
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 3: Pseudoscience
Section Consequences

This extract includes the book’s front matter
and part of chapter 3.

Copyright ©2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This section examines the corruptive effect of the mechanistic
ideology in universities, and shows how this ideology leads to
fraudulent theories in the human sciences and in software
development.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 3: Pseudoscience

Consequences Consequences
Academic Corruption

Academic Corruption

In the previous section we studied some of the more influential mechanistic
delusions of our time – modern pseudosciences pursued in universities and
accepted by large numbers of scientists. By discussing these pseudosciences
here I am making a statement; namely, that I view our software delusions as a
social phenomenon belonging to the same tradition. (The language delusions,
as a matter of fact, have contributed directly to the software delusions. We will
study this link in chapter 4.)

The theories of software engineering – the relational database model,
structured programming, object-oriented programming, and the like – are in

academic corruption 271chapter 3

the domain of programming what behaviourism, structuralism, or universal
grammar are in the human sciences: mechanistic delusions, naive attempts to
represent complex phenomena with exact models. They are the work of
academic bureaucrats: individuals who cannot make a real contribution to
their discipline or to society, and who hide their incompetence by imitating the
methods of the exact sciences. Through this imitation they appear to be
engaged in serious research, while pursuing in fact a pseudoscience.

One consequence of the mechanistic dogma, thus, is the intellectual corrup-
tion it fosters. These theories do not work, and they cannot possibly work; but
because mechanism is taken as unquestionable truth, each falsification is seen
as a challenge – the challenge to find ways to deny that it is a falsification. The
theory becomes then unfalsifiable: it changes from a naive hypothesis to a full-
scale system of belief, a pseudoscience.

This mechanistic culture is what allows now the software elites to deceive
society, with their mechanistic concepts. For it is in universities and other
research institutions that the software fantasies emerge: among individuals
whose programming experience is limited to textbook examples, to trivial
problems and neat solutions. To them, the possibility of finding exact models
for complex, real-world software phenomena is as certain as is the possibility
of finding exact models for complex psychological, social, or linguistic phe-
nomena to their colleagues in the human sciences. The software fantasies are
not so extraordinary once we recognize their grounding in the mechanistic
ideology, and their similarity to the other academic fantasies; nor is extraordi-
nary the dishonesty of their promoters and the evolution of the theories into
pseudosciences.

It is impossible to assess the price we pay for these mechanistic obsessions
and their ramifications. We cannot even imagine the progress we might have
made in the human sciences, had the effort wasted on futile mechanistic
theories been invested in other directions, more likely to increase our under-
standing of human minds and human relations; specifically, in theories that
attempt to explain whole human phenomena, rather than break them down
into simple and independent processes as if they were engineering projects.

Another consequence of our mechanistic obsessions is the prevention of
expertise and responsibility. Workers in all fields are expected to follow blindly
the principles of reductionism and atomism, rather than to search creatively
for solutions and explanations. Instead of seeking to increase and broaden their
knowledge, these two principles – which are taken as “the method of science”
– allow them to equate expertise with narrow specialization: knowing as little
as possible is perceived as a virtue, as a sign of professionalism. And if a narrow
domain still requires too much knowledge, workers invoke these principles
again and again, until they finally reach those low levels in the structure of

272 consequences chapter 3

knowledge where even the most ignorant people can be experts – levels where
they only need to deal with trivial and isolated problems.

This trend has affected all occupations that involve knowledge and skills,
but is especially noticeable in research work. Science has been redefined: an
individual is considered a great scientist simply for discovering a mechanistic
theory, regardless of whether the theory works or not. Thus, a mechanistic
culture rewards mediocrity and discourages creativity. To be successful in
academia, an individual must think like a bureaucrat and must accept blindly
the mechanistic doctrine. Moreover, creative individuals who could make an
important contribution are ignored, or see their work branded as “unscientific,”
simply because they reject the mechanistic principles and try to deal holistically
with complex phenomena.

And this trend is just as widespread in our software-related activities – in
universities, in business, and now even in our personal affairs. An individual is
considered knowledgeable simply for accepting the latest mechanistic software
concepts, regardless of whether these concepts are valid or not. To be successful
in a software-related career, an individual must have the temperament of a
bureaucrat, must restrict himself to mechanistic practices, and must display an
unwavering allegiance to whichever authority is supporting the doctrine of
software mechanism.

Psychologist Abraham MaslowÉ suggests that mechanistic beliefs are a sign
of immaturity and insecurity. Instead of seeking to understand the complex
reality, the mechanists prefer the comfort of artificial, narrow domains, where
it is easy to find theories: “Science, then, can be a defense. It can be primarily
a safety philosophy, a security system, a complicated way of avoiding anxiety
and upsetting problems. In the extreme instance it can be a way of avoiding life,
a kind of self-cloistering. It can become – in the hands of some people, at least
– a social institution with primarily defensive, conserving functions, ordering
and stabilizing rather than discovering and renewing. . . . The greatest danger of
such an extreme institutional position is that the enterprise may finally become
functionally autonomous, like a kind of bureaucracy, forgetting its original
purposes and goals and becoming a kind of Chinese Wall against innovation,
creativeness, revolution, even against new truth itself if it is too upsetting.”Ê

In many academic disciplines, and in our software pursuits, our culture
increasingly resembles the culture of primitive societies, or of the West during
the Dark Ages, or of totalitarian states. What characterizes these cultures is
their dogmatic value system, grounded on belief instead of logic. In our
culture the dogma is mechanism. This is a scientific rather than religious or

É Abraham H. Maslow, The Psychology of Science: A Reconnaissance (South Bend, IN:
Gateway, 1966). Ê Ibid., p. 33.

academic corruption 273chapter 3

political dogma, but its consequences are the same: intellectual stagnation; an
ignorant population susceptible to irrational ideas, and hence to deception and
propaganda; and, in the end, a society dominated by corrupt elites that exploit
these weaknesses.

�

In the following subsections, I want to discuss the social and political con-
sequences of mechanistic thinking. Specifically, I want to show that the
mechanistic theories promoted in our universities, even though invalid, are
shaping the future of our society – by fostering totalitarianism.

The reason we must study the consequences of mechanism is that the
belief in software mechanism has created the conditions for mechanistic
theories to be actually implemented in society. The concepts promoted by
mechanistic theories in sociology, psychology, and linguistics have undoubt-
edly influenced our world view, but they were never implemented on a large
scale. These theories may pervade the academic world, but they have no
direct application in business, or in politics, or in our social or personal affairs.Ë
The mechanistic software theories, on the other hand, promise immediate
benefits to everyone. They are appealing because they address the use and
programming of computers, and we now depend on computers in practically
every activity.

