Chapter 7 Software Engineering 492

Introduction 492

The Fallacy of Software Engineering 494

Software Engineering as Pseudoscience 508

x contents

Structured Programming 515

The Theory 517

The Promise 529

The Contradictions 537

The First Delusion 550

The Second Delusion 552

The Third Delusion 562

The Fourth Delusion 580

The GOTO Delusion 600

The Legacy 625

Object-Oriented Programming 628

The Quest for Higher Levels 628

The Promise 630

The Theory 636

The Contradictions 640

The First Delusion 651

The Second Delusion 653

The Third Delusion 655

The Fourth Delusion 657

The Fifth Delusion 662

The Final Degradation 669

The Relational Database Model 676

The Promise 677

The Basic File Operations 686

The Lost Integration 701

The Theory 707

The Contradictions 721

The First Delusion 728

The Second Delusion 742

The Third Delusion 783

The Verdict 815

Chapter 8 From Mechanism to Totalitarianism 818

The End of Responsibility 818

Software Irresponsibility 818

Determinism versus Responsibility 823

Totalitarian Democracy 843

The Totalitarian Elites 843

Talmon’s Model of Totalitarianism 848

Orwell’s Model of Totalitarianism 858

Software Totalitarianism 866

Index 877

contents xi

Preface

Preface

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation,
the mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a process
of continuous intellectual degradation – despite the great advances it made
possible. This process started three centuries ago, is increasingly corrupting us,
and may well destroy us in the future. The book discusses all stages of this
degradation.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 411–413).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from philosophy, in particular. These dis-
cussions are important, because they show that our software-related problems

xiii

are similar, ultimately, to problems that have been studied for a long time in
other domains. And the fact that the software theorists are ignoring this
accumulated knowledge demonstrates their incompetence. Often, the connec-
tion between the traditional issues and the software issues is immediately
apparent; but sometimes its full extent can be appreciated only in the following
sections or chapters. If tempted to skip these discussions, remember that our
software delusions can be recognized only when investigating the software
practices from this broader perspective.

Chapter 7, on software engineering, is not just for programmers. Many parts
(the first three sections, and some of the subsections in each theory) discuss the
software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge.
The whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices. So this chapter can be seen
as a special introduction to software and programming; namely, comparing
their true nature with the pseudoscientific notions promoted by the software
elite. This study can help both programmers and laymen to understand
why the incompetence that characterizes this profession is an inevitable
consequence of the mechanistic software ideology.

There is some repetitiveness in the book, deliberately introduced in order
to make the individual chapters, and even the individual sections, reasonably
independent. Thus, while the book is intended to be read from the beginning,
you can select almost any portion and still follow the discussion. An additional
benefit of the repetitions is that they help to explain the more complex issues,
by presenting the same ideas from different perspectives or in different
contexts.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,

xiv preface

in the subsequent footnotes it is usually abbreviated. For these abbreviations,
then, the full reference can be found by searching the previous footnotes no
further back than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations,
and individuals (for example, the software elite); and the plural, “elites,”
is used when referring to several entities, or groups of entities, within such a
body. Thus, although both forms refer to the same entities, the singular is
employed when it is important to stress the existence of the whole body, and
the plural when it is the existence of the individual entities that must be
stressed. The plural is also employed, occasionally, in its normal sense – a group
of several different bodies. Again, the meaning is clear from the context.

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral

preface xv

sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I plan to publish, in source form,
some of the software applications I developed over the years. The website,
then, must be seen as an extension to the book: any idea, claim, or explanation
that must be clarified or enhanced will be discussed there.

xvi preface

Ch. 7: Software Engineering

The Basic File Operations

The Basic File Operations
1 1
To appreciate the inanity of the relational model, we must start by examining
the basic file operations; that is, those operations which the relational systems
are attempting to supplant. What I want to show is that these operations
are both necessary and sufficient for implementing database management
requirements, particularly in business applications. Thus, once we recognize
the importance of the basic file operations, we will be in a better position to
understand why the relational systems are fraudulent. For, as we will see, the
only way to make them useful was by enhancing them with precisely those
capabilities provided by the basic file operations; in other words, by restoring
the very features that the database experts had claimed to be unnecessary.

Also, it is important to remember that the basic file operations have been
available to programmers from the start, ever since mass storage devices with
random access became popular. For example, they have been available through
COBOL (a language specifically designed for business applications) since
around 1970. So these operations have always been well known: COBOL was
always a public language, was implemented on all major computers, and was
adopted by most companies. Thus, in addition to being an introduction to the
basic file operations, this discussion serves to support my claim that the only
motivation for database systems in general, and for the relational systems in
particular, was to find a substitute for the knowledge required of programmers
to use these operations correctly.

�

Before examining the basic file operations, we must take a moment to clarify
this term and the related terms “file operations” and “database operations.”
The basic file operations are a basic set of file management functions. They
formed in the past an integral part of every major operating system, and
were accessible through programming languages. These operations deal with
indexed data files – the most versatile form of data storage; and, in conjunction
with the features provided by the languages themselves, they allow us to use
and to relate these files in any way we like.

“File operations” is a more general term. It refers to the basic file operations,
but also to the various ways in which we combine them, using the flow-
control constructs of a programming language, in order to implement file
management requirements. “Database operations” is an even more general
term. It refers to the file operations, but in the context of the whole application,

686 the relational database model chapter 7

so it usually means combinations of file operations; in particular, combinations
involving several files. The terms “traditional file operations” and “low-level
file operations” refer to any one of the operations defined above.

The term “database” refers to a set of related files; typically, the files used by
a particular application. Hence, the term “database system” ought to mean
any software system that helps us to manage a database.É Through their
propaganda, though, the software elites have created in our minds a strong
association between terms like “database,” “database system,” and “database
management system” (or DBMS) and high-level database operations. And as a
result, most people believe that the only way to manage a database is through
high-level operations; that the current database systems provide indispensable
features; and that it is impossible to implement a serious application without
depending on such a system.

