
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 6: Software as Weapon
Section Software Charlatanism

This extract includes the book’s front matter
and part of chapter 6.

Copyright ©2013 Andrei Sorin
The digital book and extracts are licensed under the

Creative Commons
Attribution-NonCommercial-NoDerivatives

International License 4.0.

This section shows that the development systems and methods
promoted by the software elites are based on mechanistic
fallacies and cannot provide the benefits claimed for them.

The entire book, each chapter separately, and also selected
sections, can be viewed and downloaded at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013 Andrei Sorin
Published by Andsor Books, Toronto, Canada (January 2013)
www.andsorbooks.com

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

For disclaimers see pp. vii, xv–xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Printed on acid-free paper.

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 92

Complex Structures 98

Abstraction and Reification 113

Scientism 127

Chapter 2 The Mind 142

Mind Mechanism 143

Models of Mind 147

ix

Tacit Knowledge 157

Creativity 172

Replacing Minds with Software 190

Chapter 3 Pseudoscience 202

The Problem of Pseudoscience 203

Popper’s Principles of Demarcation 208

The New Pseudosciences 233

The Mechanistic Roots 233

Behaviourism 235

Structuralism 242

Universal Grammar 251

Consequences 273

Academic Corruption 273

The Traditional Theories 277

The Software Theories 286

Chapter 4 Language and Software 298

The Common Fallacies 299

The Search for the Perfect Language 306

Wittgenstein and Software 328

Software Structures 347

Chapter 5 Language as Weapon 368

Mechanistic Communication 368

The Practice of Deceit 371

The Slogan “Technology” 385

Orwell’s Newspeak 398

Chapter 6 Software as Weapon 408

A New Form of Domination 409

The Risks of Software Dependence 409

The Prevention of Expertise 413

The Lure of Software Expedients 421

Software Charlatanism 440

The Delusion of High Levels 440

The Delusion of Methodologies 470

The Spread of Software Mechanism 483

Chapter 7 Software Engineering 492

Introduction 492

The Fallacy of Software Engineering 494

Software Engineering as Pseudoscience 508

x contents

Structured Programming 515

The Theory 517

The Promise 529

The Contradictions 537

The First Delusion 550

The Second Delusion 552

The Third Delusion 562

The Fourth Delusion 580

The GOTO Delusion 600

The Legacy 625

Object-Oriented Programming 628

The Quest for Higher Levels 628

The Promise 630

The Theory 636

The Contradictions 640

The First Delusion 651

The Second Delusion 653

The Third Delusion 655

The Fourth Delusion 657

The Fifth Delusion 662

The Final Degradation 669

The Relational Database Model 676

The Promise 677

The Basic File Operations 686

The Lost Integration 701

The Theory 707

The Contradictions 721

The First Delusion 728

The Second Delusion 742

The Third Delusion 783

The Verdict 815

Chapter 8 From Mechanism to Totalitarianism 818

The End of Responsibility 818

Software Irresponsibility 818

Determinism versus Responsibility 823

Totalitarian Democracy 843

The Totalitarian Elites 843

Talmon’s Model of Totalitarianism 848

Orwell’s Model of Totalitarianism 858

Software Totalitarianism 866

Index 877

contents xi

Preface

Preface

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation,
the mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a process
of continuous intellectual degradation – despite the great advances it made
possible. This process started three centuries ago, is increasingly corrupting us,
and may well destroy us in the future. The book discusses all stages of this
degradation.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 411–413).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from philosophy, in particular. These dis-
cussions are important, because they show that our software-related problems

xiii

are similar, ultimately, to problems that have been studied for a long time in
other domains. And the fact that the software theorists are ignoring this
accumulated knowledge demonstrates their incompetence. Often, the connec-
tion between the traditional issues and the software issues is immediately
apparent; but sometimes its full extent can be appreciated only in the following
sections or chapters. If tempted to skip these discussions, remember that our
software delusions can be recognized only when investigating the software
practices from this broader perspective.

Chapter 7, on software engineering, is not just for programmers. Many parts
(the first three sections, and some of the subsections in each theory) discuss the
software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge.
The whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices. So this chapter can be seen
as a special introduction to software and programming; namely, comparing
their true nature with the pseudoscientific notions promoted by the software
elite. This study can help both programmers and laymen to understand
why the incompetence that characterizes this profession is an inevitable
consequence of the mechanistic software ideology.

There is some repetitiveness in the book, deliberately introduced in order
to make the individual chapters, and even the individual sections, reasonably
independent. Thus, while the book is intended to be read from the beginning,
you can select almost any portion and still follow the discussion. An additional
benefit of the repetitions is that they help to explain the more complex issues,
by presenting the same ideas from different perspectives or in different
contexts.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,

xiv preface

in the subsequent footnotes it is usually abbreviated. For these abbreviations,
then, the full reference can be found by searching the previous footnotes no
further back than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations,
and individuals (for example, the software elite); and the plural, “elites,”
is used when referring to several entities, or groups of entities, within such a
body. Thus, although both forms refer to the same entities, the singular is
employed when it is important to stress the existence of the whole body, and
the plural when it is the existence of the individual entities that must be
stressed. The plural is also employed, occasionally, in its normal sense – a group
of several different bodies. Again, the meaning is clear from the context.