For example, corporate managers who have never heard of structuralism,
and who would probably dismiss its fantastic claims, accept software ideas
described as “solutions,” without realizing that these ideas are based on the
same mechanistic delusions as the structuralist theories. And liberal politi-
cians who have never heard of behaviourism, and who would never endorse
its totalitarian policies, accept the utopian promises of the “information
revolution,” without realizing that these promises are based on the same vision
as the behaviourist theories.

So we accept mechanistic software theories, which are just as worthless as
the traditional ones, not because we understand their principles better, but
because their claims address immediate concerns. And we do not recognize
their common totalitarian aspects any better than we do their common
mechanistic principles. Thus, to recognize the totalitarian tendencies of the
software theories, we must start by examining the totalitarian tendencies
of the traditional mechanistic theories. (These two types of theories are the
subject of the next two subsections.)

Ë We must remember, though, that totalitarian systems like Nazism and Communism
were founded on mechanistic social and economic theories. And, as we will see in chapter 8,
the democratic systems too are moving in this direction.

274 consequences chapter 3

The Traditional Theories

The Traditional Theories
1 1
What do all mechanistic delusions have in common? If we represent as
structures the phenomena they try to explain, then what they all claim is that
it is possible to account for all the values of the top element from the values of
the starting elements. For behaviourism, the starting elements are bits of
behaviour, and the top element comprises all possible behaviour patterns and
intelligent acts. For structuralism, the starting elements are bits of knowledge
or logic, and the top element comprises all human knowledge, accomplish-
ments, social customs, and institutions. For universal grammar, the starting
elements are words and elementary sounds, and the top element comprises all
valid sentences and some of the knowledge embodied in sentences. So these
theories claim that we can explain precisely and completely, starting with some
simple elements, all possible manifestations of the human phenomenon in
question – mental acts, social behaviour, linguistic competence, etc.

The significance of the claims is evident, therefore, when the phenomena
are seen as structures. We immediately notice that the theories describe simple
structures. They may use diagrams or equations rather than a structure; but we
know that if they attempt to provide a precise explanation, they are determinis-
tic models, so they could also be represented with a simple structure. And we
also know why these theories do not work: because the phenomena they try to
model can be usefully represented only with complex structures.

The fact that they do not work, thus, is not surprising. It is important to
note, however, the claim, or the expectation, that they work. The scientists
who defend these theories wish them to work. Specifically, they wish the
phenomena to be simple structures, and the top element to be precisely
describable in terms of the low-level elements. But if the phenomena are in
reality complex structures, if they are the result of interactions between the
simple structures the scientists recognize and some other structures, then what
these scientists do in effect is deny the importance of those other structures;
that is, they deny their bearing on the value of the high-level elements. And
what are those other structures? They are the phenomena created by human
minds: the knowledge, the experience, the creativity, the intuition of individual
human beings.

When behaviourists say that intelligent behaviour can be computed from
elementary units of behaviour, or when structuralists say that knowledge and
social customs can be computed from elementary bits of logic, or when
linguists say that sentences can be computed from words, what they claim in
effect is that there is nothing between the low levels and the high levels that is

the traditional theories 275chapter 3

unpredictable. They claim, thus, that we can describe the high levels in terms
of the low ones just as we describe the operation of a machine in terms of its
subassemblies and elementary parts.

But in the case of human beings and human societies, the high levels are
unpredictable; and this unpredictability is what we understand as creativity,
free will, and indeterminism. The indeterminism is caused by the complexity
of interacting structures: the knowledge structures formed in individual minds,
and the structures formed by many minds in a society. The structures studied
by behaviourists, structuralists, and linguists are indeed among the structures
that make up minds and societies. Taken alone, though, these structures
cannot explain entire human phenomena; and this is why their theories do
not work. In the end, the failure of the mechanistic theories constitutes
corroborating evidence (to use Popper’s principle) for non-mechanistic social
and psychological theories: for theories that endow human beings with free
will and unbounded creativity.

Mechanistic theories fail because they do not recognize the unique knowl-
edge structures that can develop in a mind. Thus, the failure of these theories
ought to enhance our respect for the potential of human beings, for the
creativity of each individual. Instead, the scientists insist that these are not
failures but merely setbacks, that they will eventually find mechanistic theories
of mind and society.

Our mechanistic culture has given rise to this incredible spectacle: in a
democratic society, in the name of science, renowned professors working in
prestigious universities believe it is their duty to prove that human beings have
no value. For, by denying the bearing that the knowledge structures present in
our minds have on the structures studied by their theories, these scientists deny
the unique contribution that each individual can make. By claiming that
human phenomena can be explained with mechanistic theories, they claim in
effect that these phenomena can be explained without taking into account the
knowledge structures developed by individual minds.

�

And this is not all. Although these theories do not work, the mechanists use
them to draw sweeping conclusions about man and society – the kind of
conclusions that one would draw if the theories did work. Specifically, they
maintain that human freedom and creativity are only illusions, prescientific
notions, not unlike the ancient beliefs that the earth is the centre of the
universe, or that Man was created in God’s image. Hence, just as science has
shown that the earth is merely another planet, and that Man is merely a higher
animal, we must trust science again and resign ourselves to the fact that we

276 consequences chapter 3

cannot be truly creative: everything we do is dictated by our genetic structure,
or by our environment, or by other factors over which we have no control.
Human beings are in reality nothing but machines – complicated ones perhaps,
but machines nevertheless.

Thus, Skinner could only confirm his behaviourist theory in contrived
laboratory experiments with rats and pigeons, but concluded that there is an
urgent need to apply this science of behaviour to the shaping of human minds
and societies. All human acts are the result of external influences, he says, and
it is a mistake to believe that we are free and responsible agents. So, rather than
allowing ourselves to be controlled by whoever has the power to influence us
– parents, teachers, friends, advertisers – it is best to allow a hardheaded
government and expert behaviourists do that. These elites would use objective
principles and rigorous methods to shape the personality of each individual
starting from birth, and thereby create a society of perfect citizens: “What we
need is a technology of behavior. . . . But a behavioral technology comparable in
power and precision to physical and biological technology is lacking.”É This is
where the science of behaviourism can help: the conditioning techniques that
seem to work for the rats and pigeons trapped in a Skinner box in a laboratory
must now be used for the people that make up modern society.