But we must not allow the software charlatans to control our language and
our minds. Since we can implement any database functions through the basic
file operations and a programming language, systems that provide high-level
operations are not at all essential for database management. So we can continue
to use the terms “database” and “database operations” even while rejecting the
notion of a system that restricts us to high-level operations.

Strictly speaking, since the basic file operations permit us to manage a
database, they too form a database system. But it would be confusing to use this
term for the basic operations, now that it is associated with the high-level
operations. Thus, I call the systems that provide basic file operations “file
management systems,” or “file systems” for short. This term is quite appropri-
ate, in fact, seeing that these systems are limited to operations involving
single files; it is we who implement the actual database management, by
combining the operations provided by the file system with those provided by
a programming language.

So I use the term “database,” and terms like “database operations” and
“database management,” to refer to any set of related files – regardless of
whether the files and relations are managed through the high-level operations
of a database system, or through the basic operations of a file system.

The term “database structures” refers to the various hierarchical structures
created by the files that make up the database: related files can be seen as the
levels of a structure, and their records as the elements that make up these levels
(see p. 702). In most applications, the totality of database structures is a
complex structure.

É The term “database system” is used by everyone as an abbreviation of “database
management system.” It is somewhat misleading, though, since it sounds as if it refers to the
database itself.

the basic file operations 687chapter 7

2

2
Two types of files make up the database structures of an application: data files
and index files. The data files contain the actual data, organized as records; the
index files (or indexes, for short) contain the pointers that permit us to access
these records.

The record is the unit that the application typically reads from the file, or
writes to the file. But within each record the data is broken down into fields,
and it is the values present in the individual fields that we normally use in the
application. For example, if each record in the file has 100 bytes, the first field
may take the first 6 bytes, the second one the next 24 bytes, and so on. This is
how the fields reside on disk, and in memory when the record is read from
disk, but in most cases their relative order within the record is immaterial. For,
in the application we assign names to these fields, and we refer to them simply
by their names. Thus, once a record is read into memory, we treat database
fields, for all practical purposes, as we do memory variables.

The records and fields of a data file reflect the structure and type of the
information stored in the file. In an employee file, for example, there is a record
for each employee, and each record contains such fields as employee number,
name, salary, and year-to-date earnings and deductions; in a sales history file
there is a record for each line in a sales order, with such fields as the customer
and order numbers, date, price, and quantity sold. While in simple cases the
required fields are self-evident, generally it takes some experience to design the
most effective database for a given set of requirements. We must decide what
information should be processed by the application, how to represent this
information, how to distribute it among files, how to index the files, and how to
relate them. Needless to say, it is impossible to predict all future requirements,
so we must be prepared to alter the application’s database structure later: we
may need to add or delete fields, move fields from one file to another, and
create new files or indexes.

We don’t normally access data records directly, but through an index.
Indexes, thus, are service files, means to access the data files. Indexes fulfil two
essential functions: they allow us to identify a specific record, and to scan a
series of records in a specific sequence. It is through keys that indexes perform
these tasks. The key is one of the fields that make up the record, or a set of
several fields. Clearly, if the combination of values present in these fields is
different for each record in the file, each record can be uniquely identified. In
addition, key uniqueness allows us to scan the records in a particular sequence
– the sequence that reflects the current key values – regardless of their actual,

688 the relational database model chapter 7

physical sequence on disk. When the key is one field, the value present in the
field is the value of the key. When the key consists of several fields, the value
of the key is the combination of the field values, in the order in which they
make up the key. The records are scanned, in effect, in a sorted sequence.
For example, if the key is defined as the set of three fields, A, B, and C, the
sorting sequence can be expressed as either “by A by B by C” or “by C within
B within A.”

Note that if we permit duplicate keys – if, that is, some combinations of
values in the key fields are not unique – we will be unable to identify the
individual records within a set of duplicates. Such an index is still useful,
however, if all we need is to scan those records. The scanning sequence within
a set of duplicate records is usually the order in which they were added to the
file. Thus, for scanning too, if we want better control we must ensure key
uniqueness.

An especially useful feature is the capability to create several indexes for the
same data file. This permits us to access the same records in different ways –
scan the file in one sequence or another, or read a record through one key or
another. For example, we may scan a sales history file either by order number
or by product number; or, we may search for a particular sales record through
a key consisting of the customer number and order number, or through a key
consisting of the product number and order date.

Another useful indexing feature is the option of descending keys. The
normal scanning sequence is ascending, from low to high key values; but some
file systems also allow indexes that scan records from high to low key values.
Any one field, or all the fields in the key, can then be either ascending or
descending. Simply by scanning the data file through such an index we can list,
for instance, orders in ascending sequence by customer number, but within
each customer those orders with a higher amount first; or we can list the
sales history by ascending product number, but within each product by
descending date (so those sold most recently come first), and within each date
by ascending customer number. A related indexing feature, useful in its own
right but also as an alternative to descending keys, is the capability to scan
records backward.

In addition to indexed data files, most file management systems support
two other types of files, relative and sequential. These files provide simpler
record access, and are useful for data that does not require an elaborate
indexing scheme. In relative data files, we access a record by specifying its
relative position in the file (first, second, third, etc.). These files are useful,
therefore, in situations where the individual records cannot, or need not, be
identified by the values present in their fields (to store the entries of a large
table, for instance). Sequential data files are organized as a series of consecutive

the basic file operations 689chapter 7

records, which can only be accessed sequentially, starting from the beginning.
These files are useful in situations where we don’t need to access individual
records directly, and where we normally read the whole file anyway (to store
data that has no specific structure, for instance). Text data, too, is usually stored
in sequential files. I will not discuss further the relative and sequential files. It
is the indexed data files that interest us, because it is only their operations that
the relational database systems are attempting to replace with high-level
operations.