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral

preface xv

sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I plan to publish, in source form,
some of the software applications I developed over the years. The website,
then, must be seen as an extension to the book: any idea, claim, or explanation
that must be clarified or enhanced will be discussed there.

xvi preface

Ch. 6: Software as Weapon

Software Charlatanism Software Charlatanism
Software exploitation, we saw, plays on our mechanistic delusions; namely, on
the belief that problems requiring complex knowledge can be broken down
into simpler problems, which can then be solved mechanistically. When the
software charlatans tempt us with the promise of easy answers to difficult
problems – answers in the form of software devices – what they do is tempt us
to commit the mechanistic fallacies, reification and abstraction. For, only if we
commit these fallacies will we believe that software devices can be a substitute
for the complex, non-mechanistic knowledge required to solve those problems.

In the present section, we will examine how the mechanistic delusions
manifest themselves in various software-related activities; that is, how the two
mechanistic fallacies lead to software delusions, and how these delusions are
being exploited by the software elites. The world of programming, in particular,
consists almost entirely of delusions, and we will study them in detail in
chapter 7. Here, the programming delusions are mentioned briefly, just to show
how they are contributing to delusions in other software-related activities.

The Delusion of High Levels

The Delusion of High Levels
1 1
Recall our discussion in “Software Structures” in chapter 4. Software applica-
tions are complex structures, because they can be viewed from different
perspectives. Each aspect of an application is one of its processes, one of the
simple structures that make up the complex structure. Thus, each subroutine
together with its uses, each database field or memory variable together with the
associated operations, each business rule or programming method, can be seen
as a simple structure. But these structures are not independent. Although in
our imagination we can separate them, in reality they share their elements (the
software entities that make up the application), so they interact.

Take, for example, subroutines.É The use of subroutines is usually shown as
part of the application’s flow-control logic – those neat diagrams said to define
precisely and completely the flow of execution. Subroutines, though, give rise
to additional relations between software elements – relations that are not seen

É As in chapter 4, I subsume under “subroutine” any software entity that is used in several
parts of the application – modules, functions, procedures, objects, etc. (see p. 353).

440 software charlatanism chapter 6

in a diagram that represents their calls. Each subroutine, along with its uses and
effects, forms a hierarchical structure. One way to depict this structure is as
follows: the application (the top element) branches into two categories, those
software elements that are affected by the subroutine and those that are
unaffected; then, the first category branches into more detailed ones, on one
or more levels, reflecting the various ways the subroutine affects them, while
the second category branches into more detailed ones reflecting the various
reasons the subroutine does not affect them; finally, the categories branch into
the low-level elements – the blocks of statements and the individual statements
that make up the application.

It is not difficult to see that, if we do this for different subroutines, the
resulting structures will be different. The terminal elements, however, will be
the same; for, in all structures, the terminal elements are the application’s
statements. Thus, since these structures share their elements, they are bound
to interact. So there is no one structure that can represent all the subroutines.
The only way to represent the subroutines and their calls accurately is as a
system of interacting structures. The neat diagram that claims to represent the
flow of execution does indeed reduce the application to a simple hierarchical
structure, but it does this by distorting reality; specifically, by showing only
some of the relations that subroutines create between software elements (the
calls themselves).

Each subroutine, thus, constitutes one aspect of the application, one way of
viewing it. But there are other ways yet of viewing the application, besides the
use of subroutines. We can view it, for example, from the perspective of each
set of related data entry operations, or each shared variable or database field,
or each business practice implemented in the application. Like subroutines,
each one of these processes constitutes one aspect of the application, and can
be represented with a hierarchical structure that describes its effects on the
software entities that make up the application. And, along with the structures
generated by subroutines, these structures share their terminal elements (the
software entities we find at the low levels).

A software application, then, is all these structures, and the difficulties we
face in programming are due largely to having to deal with many of them at the
same time. Clearly, if a software element is shared by several structures, we
must take into account all of them if we are to program the element correctly.
Most software deficiencies are due to overlooking the links between structures
– links caused by this sharing of elements: the programmer takes into account
the effect of an operation on some of the structures, but fails to recognize
its effect on others. We must accept the fact that software applications are
non-mechanistic phenomena: the interactions between their constituent
structures are too complex to represent with mechanistic means like rules,

the delusion of high levels 441chapter 6

diagrams, or mathematics. To put it differently, the approximations possible
with mechanistic models are rarely accurate enough for software applications.

If we forget that applications are complex phenomena, we may think of
programming as simply identifying all the structures and interactions, dealing
with them separately, and then combining the results. But this would amount
to reducing a complex structure to simple ones, and we already know that this
is impossible. Even thinking of these structures separately is an illusion, since
they can only exist as interacting structures. We may refer to them informally
as separate structures (this is the only way to discuss the issue), but we must
bear in mind that they exist only in our imagination; what exists in reality is the
complex structure, the whole phenomenon. Thus, if we create the application
by dealing with those structures separately, we will likely end up with a different
phenomenon – a different application. What we will notice in practice is that
the application does not work as we expected, and the reason is that some of
the interactions are wrong, or missing.