What prevents us from creating this progressive system is our democratic
prejudices; that is, our naive belief in human freedom and dignity – notions
that the science of behaviourism, according to Skinner, has shown to be
illusory anyway: “The conception of the individual which emerges from a
scientific analysis is distasteful to most of those who have been strongly
affected by democratic philosophies.”Ê Skinner was so confident in the poten-
tial of behaviourism to solve our social problems that he wrote a science-fiction
novel to depict the kind of society we could create through “behavioural
technology.”Ë

It is significant that Skinner’s ideas were very popular and became some-
what of a cult in America, especially among intellectuals. It is also significant
that most of those who rejected Skinner’s utopia did so because they found his
behavioural technology objectionable on humanistic, not scientific, grounds:
how outrageous that a professor from Harvard University is promoting
totalitarianism. Few realized that the first objection to behaviourism must be
that it is a pseudoscience, that it does not work, that it is founded on fallacious
concepts of mind and society. And what ought to be outrageous is that our
universities foster the corrupt environment where pseudoscientists like Skinner
can peddle their theories.

É B. F. Skinner, Beyond Freedom and Dignity (New York: Knopf, 1972), p. 5.
Ê B. F. Skinner, Science and Human Behaviour (New York: Free Press, 1965), p. 449.
Ë B. F. Skinner, Walden Two (New York: Macmillan, 1948).

the traditional theories 277chapter 3

The structuralist theories work no better than the behaviourist ones, but
their defenders do not hesitate to conclude that human freedom and creativity,
in the sense in which we generally understand them, are mere illusions.
When we acquire skills and knowledge, when we invent something or solve a
problem, when we develop social customs and institutions, all we do in reality
is select various acts from a predetermined range of alternatives – the range for
which our brains are biologically wired.

Thus, Lévi-Strauss held that the set of possible social customs is analogous
to the periodic table of chemical elements: all a society does when adopting a
certain custom is select, perhaps randomly, one of the slots available in this
table. And Piaget held that the mental development of children is analogous to
an increase in the number of levels in a hierarchical structure of binary
operations – the structure which is built into the human brain, and which,
ultimately, determines our mental capabilities. As individuals or as societies,
human beings can be no more creative or free than programmed computers.
What we like to think of as creativity and free will is only an illusion caused by
the large number of available alternatives.

�

The case of Chomsky and his universal grammar is especially interesting,
because Chomsky himself draws attention to the harmful influence that
theories of mind can have on social and political ideologies. He stresses that
the innateness hypothesis behind his linguistic theory postulates a view of
human nature in the rationalist tradition. Rationalist philosophers, starting
with Descartes, held that we possess certain mental capabilities simply by
being born human; and, although we acquire much knowledge later, our
innate capabilities restrict and structure forever what we can know. The rival
philosophical school of empiricism, on the other hand, holds that human
minds are empty at birth, that everything we know comes from interacting
with our environment, and that there are no innate restrictions on the kind of
knowledge we can acquire.

Chomsky points out that the rationalist view is conducive to ideologies
that defend freedom, equality, and respect for the individual, whereas the
empiricist view is conducive to ideologies that support authoritarianism,
inequality, and exploitation. Specifically, if human beings are empty organisms
at birth, as the empiricists say, this means that by their very nature they have
no rights; so there is nothing wrong in moulding them to fit a certain policy.
Thus, theories like behaviourism, ideologies like Nazism and Communism,
and even democratic systems where various elites are permitted to control
society, demonstrate the danger of the empiricist view: the leaders can invoke

278 consequences chapter 3

the idea of human nature to justify the control of knowledge. Rationalists, on
the contrary, respect the fundamental rights of the individual – the right
to live free, to develop any personality, to pursue any lifestyle – simply by
recognizing that human beings possess from birth some important and
immutable faculties.Ì

Accordingly, says Chomsky, while rationalism appears to postulate a more
limited view of human capabilities, it is in fact the one philosophy that defends
individual freedom and creativity. He admits that the hypothesis of an innate
language faculty restricts the types of languages that humans can acquire, and
the types of sentences – and hence also the types of ideas – that they can create;
and he admits that, if everything we can know is governed by innate faculties,
similar restrictions apply to all other kinds of knowledge. But, he reassures us,
we needn’t worry that these restrictions limit our creativity or freedom,
because we still have a very large number – indeed, an infinite number – of
alternatives within the boundaries of innate capabilities. We can create an
infinite number of sentences, for instance, despite the severe restrictions
imposed by universal grammar.

Chomsky’s thesis, however, is fallacious and dangerous. We can agree with
him that the concept of empiricism has been distorted and abused by certain
ideologies. And, even without accepting his hypothesis of innate faculties, we
can agree that our mental capabilities are structured and restricted by certain
biological characteristics. But these facts do not warrant his conclusions.

Chomsky’s mistake is to assume that, if our mental capabilities lie within a
certain range, we should be able to discover a deterministic model that
accounts for all possible human acts (because these acts necessarily derive
from that range of capabilities). His mechanistic theory of mind compels
him to degrade the definition of creativity: from the capacity to perform
unpredictable acts, to the capacity to select an act from a predetermined range
of alternatives. The traditional view is that creativity gives rise to an infinity of
alternatives, and, in particular, to alternatives that were not known in advance.
Chomsky, though, believes that we can account for these alternatives – simply
by inventing a deterministic model that generates an infinity of sentences,
ideas, and types of knowledge. But the infinity displayed by a deterministic
model is only a fraction of the real infinity of alternatives that human minds
can develop. (This, obviously, is why his theory doesn’t work.)

Chomsky speaks eloquently of human freedom and creativity, but at the
same time he attempts to determine with precision all the manifestations of
creativity. He seems oblivious to the self-contradiction. For, if there were ways

Ì See, for example, Chomsky’s Language and Politics (Montréal: Black Rose Books, 1988),
pp. 594–595, and Reflections on Language (New York: Pantheon Books, 1975), pp. 127–133.

the traditional theories 279chapter 3

to account for all possible human acts, it would be absurd to call the quality
involved in performing these acts “creativity.” No surprises would be possible
– no exceptions, no novelty, no originality. Anything an individual would do
could be shown to be derivable independently of that individual. To put this
differently, if Chomsky’s theory worked, we could implement it with software;
a computer would then perform exactly the same acts as human beings (would
generate, for example, the same sentences and ideas), but could the computer
be said to be free or creative in the human sense? Determinism is the opposite
of freedom, but Chomsky wants to have both: Chomsky the humanist is
concerned with freedom, while Chomsky the scientist is searching for a theory
that would make a mockery of freedom by showing that a programmed
machine can be identical intellectually to a free human being.