�

File systems provide at least two types of fields, alphanumeric (or alpha, for
short) and numeric. And, since these types are the same as the memory
variables supported by most high-level languages (COBOL, in particular),
database fields and memory variables can be used together, and in the same
manner, in the application. In alphanumeric fields, data is stored as character
symbols, so these fields are useful for names, addresses, descriptions, notes,
identifiers, and the like. When these fields are part of an indexing key, the
scanning sequence is alphabetical. In numeric fields, the data is stored as
numeric values, so these fields can be used directly in calculations. Numeric
fields are useful for any data that can be expressed as a numeric value:
quantities, dollar amounts, codes, and the like. When part of an indexing key,
the scanning sequence is determined by the numeric value.

Some file systems provide additional field types. Date fields, for instance,
are useful for storing dates. In the absence of date fields, we must store dates in
numeric fields, as six- or eight-digit values representing the combination of the
month, day, and year; alternatively, we can store dates as values representing
the number of days elapsed since some arbitrary, distant date in the past. (The
latter method is preferable, as it simplifies date calculations, comparisons, and
indexing.) Another field type is the binary field, used to store such data as text,
graphics, and sound; that is, data which can be in any format whatsoever
(hence “binary,” or raw), and which may require many thousands of bytes.
(Because of its large size, this data is stored in separate files, and only pointers
to it are kept in the field itself.)

3

3
Now that we have examined the structure of indexed data files, let us review
the basic file operations. Six operations, combined with the iterative and
conditional constructs of high-level languages, are all we need in order to use

690 the relational database model chapter 7

indexed data files. I will first describe these operations, and then show how
they are combined with language features to implement various requirements.
The names I use for the basic operations are taken from COBOL. (There may
be some small variations in the way these operations are implemented in a
particular file system, or in a particular version of COBOL; for example, in the
way multiple indexes or duplicate keys are supported.)

The following terms are used in the description of the file operations: The
current index is the index file specified in the operation. File is a data file;
although the file actually specified in the operation is an index file, the record
read or written belongs to the data file (we always access a data file through one
of its indexes). Record area is a storage area – the portion of memory where the
fields that make up the record are specified; each file has its own record area,
and this area is accessed by both the file system and the application (the
application treats the fields as ordinary memory variables). Key is the field or
set of fields, within the record area, that was defined as the key of a particular
index; the current key is the key that was defined for the current index. The
record pointer is an indicator maintained by the file system to identify the next
record in the scanning sequence established by a particular index; each index
has its own pointer, and the current pointer is the pointer corresponding to the
current index.

WRITE: A new record is added to the file. Typically, the data in this record
consists of the values previously placed by the application into the fields that
make up the file’s record area. The values present in the fields that make up the
current key will become the new record’s key in the current index. If the file
has additional indexes, the values in their respective key fields will become
the keys in those indexes. All indexes are updated together: following this
operation, the new record can be accessed either through the current index or
through another index. If one of the file’s indexes does not permit duplicate
keys and the new record would cause such a condition, the operation is
aborted and the system returns an error code (so that the application can take
appropriate action).

REWRITE: The data in the record area replaces the data in the record cur-
rently in the file. Typically, the application read previously the record into the
record area through the current index, and modified some of the fields. The
record is identified by the current key, so the fields that make up this key
should not be modified. If there are other indexes, the fields that make up their
keys may be modified, and REWRITE will update those indexes to reflect the
change. REWRITE, however, can also be used without first reading the existing
record: the application must place some values in all the fields, and REWRITE

functions then like WRITE, except that it replaces an existing record. In either
case, if no record is found with the current key, or if one of the file’s indexes

the basic file operations 691chapter 7

does not permit duplicate keys and the modified record would cause such a
condition, the operation is aborted and the system returns an error code.

DELETE: The record identified by the current key is removed from the
file. Only the values present in the current key fields are important for the
operation; the rest of the record area is ignored. The application, therefore, can
delete a record either by reading it first into the record area (through any one of
its indexes) or just by placing the appropriate values into the current key fields.
If no record is found with the current key, the system returns an error code.

READ: The record identified by the current key is read into the record area.
The current index can be any one of the file’s indexes, and only the values
present in the current key fields are important for the operation. Following this
operation, the fields in the record area contain the values present in that record
in the file. If no record is found with the current key, the system returns an
error code.

START: The current pointer is positioned at the record identified by the
current key. The current index can be any one of the file’s indexes, and only
the values present in the current key fields are important for the operation. The
specification for the operation includes a relation like equal, greater, or greater
or equal, so the application need not indicate a valid key; the record identified
is simply the first one, in the scanning sequence of the current index, whose
key satisfies the condition specified (for example, the first one whose key is
greater than the values present in the current key fields). If no record in the file
satisfies that condition, the system returns an error code.

READ NEXT: The record identified by the current pointer is read into the
record area. This operation, in conjunction with START, makes the file scanning
feature available to the application. The application must first perform a START

for the current index, in order to set the current pointer at the first record in
the series of records to be scanned. (To indicate the first record in the file, null
values are typically placed in the key fields, and the condition greater is
specified.) READ NEXT will then read that record and advance the pointer to the
next record in the scanning sequence of the current index. The subsequent
READ NEXT will read the record indicated by the pointer’s new position and
advance the pointer to the next record, and so on. Through this process, then,
the application can read a series of consecutive records without having to know
their keys.Ê Typically, READ NEXT is part of a loop, and the application knows
when the last record in the series is reached by checking a certain condition
(for example, whether the key exceeds a particular value). If the pointer was
already positioned past the last record in the file (the end-of-file condition), the

Ê Since no search is involved, it is not only simpler but also faster to read a record in this
fashion, than by specifying its key. Thus, even when the keys are known, it is more efficient
to read consecutive records with READ NEXT than with READ.