Programming, therefore, requires the capacity for complex structures. So it
requires a human mind, because only minds can develop the complex knowl-
edge structures that can mirror the complex phenomena of programming. As
programmers, we are expected to combine in our mind the various aspects of
an application. We are expected, thus, to develop knowledge that cannot be
precisely specified (with rules or diagrams, for instance). And we can develop
this type of knowledge, because minds can process complex structures.

Nor is this an unreasonable demand. What we are expected to do in
programming is no different from what we have to do most of the time simply
to live a normal life. Recall the analysis of stories (pp. 350–351). We are all
expected to combine in our mind the various aspects of a story that we hear or
read. This, in fact, is the only way to understand it, because it is impossible to
specify precisely and completely all the knowledge embodied in a story. We
understand a story by discovering this knowledge. Authors can convey to us,
through the expedient of words and sentences, almost any ideas, situations,
arguments, or feelings. Complex knowledge that exists in one person’s mind
can be reproduced with great accuracy in other minds by means of language.
We derive some of this knowledge from the individual structures – from
sentences, and from each aspect of the story. Most of the knowledge, however,
inheres not in individual structures but in their interactions. We discover these
interactions by processing the structures. We develop the complex knowledge
that is the story by unconsciously combining its structures in our mind, and
combining them also with the knowledge structures already present in the
mind. Linguistic communication is possible because we have the capacity
to combine knowledge structures, and because we already possess some
knowledge that is the same as the author’s.

442 software charlatanism chapter 6

If we tried to express by means of independent structures all the knowledge
we derived from a story, we would find it an impossible task, because a
complex structure cannot be reduced to simple ones. What we would lose is
the interactions. Even if we managed somehow to identify all the elements and
all the aspects of the story, we could not identify all their interactions. To put
this differently, if we could reduce the story to a set of precise specifications,
we could program a computer to understand that story exactly as we do – a
preposterous notion; or, the fact that a machine cannot understand stories as
we do proves that stories, and linguistic communication generally, involve
complex structures.

And so do software applications. The software theories, then, are wrong
when claiming that applications can be programmed with the methods used in
building physical structures. In manufacturing and construction we can
restrict ourselves to mechanistic methods because we purposely restrict our
physical structures to neat hierarchies of parts and subassemblies. But software
applications are more akin to stories than to physical structures. This is true
because we employ software, as we do language, to represent the world, and
our concerns and affairs, which consist of complex phenomena. The potency of
software, like that of language, lies in its ability to generate complex structures.
If we restricted ourselves to mechanistic methods, as we do in manufacturing
and construction, we would use only a fraction of this potency; and we would
be unable to create linguistic or software structures that represent the world,
or our concerns and affairs, accurately.

We can detect in the individual structures some of the knowledge that
constitutes the application. But much of this knowledge inheres in the interac-
tions between structures. We cannot specify it precisely and completely,
therefore, any more than we can specify precisely and completely all the
knowledge that inheres in a story. If we reduce this knowledge to precise
specifications – as we are obliged to do when strictly following mechanistic
programming methods – we must necessarily leave some of it out, and the
application will not work as we expected.

It is impossible to create adequate software applications with mechanistic
methods for the same reason it is impossible to create or understand stories
with mechanistic methods. But we know that we can, by relying on the non-
mechanistic capabilities of our mind, create and understand complex linguistic
structures. We also can, therefore, by relying on the same non-mechanistic
capabilities, create complex software structures; namely, applications that
mirror the complexity of the world. This is the meaning of programming
expertise.

�

the delusion of high levels 443chapter 6

We are so easily deceived by the mechanistic software theories because we like
their promise. The promise, essentially, is that methods and devices simple
enough to be used by almost anyone can be a substitute for programming
expertise. And we believe this promise because we fail to see that to accept it
means to commit the two mechanistic fallacies, reification and abstraction.

The software theories appear to make programming easier because they
treat applications, or the activities involved in creating applications, as separa-
ble into independent parts: database operations, display operations, reporting
operations, and so on. There are indeed many aspects to an application, as
we saw, but these are rarely independent structures. The software theories
invite us to reify programming and applications because, once we have
independent structures, they can tempt us to start from higher levels of
abstraction within each structure. By the time we commit both fallacies, what
is left of programming is indeed easy. But it is easy because the concept of
programming, and the resulting software, were impoverished: many of the
functions we could implement before are no longer possible.

All software theories, in the final analysis, make the same claim: the task of
programming can be simplified by starting the development process from
higher-level software elements; and we can accomplish this by allowing various
expedients – methodologies, software tools, built-in operations – to act as
substitutes for the knowledge, experience, and work necessary for creating the
lower levels. But this would be possible only if applications consisted of
independent structures.

Let us briefly examine how this claim manifests itself in some of the theories
and devices promoted by the software elites. The theory known as structured
programming encourages us to view the application as a neat hierarchical
structure of software elements, which can then be developed independently,
one level at a time; but we can do this only if we take into account just one
aspect of the application – namely, the sequence of execution of its elements –
and ignore the links that the other aspects cause between the same elements.
The relational database theory claims that databases can be designed as
independent structures, interacting only at high levels with the structures
formed by the other aspects of the application; but this is true only in very
simple situations. Many development environments provide built-in operations
for the user interface, claiming in effect that these operations can be separated
from the other aspects, or that the interactions between them occur only at
high levels; but in most applications the user interface interacts with the other
processes at the low level of statements and variables. Systems like spreadsheets
and report writers claim that users can create simple applications without
programming – by combining instead some high-level, built-in operations; but
even simple applications involve aspects that interact at low levels, and require

444 software charlatanism chapter 6

therefore programming in one form or another. The concept of ready-made
components or objects is based on the assumption that business systems of any
complexity can be “built” from high-level software elements, just as cars and
appliances are built from prefabricated subassemblies; but the assumption is
wrong, because, unlike physical components, software components must also
interact at the lower levels that are their internal operations.