Just like the mechanistic theories of mind in the field of artificial intelli-
gence, Chomsky’s theories are, in effect, an attempt to replace human minds
with software. And, with microprocessors becoming more and more powerful,
some of these theories can already be implemented with just one semicon-
ductor chip. They may not state it, and they may not even realize it, but what
all these researchers are claiming, essentially, is that we will soon be able to
replace human beings with inexpensive devices. The important point, again,
is that although these theories do not work, the researchers, and the lay
people who trust them, are convinced that soon they will work, and are
therefore developing a world view that reflects these theories. Nor should we
forget that our society is already dominated by political and business elites who
hold the same conviction, and who are planning our future accordingly. It is
not difficult to imagine the kind of future these elites are preparing for us,
if they believe that human beings are not very different from expendable
semiconductor chips.

In conclusion, Chomsky’s preference for a rationalist theory of mind, rather
than an empiricist one, is irrelevant when rationalism is supplemented with a
mechanistic theory of mind. It makes little difference which philosophy one
starts with, if one ends by claiming that deterministic models of mind are
possible.

Chomsky’s case, then, is a good example of the corruptive effect of the
mechanistic dogma. Through writings and lectures, he has become known
throughout the world as a humanist. His efforts as a scientist working in the
mechanistic tradition, however, are harming the humanistic cause more than
his efforts as a humanist can help it.

Geoffrey SampsonÍ notes that Chomsky’s impoverished definitions of
freedom and creativity provide the common philosophical foundation for both

Í Geoffrey Sampson, Liberty and Language (Oxford: Oxford University Press, 1979).

280 consequences chapter 3

his linguistic and his political theories. As language users, Chomsky says, we
are restricted genetically to certain types of grammatical constructions; hence,
the creativity we display in speech is in reality only the capacity to select
utterances from a certain range of alternatives. Similarly, as citizens, we are
restricted genetically to certain types of achievements; hence, there is nothing
wrong in defining freedom as merely the right to pursue any ideas within a
prescribed range of alternatives: “Chomsky has misappropriated the term
‘creative’ as he misappropriated the term ‘free.’ In each case he uses the term in
a sense that conflicts with its standard usage; but, by contrasting ‘freedom,’ or
‘creativity,’ in his impoverished sense with something that is even further
removed from the notion usually associated with the respective word, he
invites us to overlook the fact that what we usually mean by the word is
something different from both his alternatives.”Î

Chomsky contrasts his theories to those of authoritarian ideologies, which
deny freedom and creativity altogether, and which hold that human nature
must be moulded to fit a general plan. When presented from this perspective,
his own views appear enlightened and liberal. His theories are dangerous
precisely because he appears to be defending freedom while defending, in fact,
not the traditional concept of freedom, but an impoverished version of it: “The
adverse consequences of scientism stem from its assumption that all human
phenomena can be analysed by the scientific method; creativity is an exception,
since acts which are truly creative cannot, by definition, be predicted. To the
question ‘Who, in the contemporary intellectual world, most stresses the
importance of human creativity?’, the answer must undoubtedly be Noam
Chomsky. . . . Yet, when we ask what Chomsky means when he calls men
creative, he turns out to refer to our ability to behave in conformity to certain
fixed, rigorous rules.”Ï

2

2
By way of summary, I want to show how the mistaken conclusions drawn
by these scientists can be traced to the mechanistic fallacies. The scientists
are evidently fascinated by the fact that simple structures, when used as
mechanistic models, can generate a large number of different values for the top
element. They can generate, in fact, an infinite number of values. Depending
on the theory, these values represent the different alternatives displayed by
individuals or societies in their knowledge, their behaviour, their traditions,
their sentences, etc. So, the scientists conclude, mechanistic models can

Î Ibid., p. 106. Ï Ibid., pp. 107–108.

the traditional theories 281chapter 3

account for all possible alternatives: all knowledge and behaviour of an
individual, all customs and language uses of a society, and so forth.

But a large number of values – even an infinite number – does not neces-
sarily mean that the model can account for all possible alternatives. We can
demonstrate this with a simple example. It is easy to create a device (a piece of
software, for instance) that generates numeric values according to certain
rules: values limited to a given range, or values that are prime numbers, or
integers. Consider now the set of all numeric values. Although the subset of
integers is an infinite number, in practice there are infinitely more fractions
than integers (there are, in fact, an infinite number of fractions between any
two integers). Consequently, while accounting for an infinity of values, a device
that generates integers accounts for an infinitely small subset of all possible
numeric values. There are many similar examples, so it is important to bear in
mind that an infinite number of alternatives may not mean all the alternatives.

What these scientists are seeking is a fully specifiable model that can
account, nevertheless, for all the alternatives displayed by human minds. They
hope to find, in other words, a deterministic model that can account for
indeterministic phenomena – for the creativity and unpredictability of human
acts. They are misled by the infinity of alternatives that their mechanistic
systems can generate, and conclude that they have discovered such a model.
They misinterpret this infinity of alternatives as equivalent to creativity and
unpredictability – equivalent, that is, to all possible alternatives. As we just saw,
it is easy for a mechanistic system to generate an infinity of values in a given
domain while failing to account for all values possible in that domain. Thus,
the infinity that the scientists notice in their models is not the infinity that gives
rise to indeterminism, to creativity and unpredictability. Mechanistic theories
fail because, even though explaining an infinity of acts, this infinity is a small
subset of all possible human acts. (See also the related discussion in chapter 8,
pp. 814–817.)

The scientists start with a reasonable hypothesis: the idea that human
beings are restricted in the types of knowledge they can acquire, and in their
behaviour patterns, by some innate capabilities. Now, no one can doubt that the
basic human faculties are bounded by some low-level physiological processes
occurring in the brain. The high-level phenomena of mind and society must
then reflect these limitations, just as our physical characteristics and abilities
reflect our genetic code.

But, to be consistent, the scientists ought to build their theories starting
from those low-level physiological processes (from neurons, for instance).
Instead, the starting elements in their structures are relatively high-level
entities: for linguists they are phonemes and words; for behaviourists they are
simple movements, reflexes, and the like; for structuralists they are the binary

282 consequences chapter 3

opposites found in thought, or in stories and traditions. These are not the
simplest entities from which human phenomena are made up, but merely the
smallest entities that we notice or understand. The scientists believe that
they can start their projects from any level of abstraction they like, so they
choose high levels, which are more convenient. They base their theories on
mechanistic processes assumed to occur at low physiological levels; but then
they ignore the low levels, and the many intermediate levels, and build their
models starting from some arbitrary, relatively high-level, entities.