692 the relational database model chapter 7

system returns an error code. (Simply checking for this code after each READ

NEXT is how applications typically handle the situation where the last record in
the series is also the last one in the file.)

�

These six operations form the minimal practical set of file operations: the set
of operations that are both necessary and sufficient for using indexed data files
in serious applications.Ë I will demonstrate now, with a few examples, how the
basic file operations are used in conjunction with other types of operations to
implement typical requirements. Again, I am describing COBOL constructs
and statements, but the implementation would be very similar in other high-
level languages.

A common requirement involves the display of data from a particular
record: the user identifies the record by entering the value of its key (customer
number, part number, invoice number, and the like), and the application
responds by retrieving that record and displaying some of its fields. When the
key consists of several fields, the user must enter several values. To implement
this operation in the application, all we need is a READ: we place the values
entered by the user into the current key fields, perform the READ, and then
display for the user various fields from the record area. If, however, the system
returns an error code, we display a message such as “record not found.”

If the user wants to modify some of the fields in a particular record, we start
by performing a READ and displaying the current values, as before; but then we
allow the user to enter the new values, place them in the appropriate fields in
the record area, and perform a REWRITE. And if what the user wants is to delete
a particular record, we usually start with a READ, display some of the fields to
allow the user to confirm it is the right record, and then perform a DELETE.

Lastly, to add a record, we display blank fields and allow the user to enter
their actual values. (In a new record, some fields may have null values, or some
default values; so these fields may be left out, or just displayed, or displayed
with the option to modify them.) The user must also enter the value of the
key fields, to identify the new record. We then perform a WRITE, and the
system will add this record to the file. If, however, it returns an error code, we
display a message such as “duplicate key” to tell the user why the record
could not be added.

Ë I will not discuss here the various support operations – opening and closing files,
locking and unlocking records in multiuser applications, and the like. Since there is little
difference between these operations in file systems and in database systems, they have no
bearing on my argument. Many of these operations can be performed automatically, in fact,
in both types of systems.

the basic file operations 693chapter 7

Examples of this type of record access are found in the file maintenance
operations – those operations that permit the user to add, delete, and modify
records in the database. And, clearly, any maintenance requirement can be
implemented through the basic file operations: any file, record, and field in the
database can be read, displayed, or modified. If we must restrict this freedom
(permit only a range of values for a certain field, permit the addition or
deletion of a record only under certain conditions, etc.), all we have to do is add
appropriate checks; then, if the checks fail, we bypass the file operation and
display a message.

So far I have discussed the interactive access of individual records, but the
basic file operations are used in the same way when the user is not directly
involved. Thus, if we need to know at some point in the application the
quantity on hand for a certain part, we place the part number in the key field,
perform a READ, and then get the value from the quantity field; if we want to
add a new transaction to the sales history file, we place the appropriate values
in the key fields (customer number, invoice number, etc.) and in the non-key
fields (date, price, quantity, etc.), and perform a WRITE; if we want to update a
customer’s balance, we place the customer number in the key field, perform a
READ, calculate the new value, place it in the balance field, and then perform
a REWRITE. Again, any conceivable requirement can be implemented through
the basic file operations.

�

Accessing individual records, as described above, is one way of using indexed
data files. The other way is by scanning records, an operation accomplished
with an iterative construct based on START and READ NEXT. This construct,
which may be called the basic file scanning loop, is used every time we read a
series of records sequentially through an index. The best way to illustrate this
loop is with a simple example (see figure 7-13). The loop here is designed to
read the PART file in ascending part number sequence. The indexing key, P-KEY,
consists of one field, P-NUM (part number). START positions the record pointer
so that the first record read has a part number no less than P1, and the

Figure 7-13

 MOVE P1 TO P−NUM START PART KEY>=P−KEY INVALID GO TO L4.

L3. READ PART NEXT END GO TO L4. IF P−NUM>P2 GO TO L4.

 IF P−QTY<Q1 GO TO L3.

 [various operations]
 GO TO L3.

L4.

694 the relational database model chapter 7

condition >P2 terminates the loop at the first record with a part number
greater than P2. The loop will read, therefore, only the range of records, P1

through P2, inclusive.Ì In addition, within this range, the loop selects only
those records where the quantity field, P-QTY, is no less than a certain value, Q1.
The operations following the selection conditions will be performed for every
record that satisfies these conditions. The labels L3 and L4 delimit the loop.Í

We rarely perform the same operations with all the records in a file, so the
selection of records is a common requirement in file scanning. The previous
example illustrates the two selection methods – based on key fields, and on
non-key fields. The method based on key fields is preferable when what we
select is a range of records, as the records left out don’t even have to be read.
This can greatly reduce the processing time, especially if the file is large and the
range selected is relatively small. In contrast, when the selection is based on
non-key fields, each record in the file must be read. This is true because the
value of non-key fields is unrelated to the record’s position in the scanning
sequence, so the only way to know what the values are is by reading the
record. The two methods are often combined in the same loop, as illustrated
in the example.

It should be obvious that these two selection methods are completely
general, and can satisfy any requirement. For example, if the range must
include all the records in the file, we specify null values for the key fields in
START and omit the test for the end of the range. The loop also deals correctly
with the case where no records should be selected (because there are none in
the specified range, or because the selection based on non-key fields excludes
all those in the range). It must be noted that the selection conditions can be as
complex as we need: they can involve several fields, or fields from other files
(by reading in the loop records from those files), or a combination of fields,
memory variables, and constants. A complex condition can be formulated
either as one complex IF statement or as several consecutive IF statements. And,

Ì Note the END clause in READ NEXT, specifying the action to take if the end of the file is
reached before P2. (INVALID and END are the abbreviated forms of the COBOL keywords
INVALID KEY and AT END. Similarly, GO TO can be abbreviated in COBOL as GO.)