2

2
To demonstrate the fallacy of high starting levels, let us analyze a specific
situation. A common requirement, found in most business applications, is to
access individual fields in database files. The application’s user may need to see
the phone number or the outstanding balance of a customer, or the quantity in
stock of a certain part; or he may need to modify the address of a customer, or
the description of a part. Very often, these operations involve more than one
file; for example, a customer is displayed together with its outstanding invoices,
or a part together with its sales history. Typically, the user specifies some values
to identify the records: customer number, invoice number, range of dates, etc.
The program displays certain fields from those records, and the user is perhaps
permitted to modify some of them. These can be isolated fields (thus giving
the user the opportunity to see or modify any files and fields in the database),
but most often they are groups of fields logically associated with specific
functions: inventory control, financial information, shipping activity, etc. If we
also include such options as adding new records and deleting existing ones, we
may refer to this category of operations as file maintenance operations.

Now, file maintenance operations constitute fairly simple programming
tasks. Moreover, much of this programming is very similar in all applications.
So it is tempting to conclude that we can replace the programming of file
maintenance operations with a number of high-level software elements –
some built-in procedures, for example. We should then be able to generate any
file maintenance operation by combining these high-level elements, rather
than starting with the individual statements and operations of a traditional
programming language. I want to show, though, that despite the simplicity and
repetitiveness of file maintenance programming, it is impossible to start from
higher-level elements.

The illusion of high levels arises when we perceive software as a combina-
tion of separable structures, or aspects. There are at least two aspects to the file
maintenance operations: database operations and user interface operations.
So, to keep the discussion simple, let us assume that these two aspects are the
only important ones. If we think of each aspect separately, it is quite easy to

the delusion of high levels 445chapter 6

imagine the higher levels within each structure, and to conclude that we can
start from higher levels. We may decide, for example, that most database
operations can be generated by starting with some built-in procedures that let
us access specific records and fields; and most interface operations, with some
built-in procedures that display individual fields and accept new values. Thus,
by specifying a few parameters (file and field names, index keys, display
coordinates, etc.), we should be able to generate, simply by invoking these
procedures, most combinations of database operations, and most combinations
of interface operations.

We commit the fallacy of abstraction, however, if we believe that the
alternatives possible when starting from higher levels are about the same as
those we had before. The temptation of high levels is so great that we are liable
to perceive an application as simpler than it actually is, just so that we can
rationalize the reduced flexibility. It takes much experience to anticipate the
consequences of the restriction to high levels. For, it is only later, when the
application proves to be inadequate, when important requirements cannot be
met and even simple details are difficult to implement, that the impoverish-
ment caused by abstraction becomes evident.

But abstraction became possible only through reification – only after
separating the two structures, database and user interface. And reification
causes its own kind of impoverishment. We can indeed view file maintenance
operations from the perspective of either the database or the interface opera-
tions, but only in our imagination. In reality, the file maintenance operations
consist of both the database and the interface operations. Separately, these
operations can indeed be represented as simple structures, because we can
identify most of their elements and relations. But when part of an application,
these operations interact, giving rise to a complex structure. It is this complex
structure that constitutes the real file maintenance operations, not the two
imaginary, reified simple structures.

Reification impoverishes the complex structure by destroying the interac-
tions between its constituent structures. When we lose the interactions, we also
lose many alternatives for the top element of the complex structure. Each
alternative at this level represents a particular file maintenance operation,
which may be required by some application. Certain interactions are still
possible, of course – those that can be generated by combining the high-level,
built-in procedures. The alternatives resulting from these interactions are the
file maintenance operations that can be implemented even after reification
and abstraction. Most interactions, however, take place at low levels, so they
can only be implemented with such means as statements, variables, and
conditions; that is, with programming languages. And these interactions are
no longer possible once we lose the lower levels. The two fallacies, thus,

446 software charlatanism chapter 6

contribute together to the impoverishment of the complex structure that is the
application. They are usually committed together, and it is seldom possible, or
necessary, to analyze them separately.

To appreciate why it is impossible to eliminate the low levels, all we have to
do is think of the details that a programmer faces when implementing a typical
file maintenance operation. Thus, the user may want to see only some of the
fields at first, and then various other fields depending on the values present in
the previous ones; or he may need to scan records, forward or backward, rather
than ask for specific ones; in one application the user may want to see detailed
information, in another only a summary; in one situation some of the fields
may always be modified, in another the fields may be modified only under
certain conditions; in some applications, modifying a field must produce a
change in other fields, and perhaps in other files too; and so on.