Their mistake, thus, is to use as building blocks in their models, elements
that are not independent. Elements like words, or limb movements, or pieces
of mental logic, are related – both mutually and to other types of elements; so
they give rise to complex, not simple, structures. They are related because they
serve as elements in other structures too, besides the particular structure that
each scientist is concerned with. All these structures are formed at the same
time from the low-level physiological elements, so they reflect the countless
interactions that take place at levels lower than the level where the scientists
decided to start their projects.

When ignoring the interactions – when assuming that those starting
elements are independent – the scientists separate the one structure that
forms their particular project from the complex structure that is the human
phenomenon. The top element in the complex structure represents all the
alternatives that human beings can display; and the theory fails because it can
account for only some of these alternatives – the ones that would occur if those
starting elements were indeed independent. The theory may well account for
an infinity of alternatives, but this is still a small fraction of the alternatives that
constitute the actual phenomenon. When attempting to represent a complex
phenomenon with a simple structure, and when starting from higher levels, the
scientists are committing both fallacies, reification and abstraction. The
dramatic reduction in alternatives is then the impoverishment that these
fallacies inevitably cause.

We can understand now why these scientists are convinced that freedom
and creativity are illusory, that what we perceive as free will is merely the
freedom to select any act from a predetermined range of alternatives. They base
this notion on the existence of low-level physiological elements, and on the
assumption that, in principle, we can account for all the alternatives generated
by these elements. At the same time, they admit that they cannot develop their
models starting from these elements. So they continue to claim that freedom
and creativity mean just a selection of alternatives, even while starting their
models from much higher levels – as if the infinity of alternatives they can
account for were the same as the infinity generated by the low-level elements.
They are seeking mechanistic explanations, but they are not following the

the traditional theories 283chapter 3

mechanistic doctrine: a model cannot explain mechanistically a given phenom-
enon unless the starting elements are atomic and independent, and their
starting elements are neither. (Even the low-level physiological elements,
which they fail to reach, are only assumed to be atomic and independent.)

The scientists believe that it will soon be possible to explain all the alter-
natives and thereby account for the full range of possible human acts. But
this optimism would be warranted only if their theories were completely
mechanistic. They admit that they cannot find a true mechanistic explanation
– a continuous series of reductions from the human phenomena to some
atomic and independent entities – but they refuse to take this failure as
evidence that human phenomena are indeterministic, and hence unexplainable
with mechanistic theories.

Thus, no matter how we feel about mechanism and about mechanistic
explanations of human phenomena, the conclusions drawn by these scientists
are unjustified simply because their theories are fallacious even within the
mechanistic doctrine. The indeterminism, the creativity and unpredictability
of human minds, are precisely this impossibility of finding a set of atomic and
independent entities for the starting elements.

The Software Theories

The Software Theories
1 1
The evil concepts of mind and society engendered by the traditional mecha-
nistic theories are being implemented already, without anyone noticing,
through the mechanistic software theories. While our democratic system
has safeguards to protect society from the political consequences of the
traditional mechanistic delusions, no safeguards exist to protect us from the
ideas promoted by the software elites. And few of us recognize the similarity
between the social systems envisaged by the traditional mechanists, which we
reject as totalitarian, and those promoted by software experts and by the
software companies, which we perceive as scientific and progressive.

Recall the distinguishing characteristic of the mechanistic delusions we
studied in this chapter: the claim that, in a complex structure, it is possible to
derive with precision the value of the top element from the values of the
starting elements. The complex structure represents a complex human or
social phenomenon, so what the mechanists are claiming is that a simple
structure – a deterministic model – can account for all possible manifestations
of the complex phenomenon. They are claiming, in other words, that the other
structures that are part of the phenomenon are unimportant. But the other

284 consequences chapter 3

structures are the knowledge structures present in human minds, or the social
structures formed by the interaction of many minds. So, by making this claim,
the mechanists are depreciating the role played by each mind in the complex
phenomenon. The reason these theories are failing is that the assumption is
wrong: the contribution made by individual minds is in reality an important
part of the phenomenon.

In the case of software theories, the complex structures comprise the
various activities performed by people when developing and using software
applications. And what the software theories claim is that it is possible to
account for the top element of these structures from a knowledge of their
starting elements. Accordingly, we should be able to replace the knowledge
involved in those activities with formal methods and, ultimately, with software
devices based on these methods.

In programming activities, the starting elements are details like the defini-
tions and statements used in an application, the fields in data files or display
screens, and the software-related acts in the human environment where the
application is used. The top element consists of the combinations of operations
performed by these applications, and the business, social, and personal needs
they serve. The knowledge and experience of programmers and users provide
the structures that, together with the structures formed by the elements just
mentioned, give rise to the complex phenomena observed when a social or
business environment depends on software.

The software theories, though, claim that these are not complex, but
mechanistic, phenomena: the top element can be described, precisely and
completely, as a function of the starting elements. Whether they invoke
mathematical principles or the similarity of programming to manufacturing,
the appeal of these theories is understandable. Let us design our applications
as hierarchical structures, we are told, as neat structures of independent
modules. We should then be able to develop applications of any size and
complexity simply by combining these software parts, one level at a time:
starting with some atomic entities whose validity is established, we will create
larger and larger software subassemblies – each one guaranteed to be correct
because built from proven parts – until we reach the top element, the complete
application.

All theories, and all methodologies and development environments, are
grounded on this principle. But the principle is invalid, because even the
smallest software elements share attributes, and are therefore interrelated.
Thus, like the mechanistic theories of mind and society, the software theories
praise reductionism and atomism, and at the same time they violate these
principles by using starting elements that are not atomic and independent.
Also like the traditional theories, the software theories are failing because

the software theories 285chapter 3

these elements give rise to multiple, interacting structures. Applications, and
software-related activities generally, are not the simple hierarchical structures
the mechanists assume them to be. (We will study the various types of software
structures in chapter 4.)

2

2
Psychologists, sociologists, and linguists think that mechanistic theories can
account for all the alternatives displayed by individuals and societies: all
possible manifestations of knowledge, behaviour, customs, language, and so
forth. Their theories account for only some of the alternatives, but despite these
failures, the scientists conclude that what human minds do is simply select
various acts from a predetermined range of alternatives: what we perceive as
free will or creativity is an illusion caused by the large number of alternatives
that minds can select from. Let us see how the mechanistic software theories
lead to the same conclusion.