Í It is evident from this example that the most effective way to implement the basic file
scanning loop in COBOL is with GO TO jumps. This demonstrates again the absurdity of
the claim that GOTO is harmful and must be avoided (the delusion we discussed under
structured programming). Modifying this loop to avoid the GOTOs renders the simple
operations of file scanning and record selection complicated and abstruse; yet this is exactly
what the experts have been advocating since 1970. It is quite likely that the complexity
engendered by the delusions of structured programming contributed to the difficulty
programmers had in using file operations, and was a factor in the evolution of database
systems: because they tried to avoid the complications created by one pseudoscience,
programmers must now deal with the greater complications created by another.

the basic file operations 695chapter 7

in addition to the conditions that affect all the operations in the loop, we can
have conditions within the loop; any portion of the loop, therefore, can be
restricted to certain records.

Let us see now how the basic file scanning loop is used to implement various
file operations. In a typical file listing, or query, or report, the scanning
sequence and the record selection criteria specified by the user become the
index and the selection conditions for the scanning loop. And within the loop,
for each record selected, we show certain fields and perhaps accumulate their
values. Typically, one line is printed or displayed for each record, and the totals
are shown at the end. When the indexing key consists of several fields, their
value will change hierarchically, one within another, in the sorting sequence of
the index; thus, we can have various levels of subtotals by noting within the
loop when the value of these fields changes. In an orders file, for instance, if
the key consists of order number within customer number, and if we need the
quantity and amount subtotals for the orders belonging to each customer, we
must show and then clear these subtotals every time the customer number
changes.

Another use of the scanning loop is for modifying records. The reading and
selection are performed as before, but here we modify the value stored in
certain fields; then we perform a REWRITE (at the end of the loop, typically).
This is useful when we have to modify a series of records according to some
common logic. Not all the selected records need to be modified, of course; we
can perform some calculations and display the results for all the records in a
given range, for instance, but modify only those where the fields satisfy a
certain condition. Rather than modify records, we can use the scanning loop
to delete certain records; in this case we perform a DELETE at the end of the loop.

An interesting use of indexed data files is for sorting. If, for instance, we
need a listing of certain values in a particular scanning sequence (values
derived from files or from calculations), we create a temporary data file where
the indexing key is the combination of fields for that scanning sequence, while
the non-key fields are the other values to be listed. All we have to do then is
perform a WRITE to add a record to the temporary file for each entry required
in the listing. The system will build for us the appropriate index, and, once
complete, we can scan the temporary file in the usual manner. Similarly, if we
need to scan a portion of a data file in a certain sequence, but only occasionally,
then instead of having a permanent index for that sequence we create a
temporary data file that is a subset of the main data file: we read the main data
file in a loop through one of its indexes, and for each selected record we copy
the required fields to the record of the temporary file and perform a WRITE.

If we want to analyze certain fields in a data file according to the value
present in some other fields (total the quantity by territory, total various

696 the relational database model chapter 7

amounts by the combination of territory and category, etc.), we must create a
temporary data file where the indexing key is the field or combination of
fields by which we want to group the records (the analysis fields in the main
data file), while the non-key fields are the values to be totaled (the analyzed
fields). We read the main file in a loop, and, for each record, we copy the
analysis values and the analyzed values to the respective fields in record of
the temporary file. We then perform a WRITE for this file and check the return
code. If the system indicates that the record already exists, it means this
is not the first time that combination of key values was encountered; the
response then is to perform a READ, add the analyzed values to the respective
fields, and perform a REWRITE. In other words, we create a new record in the
temporary file only the first time a particular combination of analysis values is
encountered, and update that record on subsequent occasions. At the end, the
temporary file will contain one record for each unique combination of analysis
values. This concept is illustrated in figure 7-14.

In this example, a certain quantity in the CUSTOMER file is analyzed by
territory for the customers in the range C1 through C2. SORTFL is the temporary
file, and SR-RECORD is its record area. The simplicity of this operation is due to
the fact that much of the logic is implicit in the READ, WRITE, and REWRITE.

4

4
One of the most important uses of the file scanning loop is to relate files.
If we nest the scanning loop of one file within that of another, a logical
relationship is created between the two files. From a programming standpoint,
the nesting of file scanning loops is no different from the nesting of any
iterative constructs: the whole series of iterations through the inner loop is
repeated for every iteration through the outer loop. In the inner loop we can
use fields from both files; any operation, therefore, including the record
selection conditions, can depend on the record currently read in the outer loop.

Figure 7-14

 MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

 MOVE C−TER TO SR−TER MOVE C−QTY TO SR−QTY.

 WRITE SR−RECORD INVALID READ SORTFL

 ADD C−QTY TO SR−QTY REWRITE SR−RECORD.

 GO TO L3.

L4.

the basic file operations 697chapter 7

Figure 7-15 illustrates this concept. The outer loop scans the CUSTOMER file
and selects the range of customer numbers C1 through C2. The indexing key,
C-KEY, consists of one field, C-NUM (customer number). Within this loop, in
addition to any other operations performed for each customer record, we
include a loop that scans the ORDERS file. The indexing key here, O-KEY, consists
of two fields, O-CUS (customer number) and O-ORD (order number), in this
sorting sequence. Thus, to restrict the inner loop to the orders belonging to one
customer, we select only the range of records where the customer number
equals the one currently read in the outer loop, while allowing the order
number to be any value. (Note that the terminating condition, “IF O-CUS

NOT=C-NUM,” could be replaced with “IF O-CUS>C-NUM,” since the first O-CUS read
that is not equal to C-NUM is necessarily greater than it.) The inner loop here
selects all the orders for the customer read in the outer loop; but we could have
additional selection conditions, based on non-key fields, as in figure 7-13 (for
example, to select only orders in a certain date range, or over a certain amount).