Clearly, the number of possible requirements, even for relatively simple
operations like file maintenance, is practically infinite. But the important point
is that this variety, and the details that make up these requirements, entail the
low levels of both the database and the interface operations. To implement
a particular requirement, therefore, we need not only low-level software
elements in both kinds of operations, but elements that can be shared by these
operations; in other words, exactly what abstraction and reification would
prevent us from creating. For example, to display a field depending on the
value of another field, we must formulate conditional statements involving
particular fields and display operations; and to display details from one file
along with the summary of another, we must create a small piece of software
that reads records, accesses fields, performs calculations and comparisons, and
displays values.

Each requirement reflects a particular file maintenance operation; each one
is, therefore, an alternative value for the top element of the complex structure
formed by the interaction of the database and display operations. If we agree
that a programmer must be able to implement any file maintenance operation,
and hence to generate any alternative, it is obvious that he must be able to
create and combine all the low-level elements forming the database operations,
and all the low-level elements forming the display operations (and probably
other low-level elements and operations too). The use of low levels helps us
avoid both fallacies: it lets us generate all the alternatives within each structure,
and the alternatives resulting from the interaction of the two structures.

If you still have doubts about the importance of the low levels, look at it this
way: if just one low-level element is not available, at least one file maintenance
operation will be impossible to implement; and if this alternative happens to
be required, the application will be inadequate. Each alternative of the top
element is the result of a unique combination of elements at the lower levels.

the delusion of high levels 447chapter 6

So, the only way to ensure that any alternative can be implemented is to retain
the low-level elements.

Since each alternative is unique, no matter how many alternatives we have
already implemented, or are available through built-in procedures, the next
application may still have to be programmed starting with low-level elements.
Only naive and inexperienced practitioners believe that they can have the
versatility of the low levels while being involved only with high levels. In
reality, the simplicity promised for high-level operations is achieved precisely
by reducing the number of alternatives. It takes the experience of many
applications to recognize in a given situation whether we can or cannot give up
the low levels.

Note that we never question the need for low-level elements in the case of
language. We may well think of the various aspects of a story separately; but we
all agree that, if we want to retain the freedom to express any idea, we must
start with the low-level elements of each aspect – and, moreover, with elements
that can be shared by these aspects. Only words fulfil both requirements. No
one would seriously claim that there exist methods or devices which enable us
to start with ready-made sentences and still express any idea.

3

3
File maintenance was only an example, of course. A major application com-
prises thousands of aspects, most of them more involved than a database or
display operation. Besides, we seldom encounter situations where only two
aspects interact, as in our simplified file maintenance example. Even there, to
discuss realistic situations we had to consider, in addition to the database and
display operations, various business practices. These practices are themselves
aspects of the application, so they add to the number of structures that must
interact. We saw this, for instance, when I mentioned the small piece of
software that accesses records and fields, performs calculations and compari-
sons, and displays values: a small element comprising just a few statements
must be shared, nevertheless, by several processes – database, display, and one
or more business practices – because this is the only way to implement an
operation that involves these processes.

It is hardly necessary, therefore, to demonstrate the need for low levels in
real applications, in situations involving thousands of aspects, after showing
the need for them even in situations with two aspects. Rather, what I want
to show is how the mechanistic fallacies, and the software delusions they
engender, lead to software charlatanism. All forms of software exploitation are
based, ultimately, on the delusion of high levels that we have just examined.

448 software charlatanism chapter 6

�

The deception starts when we are offered some software that promises to
enhance our capabilities; namely, software that will allow us to accomplish
tasks requiring knowledge that we, in fact, lack. We are promised, in other
words, that simply by operating a software device we will be in the same
position as those whose skills and experience exceed ours. The promise, it must
be emphasized, is not that we will quickly acquire the missing knowledge. On
the contrary, the promise is specifically that we don’t need to learn anything
new: the power to perform those tasks resides in the device itself, so all we need
to know is how to operate it.

As programmers, we are offered various tools, development environments,
and database systems. We are told that these devices will enable us to create,
quickly and easily, applications which otherwise would take us a long time to
program, or which are too difficult for us to program at all. The promise,
therefore, is that these devices will function as substitutes for programming
expertise: through them, we will achieve the same results as programmers who
have been developing and maintaining applications successfully for many
years.

As users, we are offered various productivity systems, or office systems. We
are told that these devices will solve our business problems directly, eliminating
the need for programming. Or, we are offered ready-made applications or
pieces of applications, and we are told that they will enable us to manage our
business just as we would with custom applications created specially for us.

For programmers as for users, the promises are supported with the explana-
tion that the software devices offer higher levels of abstraction: they simplify
development by allowing us to start from higher-level elements, bypassing the
difficult and time-consuming task of creating the lower levels. The higher-
level elements appear in a variety of forms, but, essentially, they are built-in
operations or ready-made pieces of software.

No matter what form the higher levels take, the underlying assumption is
the same: the work involved in creating a software application is similar to a
manufacturing project, so the application can be seen as a neat structure of
things within things – parts, modules, subassemblies. Thus, as in manufactur-
ing, the larger the building blocks, the faster we will complete the project. We
should avoid programming, therefore, and start instead with the largest
modules and subassemblies available: software entities that already contain
the lower-level parts. The use of large building blocks benefits us in two
ways: by speeding up the software manufacturing process, and by demanding
lower skills. Less time, less knowledge, and less experience are needed to
assemble a software structure from modules, than to design and build it

the delusion of high levels 449chapter 6

from basic components. In the extreme case of ready-made applications, the
manufacturing process is eliminated altogether: the starting level is then the
top element itself, the complete application.