Like the mind mechanists, the software mechanists are searching for
a deterministic model that can account for indeterministic phenomena –
software-related phenomena, in this case. Specifically, they hope to find a
mechanistic model that can account for all the alternatives displayed by human
minds when engaged in software development and use. And they think that if
a model can account for an infinite number of alternatives, this means that it
can account for all the alternatives.

But we saw how easy it is for a mechanistic model to display an infinity of
values while accounting, in fact, for only a small subset of the possible values.
The alternatives in software-related phenomena are all the applications that
can be implemented with software, and all the business, social, and personal
aspects of programming and software use. These alternatives constitute an
infinite number, of course. And, as is the case with the other theories, the
infinity of alternatives that make up the real software phenomena is infinitely
greater than the infinity of alternatives that a mechanistic model can account
for. The difference is seen in the perpetual need for new programming theories
– a need arising, obviously, from the failure of the previous ones.

While the mind mechanists attempt to represent with exact models mental
phenomena, the software experts attempt to represent with exact models
software-related phenomena. This must be possible, they argue, because the
totality of software-related human acts can be described with precision as a
function of some low-level elements. We should be able to build software
devices, therefore, which incorporate these elements. These devices will then
allow us to generate any software-related structure – that is, any alternative of

286 consequences chapter 3

the phenomena of programming and software use – without ever again having
to start from the low levels.

True to the mechanistic doctrine, the software experts attempt to explain
complex software phenomena by repeatedly reducing them to simpler ones.
And in so doing they commit both fallacies, reification and abstraction: they
take into account only one structure, failing to see that software entities are
related in several ways at the same time; and they stop the reduction long
before reaching the lowest levels.

The experts notice that in processes like manufacturing we benefit from the
mechanistic principles while starting our structures, nevertheless, from high-
level elements (prefabricated subassemblies), and they conclude that software-
related processes, too, can start from high levels. They also notice that physical
entities can function as starting elements only if independent, and they
conclude that software entities, too, can be independent: just as, in a physical
structure, the internal properties of one subassembly are unrelated to those of
the others (so that we can build them independently of one another), the
internal operation of each software module can be unrelated to those of the
others.

Both conclusions, however, are unwarranted. While it is true that we can
build software structures starting from independent, high-level elements, if we
limited ourselves to such structures we could represent with software only a
fraction of our business, social, and personal affairs.

The experts treat software development as a manufacturing process because
they don’t appreciate how much richer are human phenomena than physical
ones. The number of alternatives lost when we start from high levels and when
we separate structures in physical phenomena is relatively small, and we gain
important benefits in return; when we ignore the low levels and the links
between structures in human phenomena, we lose an infinity of important
alternatives.

Simple structures and high-level starting elements – that is, the use of
standard parts and subassemblies – are acceptable in activities like manufactur-
ing because there are only a few kinds of tools, appliances, vehicles, etc., that
are useful, or convenient, or economical. The same is not true, however, in
mental and social phenomena. There is an infinity of sentences, ideas, customs,
cultures, forms of knowledge, and types of behaviour that are correct, or
practical, or suitable. Unlike physical processes, therefore, our models of
human phenomena cannot be restricted to simple structures, and cannot start
from high levels. For, the loss of alternatives is then so severe that the benefits
of simple structures and high starting levels become irrelevant: the number of
human acts the model can explain, relative to those it cannot explain, is too
small for it to be useful.

the software theories 287chapter 3

Software-related phenomena, in particular, despite their dependence on
physical structures like computers, are largely human phenomena, because
they entail various intellectual and social processes. Consequently, simple
software structures and high-level starting elements can account for only some
of the alternatives, just as the mechanistic models of mind and society can
explain only some aspects of human phenomena.

3

3
The immediate benefit of software mechanism is thought to lie in explaining
the phenomenon of programming itself. If we view as hierarchical structures
not just the applications but also the activities and the mental acts involved in
developing applications, we should be able to account for all the values
displayed by the top element; that is, all the combinations of applications,
requirements, software concepts, etc. We will then search for some high-level
entities that can be used as starting elements in these structures. And, once we
discover these entities, we will no longer have to develop applications starting
from low levels.

Everyone agrees that it is possible to develop all conceivable software
applications if starting with low-level elements. The promise of software
mechanism, thus, is not to enable us to perform tasks that we could not
perform otherwise, but to perform them more easily: less work and lower
skills are needed to reach the top element – the application, the business system
– when starting with higher-level elements. So what software mechanism
promises us in effect is devices that would permit us, not only to attain
everything that can be attained through software, but to attain it sooner,
and with less knowledge. This is true, we are told, because the infinity of
applications possible when starting from the higher levels is about the same as
the infinity we could create by starting from the low levels.

It is not surprising that the scientists make such fantastic claims; after all,
these ideas are nothing but the software counterpart of the theories of mind
that mechanists have been proposing for centuries. What is surprising is that
we all accept the claims now, and that we continue to accept them even as we
see them refuted in practice.

A little thought will reveal the true nature of these claims. We are told that
software devices will permit us to create any software applications, or to
address any software-related matters, without the need to develop all the
knowledge that human minds can develop. So, by stating this, the experts
admit in effect that we can attain greater knowledge; we simply do not need
that extra knowledge. But if we are capable of greater knowledge in software-

288 consequences chapter 3

related matters, we necessarily could, through that knowledge, perform certain
tasks, or develop certain ideas, or create certain applications, or make certain
discoveries, that we cannot without it. To say that those additional alternatives
are unimportant, that they represent an insignificant part of the potential
achievements of human minds, and that they can be forsaken, is to make an
astonishing statement about the future of humankind. For, we can only judge
how important or unimportant those alternatives are by having them first; we
cannot know in advance how human knowledge will evolve, or what our future
needs and capabilities will be.

By making such statements, the software elites are claiming in effect
the right to decide what knowledge and mental capabilities we, and future
generations, are permitted to acquire. They see themselves as an enlightened
vanguard: they are the select few who can appreciate the future of software, so
it is their duty to guide us.

It is in the interest of the elites to maintain a general state of ignorance in all
software-related matters, and the mechanistic software ideology is an essential
part of this plan: we perceive the theories, methodologies, and devices as
expressions of software science, even as they are preventing us from using our
minds. By controlling the way we create and use software, the elites are
restricting those aspects of our life that depend on software to a certain range
of alternatives. But few of us realize just how narrow this range is, how many
alternatives are lost when we are limited to mechanistic software thinking.