Although most file relations involve only two files, the idea of loop nesting
can be used to relate hierarchically any number of files, simply by increasing
the number of nesting levels. Thus, by nesting a third loop within the second
one and using the same logic, the third file will be related to the second in
the same way that the second is related to the first. With two files, we saw, the
second file’s key consists of two fields, and the range selected includes the
records where the first field equals the first file’s key. With three files, the third
file’s key must have three fields, and the range will include the records where
the first two fields equal the second file’s key. (The keys may have additional
fields; two and three are the minimum needed to implement this logic.)

To illustrate this concept, figure 7-16 adds to the previous example a loop to
scan the LINES file (the individual item lines associated with each order).

Figure 7-15

 MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

 [various operations]
 MOVE C−NUM TO O−CUS MOVE 0 TO O−ORD.

 START ORDERS KEY>O−KEY INVALID GO TO L34.

L33. READ ORDERS NEXT END GO TO L34. IF O−CUS NOT=C−NUM GO TO L34.

 [various operations]
 GO TO L33.

L34.

 [various operations]
 GO TO L3.

L4.

698 the relational database model chapter 7

If ORDERS has fields like customer number, order number, date, and total
amount, which apply to the whole order, LINES has fields like item number,
quantity, and price, which are different for each line. Its indexing key consists
of customer number, order number, and line number, in this sorting sequence.
And the third loop isolates the lines belonging to a particular order by selecting
the range of records where the customer and order numbers equal those of the
order currently read in the second loop, while the line number is any value.
Another example of a third nesting level is a transaction file, where each record
is an invoice, payment, or adjustment pertaining to an order, and the indexing
key consists of customer number, order number, and transaction number.Î

Î Note, in figures 7-13 to 7-16, the numbering system used for labels in order to make the
jumps self-explanatory (as discussed under the GOTO delusion, pp. 621–624).

Note that in the sections marked “various operations” we can access fields
from all the currently read records: in the outer loop, fields from the current
CUSTOMER record; in the second loop, fields from the current CUSTOMER and
ORDERS records; and in the inner loop, fields from the current CUSTOMER,
ORDERS, and LINES records.

Note also that the sections marked “various operations” may contain
additional file scanning loops; in other words, we can have more than one

Figure 7-16

 MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

 [various operations]
 MOVE C−NUM TO O−CUS MOVE 0 TO O−ORD.

 START ORDERS KEY>O−KEY INVALID GO TO L34.

L33. READ ORDERS NEXT END GO TO L34. IF O−CUS NOT=C−NUM GO TO L34.

 [various operations]
 MOVE O−CUS TO L−CUS MOVE O−ORD TO L−ORD MOVE 0 TO L−LINE.

 START LINES KEY>L−KEY INVALID GO TO L334.

L333. READ LINES NEXT END GO TO L334.

 IF NOT(L−CUS=O−CUS AND L−ORD=O−ORD) GO TO L334.

 [various operations]
 GO TO L333.

L334.

 [various operations]
 GO TO L33.

L34.

 [various operations]
 GO TO L3.

L4.

the basic file operations 699chapter 7

scanning loop at a given nesting level. For instance, by creating two consecutive
third-level loops, we can scan first the lines and then the transactions of the
order read in the second-level loop.

The arrangement where the key used in the outer loop is part of the key
used in the inner loop, as in these examples, is the most common and the most
effective way to relate files, because it permits us to select records through their
key fields (and to read therefore only a range of records). We can also relate
files, though, by using non-key fields to select records (when it is practical to
read the entire file in the inner loop).

Lastly, another way to relate files is by reading within the loop of one file just
one record of another file, with no inner loop at all (or, as a special case,
reading just one record in both files, with no outer loop either). Imagine that
we are scanning an invoice file where the key is the invoice number and one of
the key or non-key fields is the customer number, and that we need some data
from the customer record – the name and address fields, for instance. (This
kind of data is normally stored only in the customer record because, even
though required in many operations, it is the same for all the transactions
pertaining to a particular customer.) So, to get this data, we place the customer
number from the currently read invoice record into the customer key field, and
perform a READ. All the customer fields are then available within the loop, along
with the current invoice fields.

�

The relationship just described, where several records from one file point to
the same record in another file, is called many-to-one relationship. And the
relationship we discussed previously, where one record from the first file
points to several records in the second file (because several records are read in
the inner loop for each record read in the outer loop) is called one-to-many
relationship. These two types of file relationships are the most common, but
the other two, one-to-one and many-to-many, are also important.

We have a one-to-one relationship when the same field is used as a key in
two files. For example, if in addition to the customer file we create a second file
where the indexing key is the customer number (in order to store some of the
customer data separately), then each record in one file corresponds to one
record in the other. And we have a many-to-many relationship when one
record in the first file points to several records in the second one, and at the
same time one record in the second file points to several records in the first
one. (We will study the four types of file relationships in greater detail later; see
pp. 752–755.)

To understand the many-to-many relationship, imagine a factory where a

700 the relational database model chapter 7

number of different products are being built by assembling various parts from
a common inventory. Thus, each product is made from a number of different
parts, and at the same time a part may be used in different products. The
product file has one record for each product, and the key is the product
number. And the part file has one record for each part, and the key is the
part number. We can use these files separately in the usual manner, but to
implement the many-to-many relationship between products and parts we
need an additional file – a service file for storing the cross-references. This file
is a dummy data file that consists of key fields only. It has two indexes: in the
first one the key is the product number and the part number, and in the second
one it is the part number and the product number, in these sorting sequences.
In the service file, therefore, there will be one record for each pair of product
and part that are related in the manufacturing process (far more records,
probably, than there are either products or parts). Now we can scan the product
file in the outer loop, and the service file, through its first index, in the inner
loop; or, we can scan the part file in the outer loop, and the service file, through
its second index, in the inner loop. Then, by selecting in the inner loop a range
of records in the usual manner, we will read in the first case the parts used by
a particular product, and in the second case the products that use a particular
part. What is left is to perform a READ in the inner loop using the part or
product number, respectively, in order to read the actual records.