If software exploitation begins with the lure of high levels, the next stage
is, needless to say, the disappointment. As programmers, we still cannot
create complex and reliable applications; as users, we still cannot manage our
affairs as we hoped. The software devices do provide the promised higher
levels, and we can perhaps accomplish some tasks that we could not have
accomplished without them. What we find, rather, is that the higher levels are
rarely beneficial. If we want to start from higher levels, we must give up
the flexibility afforded by the low levels. If we want the benefits of built-in
operations and ready-made modules, of less work and easier challenges,
we must be content with a fraction of the alternatives otherwise possible.
Unfortunately, only rarely is this practical: only rarely can we restrict our affairs
to the few alternatives provided by the software devices. The greater the
promised benefits, the higher must be the starting levels, and the more severe
the reduction in alternatives. The deception, thus, consists in promoting the
benefits of higher starting levels while masking their concomitant drawbacks.

We adopt these devices and become dependent on them because we are
seduced by slogans like “powerful” and “easy to use.” We fail to see that these
two qualities are contradictory: easy-to-use devices can be powerful only if we
redefine power to mean, not the ability to implement any operations, but the
ability to implement some operations easily. Clearly, if ease of use is claimed, all
the power must inhere in the devices themselves, in their built-in capabilities.
This means that they may perform well those operations that are built in, but
they cannot perform other operations at all; and no device can have all
conceivable operations built in.

The only way to implement any operations that may be required is by
starting with low-level elements. So the software charlatans must provide the
low levels if we are to use their devices at all. Their challenge, therefore, is how
to reinstate the low levels, and how to make us start from these low levels, while
we continue to believe that we are working at high levels. And they do it by
implementing the low-level features within the high-level environment, as
extensions to the high-level operations.

The low levels were always available to us – in the form of traditional
programming languages, for example. So, if low levels are what we need, there
is nothing the elites can give us that we did not have all along. The theories and
methodologies, the programming tools and fourth-generation languages, the
database and reporting systems, serve in reality the same purpose: they provide
some of the low-level elements we need, and the means to link software
structures, while pretending to be high-level environments.

450 software charlatanism chapter 6

The third stage in the process of exploitation, then, is the reinstatement of
the low levels. To make their devices useful, the elites must restore the very
concept that the devices were meant to supersede. Any device that does not
provide this functionality is eventually abandoned and forgotten, even by the
naive people who believed the original claims, simply because it is useless. (The
full-fledged CASE environments, which actually tried to materialize the
fantasy of creating entire applications “without writing a single line of code,”
are an example.)

We will waste no time, thus, examining the devices that do not restore the
low levels. Let us treat them simply as fraudulent products, no different from
the other forms of deception employed by charlatans to exploit gullible people
– weight-loss contraptions, back-pain remedies, money-making schemes, and
the like. As explained earlier, it is not the traditional means of exploitation, but
the new form of domination, that concerns us: the use of software to consume
our time and prevent us from gaining knowledge and experience. Eliminating
the low levels and then restoring them in a different and more complicated
form is an important factor in this domination, as it permits the elites to
destroy software freedom and to establish the dependence on their devices.
And we are fooled by these charlatans because the devices are based on
software theories invented in universities, and described as “scientific.”

Recall the principles of demarcation between science and pseudoscience,
which we studied in chapter 3. Mechanistic software theories claim that we can
create applications by starting with high-level elements. So, when this idea
proves to be worthless and the charlatans “enhance” their devices by restoring
the low-level capabilities, what they do in reality is turn the falsifications of
those theories into new features. And this, we saw, is the stratagem through
which fallacious theories are rescued from refutation. Thus, mechanistic
software theories are intrinsically pseudoscientific.

Here are examples of software devices that were enhanced by restoring the
low levels: The so-called fourth-generation languages started by promising us
a higher level than the traditional, third-generation languages; but the only way
to make them practical was by restoring, one by one, the features found in
the traditional languages (loops, conditions, individual variables, etc.). The
relational database systems started by claiming that the database can be treated
as separate structures, interacting only at high levels with the other structures
of the application; but they became practical only after adding countless new
features, and whole programming languages, in order to restore the low-level
links between these structures (for instance, the capability to access individual
records directly, through file scanning loops). Systems like report writers and
spreadsheets started by claiming that their high-level features are adequate for
our requirements; but they ended up incorporating many traditional features,

the delusion of high levels 451chapter 6

and even programming languages, in order to provide the low-level operations
needed in real-world situations.

To summarize, high-level environments that restore the low levels exploit us
in two ways. First, we get to depend on some new and complicated pro-
gramming methods, arising from the idea of using low-level elements as an
extension to high-level ones. The traditional method – creating high-level
elements from low-level ones – is simple and natural; it follows a concept we
all understand intuitively, and confers complete programming freedom. The
new methods, on the other hand, are contrived – absurd and unnecessary; their
purpose is to maintain the illusion of high levels, and to induce dependence on
proprietary development systems. Second, these systems provide only a few
of the low-level features available through the traditional methods, only
the minimum necessary to fool us. So they remain, essentially, high-level
environments, lacking the versatility of a general-purpose language. Each low-
level feature is presented as a powerful enhancement, and this obscures the fact
that these features are merely a more complicated version of features we always
had – in the traditional programming languages.