We would have no difficulty recognizing a similar limitation in areas in
which we are already knowledgeable – other professions, or naturally acquired
skills. Programming, however, was taken over by incompetents and charlatans
before a body of responsible professionals could emerge; and as a result, we
believe that what these impostors are doing is the utmost that a society can
attain in the domain of programming. Since the programming we see is the
only kind we have ever had, we cannot know how limited and inefficient
our software-related affairs are. We cannot even imagine a society where
programmers are as competent in their work as other professionals are now in
theirs; that is, a society where programmers are permitted to attain the highest
skill levels attainable by human minds.

The mechanistic software ideology, thus, fosters incompetence among
programmers – but also among software users, because their performance is
impaired by the inadequate applications. These conditions, then, impoverish
our life by limiting our expectations in all software-related matters to only a
fraction of the possible alternatives: those that can be accounted for through
mechanistic concepts. Although our minds are capable of non-mechanistic
knowledge, and we could therefore have infinitely more alternatives in our
software-related affairs, as long as we limit ourselves to mechanistic thinking

the software theories 289chapter 3

we cannot know what these alternatives are. We trust the software devices
provided by the elites, while the real purpose of these devices is to induce a
state of ignorance and dependence. We like the many alternatives that we gain
so easily through devices, and we are convinced that they constitute all the
alternatives. We are unaware of the missing alternatives, because the only way
to attain them is by starting our software-related structures from lower levels;
that is, by avoiding the devices, and developing instead programming expertise.

Again, we can easily understand this for other types of knowledge, in areas
in which we have had the time to become proficient. We all use language,
for example, starting with low-level elements – with words. We also know
that, when expressing wishes or ideas, we do more than just build linguistic
structures; what we do is combine our linguistic knowledge with other types of
knowledge. Hence, if we have difficulty expressing ourselves, we know that
language devices would not solve the problem.

Imagine now a society where an elite suggested that we use language by
starting with higher-level elements – with ready-made sentences and ideas.
Thus, instead of creating sentences and ideas, we would have to express
ourselves by combining the ready-made ones produced by certain devices; and
instead of increasing our knowledge and our linguistic capability, we would
learn only how to operate these devices. Even without recalling the mechanistic
fallacies, or the difference between simple and complex structures, we sense
intuitively that this could not work, that we would lose something. We sense
that, even if we could still create an infinity of ideas, it would be impossible to
create the same variety of ideas as we do now, starting with words. And we
realize that, by restricting the use of language, the elite would impoverish all
knowledge and all aspects of our life.

We accept in the domain of software, thus, mechanistic concepts and
theories that we would immediately dismiss in the case of language. We accept
them because we fail to see that they serve the same purpose: to restrict our
knowledge, our values, and our expectations. (We will return to this subject in
chapters 5 and 6.)

4

4
The mechanistic theories of mind, we saw, claim that we can account for all
the alternatives in human knowledge, behaviour, language, customs, and so
forth; and they conclude that no creativity is involved in mental acts, that what
we perceive as creativity is merely the selection and combination of bits of
knowledge leading to a particular alternative. In the mechanistic software
theories, the counterpart of this belief is the belief that we can account for all

290 consequences chapter 3

possible alternatives in software-related phenomena. If we can account for all
the alternatives, the conclusion must be that we can account for all possible
applications, and also for the processes that take place in the mind when
creating applications. So what we perceive as creativity and originality in the
work of an experienced programmer is only an illusion: what the programmer
really does in his mind at every stage of software development is akin to
selecting and combining bits of programming knowledge in order to generate
one of the applications.

More accurately, what the software theorists say is that programmers could
create applications in this manner, so it is wrong to depend on such inexact
resources as personal knowledge. Professional programming entails nothing
but rules, standards, principles, and methods. Only old-fashioned practitioners
rely on unscientific notions like skill, experience, or intuition. In other words,
the theorists say, programming phenomena are deterministic: practically all
the work involved in developing a particular application, or in modifying it
later, can be specified precisely and completely from a knowledge of the
requirements – just as the steps needed to build a car or an appliance can be
specified in advance from a knowledge of their physical characteristics.

So, if we can account for all software applications that human minds
can create – if there is nothing indeterministic, or unpredictable, in what
programmers do – we should be able to replace programming knowledge with
devices. The devices known as development environments, for example,
materialize this idea by providing high-level starting elements. They simplify
programming by minimizing the number of levels between the starting ele-
ments and the final application. Programming expertise, clearly, is becoming
redundant, since even novices can now create applications. It is also interesting
to note the trend in these devices to reduce the programmer’s involvement to
a series of selections, and selections within selections. The process of pro-
gramming – the definition of files and variables, the specification of operations
and conditions – has given way to a process of selections: instead of a blank
screen where we can enter our definitions and specifications freely, we find
colourful screens replete with menus, lists, icons, buttons, and the like. This
structure of selections within selections attempts to emulate, obviously, the
hierarchical structure believed to constitute the mental part of programming:
the selection and combination of bits of knowledge leading to one of the
alternatives, to a particular application.

The devices, thus, are an embodiment of the software theories. And,
since the software theories are the counterpart of the traditional mechanistic
theories of mind, we are witnessing the actual implementation of the idea that
human creativity is an illusion, that the mind works simply by selecting and
combining bits of knowledge within a predetermined range of alternatives. The

the software theories 291chapter 3

substitutes for human intelligence – the models of mind that the mechanists
were proposing all along in psychology, sociology, and linguistics – have
finally found their practical expression in the world of programming. While
the traditional mechanists were content with speculations and theories, the
software mechanists are actually replacing human intelligence with devices.

�

We have already discussed the consequences of mind mechanism: by claiming
that all human acts can be explained – by claiming, therefore, that human
beings are incapable of truly creative, or unpredictable, acts – the traditional
mechanistic theories can lead to a society where freedom, expertise, and
creativity are redefined to mean the selection of acts from the range of
alternatives sanctioned by an elite. In the world of programming, clearly, the
shift has already occurred: the software theories assume that programmers are
capable of nothing more creative than using programming substitutes, and this
has given rise to the belief that it is these substitutes that are important, not the
individual minds. This, in turn, has led to the belief that we must depend on
the companies which provide the substitutes, and that the only way to improve
our programming practices is by constantly adopting new versions of the
substitutes.