The Lost Integration

The Lost Integration

The preceding discussion was not meant to be an exhaustive study of indexed
data files. My main intent was to show that any conceivable database require-
ment can be implemented with file operations, and that this is a fairly easy
programming challenge: every one of the examples we examined takes just a
few statements in COBOL. We only need to understand the two ways of using
indexes (reading individual records or scanning a range of records) and the
two ways of selecting records (through key fields or non-key fields). Then,
simply by combining the basic file operations with the other operations
available in a programming language, we can access and relate the files in the
database in any way we like.

So the difficulties encountered by programmers are not caused by the
basic file operations, nor by the selection of records, nor by the file scanning
loops. The difficulties emerge, rather, when we combine file operations, and
when we combine them with the other types of operations required by the
application. The difficulties, in other words, are due to the need to deal with

the lost integration 701chapter 7

interacting software structures. Two kinds of structures, and hence two kinds
of interactions, are generated: one through the file relationships we discussed
earlier (one-to-many, many-to-many, etc.), the other through the links created
between the application’s elements by the file operations.

Regarding the first kind of structures, the file relationships are easy to
understand individually, because we can view them as simple hierarchical
structures. If we depict the nesting of files as a structure, each file can be seen
as a different level of the structure, and its records as the various elements
which make up that level. The relationship between files is then the rela-
tionship between the elements of one level and the next. But, even though
each relationship is hierarchical, most files take part in several relationships,
through different fields. In other words, a record in a certain file can be an
element in several structures at the same time, so these structures interact. The
totality of file relationships in the database is a complex structure.

As for the second kind of structures, we already know that the file opera-
tions give rise to processes based on shared data (see pp. 351–353). So they link
the application’s elements through many structures – one structure for each
field, record, or file that is accessed by several elements. Thus, in addition to
the interactions due to the file relationships, we must cope with the interactions
between the structures generated by file operations. And we must also cope
with the interactions between these structures and the structures formed by
the other types of processes – practices, subroutines, memory variables, etc.
To implement database requirements we must deal with complex software
structures.

When replacing the basic file operations with higher-level operations, what
are the database experts trying to accomplish? All that a database system can
do is replace with a built-in process the two or three statements that constitute
the use of a basic file operation. The experts misinterpret the difficulty that
programmers have in implementing file operations as the problem of dealing
with the relatively low levels. But, as we saw, the difficulty is not due to the
individual file operations, nor to the individual relationships. The difficulty
emerges when we deal with interacting operations and relationships, and with
their interaction with the rest of the application. And these interactions cannot
be eliminated; we must have them in a database system too, if the application
is to do what we want it to do. Even with a database system, then, the difficult
part of database programming remains. The database systems can perhaps
replace the easy challenges – the individual operations; but they cannot
eliminate the difficult part – the need to deal with interacting structures.

What is worse, database systems make the interactions even more complex,
because some of the operations are now in the application while others are in
the database system. The original idea was to have database functions akin to

702 the relational database model chapter 7

the functions provided by a mathematical library; that is, entities of a high level
of abstraction, which interact with the application only through their input and
output. But this is impossible, because database operations must interact with
the rest of the application at a lower level – at the level of fields, variables, and
conditions. Thus, the level of abstraction that a database system can provide
while remaining a practical system is not as high as the one provided by a
mathematical library. We cannot extract, for example, a complete file scanning
loop, with all the operations in the loop, and move it into a database system –
not if we want to retain the freedom of implementing any scanning loops and
operations.

�

All we needed before was the six basic file operations. The database operations,
and their interaction with the rest of the application, could then be imple-
mented with the same programming languages, and with the same methods
and principles, that we use for the other operations in the application. With a
database system, on the other hand, we need new and complicated principles,
languages, rules, and methods; we must deal with a new kind of operations in
the database system, plus a new kind of operations in the application, the latter
necessary in order to link the application to the database system. So, in the end,
the difficulties faced by programmers in implementing database operations are
even greater than before.

It is easy to see why the basic file operations are both necessary and
sufficient for implementing database operations: for most applications –
business applications, in particular – they are just the right level of abstraction.
The demands imposed by our applications rarely permit us to move to higher
levels, and we rarely need lower ones. An example of lower-level file operations
is the requirement for a kind of fields, indexes, or records that is different from
the one provided by the standard data files. And, in the rare situations where
such a requirement is important, we can implement it in a language like C.
Similarly, in those situations where we can indeed benefit from higher-level
operations, we can create them by means of subroutines in the same language
as the application itself: we design the appropriate combination of basic file
operations and flow-control constructs, store it as a separate module, and
invoke it whenever we need that particular combination.

For the vast majority of applications, however, we need neither lower nor
higher levels, since the level provided by the basic file operations is just right.
This level is similar to the level provided, for general programming require-
ments, by our high-level languages. With the features found in a language like
COBOL, for instance, we can implement any business application. Thus, it

the lost integration 703chapter 7

is no coincidence that, in conjunction with the operations provided by a
programming language, the basic file operations can be used quite naturally to
implement practically all database operations, and also to link these operations
to the other types of operations: iterative constructs are just right for scanning
a data file sequentially through one of its indexes; nested iterations are just
right for relating files hierarchically; conditional constructs are just right for
selecting records; and assignment constructs are just right for moving data
between fields, and between fields and memory variables. It is difficult to find
a single database operation that cannot be easily and naturally implemented
with the constructs found in the traditional languages.