4

4
The charlatans promise us power, but all they can give us is higher levels of
abstraction. So, once they persuade us to adopt their devices, they must restore
the essential low levels, while continuing to promote the devices as high-level
environments. It is not too much to say, then, that the only real difference
between these devices is how they mask the deception; namely, how they
prevent us from noticing that we are working, in fact, at low levels.

It is precisely because their chief purpose is to deceive us – to persuade us
that they possess some important qualities – that the devices end up so
complicated and inefficient. The so-called non-procedural languages, for
instance, are promoted with the claim that we only need to tell the computer
now what to do, not how to do it. This sounds like a novel programming
concept, as if we could almost talk to the computer and tell it what we need
done. In reality, these languages merely incorporate a number of high-level
elements in the form of built-in operations. And this concept is available in any
programming language in the form of libraries of subroutines: ready-made
functions providing levels of abstraction that are as high as we want.

But, whether we use subroutines or non-procedural languages, some of
our starting elements must still be at low levels, because it is impossible to
implement all conceivable requirements by relying entirely on ready-made,
high-level elements. The non-procedural languages look impressive when all

452 software charlatanism chapter 6

we need is one of their built-in operations (these are the examples we see in
textbooks and in advertisements, of course), but are more awkward than a
traditional language in any other situation. This is true because, in order to
make them appear as novel concepts, their authors must make them different
from the traditional programming languages; and this also makes them more
complicated.

It is common in these languages, for example, when what we need is
not just one of the built-in operations, to find long and tangled statements.
A procedure that in a traditional language involves conditions, loops, and the
use of variables, may turn up in a non-procedural language, in an extreme case,
as one statement. But, while being perhaps shorter than the procedure, the
statement is not, in fact, a higher-level entity: since its clauses must be specified
with precision and in detail, they do not constitute a higher level of abstraction.

Thus, in SQL (the most popular database language), we often see statements
containing more than a dozen lines, when a number of related database
operations must be specified together. These long statements can become
extremely complicated, as the programmer is forced to cram into one expres-
sion a whole series of related operations. Instead of the familiar structure of
loops and conditions found in traditional languages, and which an experienced
programmer understands intuitively, we now have an artificial and unwieldy
set of specifications. But because the definitions, loops, and conditions are no
longer manifest, this complicated piece of software is unlike a traditional
language, so we can delude ourselves that what we are doing is no longer
programming: “we are only telling the computer what to do, not how to do it.”

What we are telling the computer is, however, the same as before. First, the
level of abstraction is about the same as in a traditional language (this, after all,
is why we needed SQL, why we could not simply use the high-level relational
operations). Second, the resulting statements are still the reflection of many
structures, which interact and must be kept in the mind simultaneously. In
other words, all the difficulties we had before are still there; and because we
wanted to avoid programming, we must now cope with these difficulties
through programming means that are more complicated and less efficient than
the traditional ones. (We will examine the SQL fraud in “The Relational
Database Model” in chapter 7; see pp. 808–815.)

�

Let us look at another concept that promises higher levels and, instead, makes
programming more complicated. This concept is based on the belief that
specifying an operation by selecting it from a list of options, rather than by
typing a command or a statement, represents a higher level of abstraction.

the delusion of high levels 453chapter 6

Most development environments have features based on this delusion. Like the
non-procedural languages, creating applications by selecting things from lists
is seen as a novel, high-level concept: all we do now, it seems, is tell the
computer what we need, and it automatically generates pieces of software for
us, even the entire application.

In reality, whether we select options or write statements, our starting
elements must be a combination of high-level operations and low-level ones.
Thus, even when we communicate with the system by selecting built-in
operations, we must create the application’s structures – its unique processes,
or aspects – and the links between structures. For, if this were not the case, if
our contribution were limited to making selections, the only applications we
could create would be random and useless combinations of built-in operations.

With a traditional language, we tell the computer what to do by formulating
statements, definitions, and expressions. With the new concept, we are shown
lists of options, and options within options, and we tell the computer what to
do by selecting entries from these lists. This creates the illusion that we are not
programming, that all we must know is how to select things. What we must
know, though, is the same as before; only the way we apply this knowledge is
different.

In principle, one can specify anything by selecting options, but only with
trivial requirements is this method more expedient than typing statements.
The devices are promoted, however, for all applications. Clearly, no one
would adopt them if told that they are meant only for novices, or only for
solving simple and isolated problems. Thus, the devices must maintain the
illusion that, no matter how complex the requirements, all we ever do is make
selections; and this is why they end up making programming more difficult.
But if we believe that one can accomplish more with these devices than without
them, we will agree to perform any acts, no matter how illogical, just so that we
can use them.

We encounter this delusion, for instance, in the development environments
called visual, and in those called by example. Thus, the concept query by
example claims to give users the means to perform certain database operations
without programming. The concept sounds as if, instead of formulating
queries, all we had to do now is show the system some examples of what we
need. In reality, since there is no way for a database system to know what we
need without being given precise information, we must provide the same
specifications as before; and, because we wanted to avoid the traditional
method of formulating queries, we end up with a more complicated one.