Both the traditional theories and the software theories, thus, lead to the
belief that human intelligence can be replaced with deterministic models. But,
whereas traditional mechanism has had so far no serious consequences outside
academia, software mechanism is causing great harm – by distorting our
conception of knowledge and skills. Like the traditional ones, the theories
behind the programming substitutes have been repeatedly refuted. Yet, while
the theories themselves are failing, our belief in substitutes has become a self-
fulfilling idea: Because we assume that programmers cannot advance beyond
their current level, we encourage them to depend on substitutes. Consequently,
no matter how many years of experience they have, their programming skills
remain at the same low level – the level needed to use substitutes. Given this
state of affairs, the adoption of the next substitute always appears to be the only
way to improve their performance. So they waste their time assimilating yet
another theory, or methodology, or language, instead of simply programming
and improving their skills. And so the fallacy feeds on itself.

Human beings, as a matter of fact, can attain higher skill levels. It is only
because programmers are forced to stay at novice levels that their capabilities
do not exceed those of the substitutes. Recall the process of skill acquisition we
studied in “Tacit Knowledge” in chapter 2: the skills and knowledge of a novice
programmer constitute simple structures, just like the structures on which the

292 consequences chapter 3

mechanistic software theories are based; only when attaining expertise can the
programmer’s mind process the complex structures that make up software
phenomena. Expert programmers outperform the substitutes because their
minds can cope with whole software phenomena, while the substitutes can
only cope with isolated aspects of them.

So it is the dependence on programming substitutes that is preventing the
emergence of a true programming profession. Application programming
has been so degraded that it now entails nothing more difficult than the
performance of acts which almost anyone can master in a year or two. We are
underrating the potential of our minds, and we have forgotten that there exist
levels of knowledge and skills higher than those reached after a year or two of
practice. In effect, we are degrading our conception of human intelligence to
the level attainable by the mechanistic substitutes for intelligence.

5

5
We saw how the mechanistic ideology has affected the programming profes-
sion. The most serious consequence of software mechanism, however, is not
the destruction of programming knowledge, but the destruction of the other
kinds of knowledge – knowledge that took centuries to develop. The belief that
intelligence can be replaced with devices is already spreading into other
domains, especially in our business-related pursuits.

In one activity after another, we see the claim that it is possible to account
for all the alternatives in that activity, discover the starting elements that give
rise to these alternatives, and then incorporate the elements in a software
device. In all activities, we are told, what the mind really does is combine some
elementary bits of knowledge into knowledge structures, one level at a time,
just as we build cars and appliances. By providing directly some high-level
starting elements – prefabricated knowledge subassemblies, as it were – the
devices eliminate the need for each one of us to develop in our minds the low-
level elements and the combinations leading to the high levels. The lengthy and
arduous period of learning and practice is a thing of the past: all we need to
know now is how to operate software devices. In one occupation after another,
we are told that it is unnecessary, even wrong, to rely on personal experience.
Anyone can perform the same tasks as the most experienced worker simply
by selecting and combining the ready-made, high-level elements available
through these devices.

The devices known as office productivity systems, for example, which
address office workers, are the counterpart of the development systems used by
programmers. Instead of claiming that we can account for all the alternatives

the software theories 293chapter 3

in programming activities, the software companies claim now that we can
account for all the alternatives in business-related activities. Instead of software
concepts that programmers can use as substitutes for programming expertise,
the office systems promise software concepts that replace the skills of office
workers.

And here too we see the trend to provide these concepts in the form of
selections, and selections within selections, rather than permitting the user to
combine freely some low-level elements. Here too, therefore, the system
attempts to emulate what are believed to be the mental acts of an experienced
person: selecting and combining hierarchically, one level at a time, the bits of
knowledge leading to one of the alternatives.

As in the case of programming systems, the fact that an office system can
generate an infinity of alternatives in business-related matters is mistaken as
evidence that these devices can generate all possible alternatives. But this
infinity is only a fraction of the infinity that an experienced worker can
implement by starting from low levels, through the complex knowledge
structures developed in his mind. Software devices cannot replace business-
related knowledge any more than they can programming knowledge.

The fallacy, again, lies in providing starting elements that are not atomic and
independent. We are lured by these devices only because we forget that the
knowledge required to perform a difficult task constitutes, not an isolated
structure, but a system of interacting structures: it includes many knowledge
structures besides the neat hierarchical structure of selections that can be
embodied in a software device. The different values of the top element –
values representing the various acts performed by an experienced mind – are
determined largely by the interactions between structures. The most important
interactions occur at levels lower than the starting elements provided by
devices, because it is low-level elements like variables and individual operations
that are shared by the software structures, business structures, and knowledge
structures which together make up the phenomena of office work. These
interactions are lost when replacing minds with devices, and this is why a
device can display only some of the alternatives displayed by a mind – those
alternatives that can be represented with isolated simple structures.

�

To conclude, I want to stress again the link between the mechanistic theories
of mind and the delusion of software devices. If we believe that it is possible to
account for all the alternatives displayed by human beings in their mental acts,
we will necessarily conclude that it is possible to describe human intelligence
as a function of some starting mental elements; that the creativity of human

294 consequences chapter 3

minds is an illusion; and that everything the mind does can be explained as
we explain the working of a machine. It should be possible to represent a
person’s mind, therefore, with a simple structure where the elements and levels
correspond to the knowledge developed by the mind, and the values of the top
element correspond to the various acts performed by that person.

What is left is to implement this structure by means of a software device.
Then, any person operating the device will be able to perform the same acts as
the person whose mind the device is emulating. All that human beings do, in
reality, is operate devices. So, why depend on a device like the mind, which
is inefficient and unreliable and, moreover, can only develop knowledge
structures through painstaking learning and practice, when we can purchase
modern software devices that already contain these structures?

In the domain of programming, we have already replaced minds with
devices. Now, as our reliance on computers is growing, the software elites are
degrading all activities where human knowledge and skills play a part, in the
same way they have degraded the activity of programming. They are modifying
our conception of knowledge and skills to mean simply a dependence on
software devices. They are instilling in us the belief that our intelligence,
our work, our initiative, our experience, can be reduced to the process of
selecting and combining operations within the range of alternatives provided
by these devices. They are shifting our definition of expertise, creativity, and
responsibility from their traditional meaning – to do a good job, to solve an
important problem, to make a real contribution – to merely knowing how to
use the latest software devices.

the software theories 295chapter 3

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 3: Pseudoscience
	Consequences
	Academic Corruption
	The Traditional Theories
	1
	2

	The Software Theories
	1
	2
	3
	4
	5