This flexibility is due to the correct level of abstraction of both the basic file
operations and the traditional languages. This level is sufficiently low to make
all conceivable database operations possible, and at the same time sufficiently
high to make them simple and convenient – for an experienced programmer,
at least. We can so easily implement any database requirement using ordinary
features, available in most languages, that it is silly to search for higher-level
operations.

High-level database operations offer no benefits, therefore, for two reasons:
first, because we can so easily implement database requirements using the basic
file operations, and second, because it is impossible to have built-in operations
for all conceivable situations. No matter how many high-level operations we
are offered, and no matter how useful they are, we will always encounter
requirements that cannot be implemented with high-level operations alone.
We cannot give up the lower levels, thus, because we need them to implement
details, and because the links between database operations, and also between
database operations and the other types of operations, occur at the low level of
these details.

So the idea of higher levels is fallacious for database operations in the same
way it is fallacious for the other types of operations. This was also the idea
behind the so-called fourth-generation languages (see pp. 464–465). And, like
the 4GL systems, the relational systems became in the end a fraud.

The theorists start by promising us higher levels. Then, when it becomes
clear that the restriction to high levels is impractical, they restore – in the guise
of enhancements – the low levels. Thus, with 4GL systems we still use such
concepts as conditions, iterations, and assigning values to variables; in other
words, concepts of the same level of abstraction as those found in a traditional
language. It is true that these systems provide some higher-level operations (in
user interface, for instance), but they do not eliminate the lower levels. In any
case, even in those situations where operations of a higher level are indeed
useful, we don’t need these systems; for, we can always provide the higher levels
ourselves, in any language, through subroutines. Similarly, we will see in the

704 the relational database model chapter 7

present section, the relational database systems became practical only after
restoring the low levels; that is, the traditional file management concepts.

In conclusion, the software elites promote ideas like 4GL and relational
databases, not on the basis of any real benefits, but in order to deprive us of the
programming freedom conferred by the traditional languages. Their real
motive is to force us to depend on expensive and complicated development
systems, which they control.

�

I want to stress again that remarkable quality found in the basic file operations,
the fact that they are at the same level of abstraction as the operations provided
by the traditional programming languages. This is why we can so easily link
these operations and implement database requirements. One of the most
successful of all software concepts, this simple feature greatly simplifies both
programming and the resulting applications.

There is a seamless integration of the database and the rest of the application,
for both data and operations. The fields, the record area, and the record keys
function as both database entities and memory variables at the same time.
Database fields can be mixed freely with memory variables in assignments,
calculations, or comparisons. Transferring data between disk and memory is a
logical extension of the data transfers performed in memory. Most statements,
constructs, and methods we use in programming have the same form and
meaning for file operations as they have for the other types of operations;
iterative and conditional constructs, for example, are used in the same way to
scan and select records from a file as they are to scan and select items from an
array or table stored in memory.

Just by learning to use the six basic file operations, then, a programmer
gains the means to design and control databases of any size and complexity.
The most difficult part of this work is handled by the file management system,
and what is left to the programmer is not very different from the challenges he
faces when dealing with any other aspect of the application.

The seamless integration of the database and the application is such an
important feature that, had we not already had it in the traditional file
operations, we could have rightly called its introduction today a breakthrough
in programming techniques. The ignorance of the academics and the practi-
tioners is betrayed, thus, by their lack of appreciation of a feature that has been
widely available (through COBOL, for instance) since the 1960s. Instead of
studying it and learning how to make the most of it, the software experts have
been promoting the relational model, whose express purpose is to eliminate the
integration. In their attempt to simplify programming, they restrict the links

the lost integration 705chapter 7

between files, and between files and the rest of the application, to high levels of
abstraction. But this is an absurd idea, as we saw, because serious applications
require low-level links too.

Then, instead of admitting that the relational model had failed, the experts
proceeded to reestablish the low-level links. For, in order to make the relational
model practical, they had to restore the integration – the very quality that the
relational model had tried to eliminate. But the only way to provide the low
levels and the integration now, as part of a database system, is through a series
of artificial enhancements. When examined, the new features turn out to be
nothing but particular instances of the important quality of integration:
they are means to link the database to the rest of the application in specific
situations. What is the very nature of the traditional file operations, and in
effect just one simple feature, is now being restored by annulling the relational
principles and replacing them with a multitude of complicated features. Each
new feature is, in reality, a substitute for a particular high-level software
element (a particular database function) that can no longer be implemented
naturally, by combining lower-level elements.

Like all development systems that promise a higher level of abstraction, the
relational systems became increasingly large and complicated because they
attempted to replace with built-in operations the infinity of alternatives that we
need at high levels but can no longer create by starting from low levels. Recall
the analogy of software with language: If we had to express ourselves through
ready-made sentences, instead of creating our own starting with words, we
would end up depending on systems that become increasingly large and
complicated as they attempt to provide all necessary sentences. But even with
thousands of sentences, we would be unable to express all possible ideas. So we
would spend more and more time trying to communicate through these
systems, even while being restricted to a fraction of the ideas that can be
expressed by combining words.

Thus, the endless problems engendered by relational database systems, and
the astronomic cost of using them, are due to the ongoing effort to overcome
the restrictions imposed by the relational model. They are due, in the end,
to the software experts, who not only failed to understand why this model is
worthless, but continued to promote it while its claims were being falsified.

The relational model became a pseudoscience when the experts decided to
“enhance” it, which they did by turning its falsifications into features (see
p. 225); specifically, by restoring the traditional data management concepts. It
is impossible, however, to restore the seamless integration we had before. So all
we have in the end is some complicated and inefficient database systems that
are struggling to emulate the simple, straightforward file systems.

706 the relational database model chapter 7

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 7: Software Engineering
	The Basic File Operations
	1
	2
	3
	4

	The Lost Integration