Thus, to tell the system which records to read, instead of expressing through
a traditional language a condition like “products with price less than 100 and
quantity in stock greater than 10,” we must perform a number of selections: we

454 software charlatanism chapter 6

select from a list of files “product,” then from a list of fields “price,” then from a
list of relational operators “less,” then the value 100, then three more selections
for “quantity,” “greater,” and 10, and finally, from a list of logical operators,
“and.” Even such trivial acts as the entry of a numeric value like 100 can be
reduced to a process of selections: we have all seen systems where a number is
displayed for us, and we are expected to increment or decrement it with the
mouse until it reaches the desired value. This method takes longer than simply
typing the value, but it is an important part in the delusion of high levels: we
are now only selecting a value, not specifying it.

It ought to be obvious that in order to select the right field, operation, or
value we must know what these notions are, must appreciate the consequences
of each selection and of our particular combination of selections, must
understand the significance of operations like “less” or “and” when applied to
database fields and records, and so on. Also, the query is meaningless as an
isolated function; it is part of an application, so we must be aware at the same
time of the application’s other aspects, and of the other uses of those files,
records, and fields. In other words, to select the right things we must deal with
details and with interacting structures, so the new method does not represent
a higher level of abstraction: we must have almost the same programming skills
as when specifying those things with statements.

The knowledge that is no longer required – remembering what operations
are available, for instance, or the correct format of a statement – is the easy part
of programming, the mechanistic knowledge. These devices impress ignorant
practitioners, who lack even this basic knowledge (and are unaware of the
required complex knowledge lying beyond it), and who, therefore, believe that
a substitute for it is all they will ever need in order to create applications.
Experienced programmers refuse to use these devices, not because they cling
to the old methods, as the propaganda tells us, but because they recognize how
insignificant their benefits are.

The devices, thus, introduce elaborate procedures as a substitute for the
simple knowledge involved in programming, but they cannot replace the
difficult, complex knowledge, which can only develop through personal
experience. The immensity of the environment, and the endless novelties that
must be assimilated in order to use it, mask the fact that it is still our own skills,
not the device, that solve the difficult programming problems. In the end, all
the device does is sit between us and our applications, forcing us to express our
requirements in more complicated ways than we would through traditional
programming. Moreover, despite its low-level features, the device still prevents
us from implementing all conceivable alternatives.

the delusion of high levels 455chapter 6

5

5
The most flagrant manifestation of software mechanism, thus, is the obsession
with ways to avoid programming. Serious programming is indeed a difficult
pursuit, but so are other professions. And it is only in programming that
the main preoccupation of practitioners has become the avoidance of the
knowledge, skills, and activities that define their profession. The ignorance
pervading the world of programming is so great that the obsession with ways to
avoid programming forms its very ideology. The irrationality of this obsession
can be observed in this strange phenomenon: as programmers and managers
are taught that programming must be avoided at all costs, they end up accept-
ing with enthusiasm any theory or system that claims to eliminate the need for
programming, even when this makes application development more difficult.

It is important to remember the origin of this stupidity: our mechanistic
culture, and the software delusions it has engendered. For, only if we perceive
software applications as mechanistic phenomena will we attempt to break
down applications into independent structures and to start from higher-level
elements; and only then will we accept the software devices that promise to
help us in these attempts. The devices, we saw, provide higher starting levels for
isolated software structures. The development environments through which
they do it, no matter how novel or sophisticated, serve only to deceive us, to
prevent us from noticing that all we are getting is some built-in operations. So
the higher levels are nothing but a proprietary implementation of a simple and
well-known programming concept – subroutines.

Were they not blinded by their mechanistic delusions, software practitioners
would easily recognize that the programming aids are only replacing their
simple, mechanistic activities, and that successful application development
entails non-mechanistic knowledge. One can attain non-mechanistic knowl-
edge only through personal experience. Thus, as long as they are guided by
mechanistic beliefs and seek progress through programming substitutes, the
software practitioners deprive themselves of the opportunity to gain this
experience. They are trapped, therefore, in a vicious circle: the only knowledge
they believe to be required is the mechanistic knowledge they are trying to
replace with devices; consequently, they interpret each disappointment, not as
evidence of the need for additional, non-mechanistic knowledge, but as a
shortcoming of the particular device they are using; so, instead of gaining the
additional knowledge through programming, they merely look for another
device, and repeat the whole process in a slightly different way.

It is worth repeating these facts, because they are perhaps not as obvious as

456 software charlatanism chapter 6

they appear here. How else can we explain the failure of society to notice the
incompetence of our programmers? Endless justifications are being suggested
to explain why we must disregard, in the case of programmers, notions that we
accept implicitly in any other profession; particularly, the need for personal
experience in the tasks defining the profession. For programmers, we have
redefined the idea of experience to mean experience in using substitutes for
experience.

And so it is how the delusion of software mechanism has given rise to that
famous phrase, “without writing a single line of code.” When referring to a
programming substitute, this phrase is a promise; namely, that the device
will permit us to create applications, or pieces of applications, without any
programming. This promise is seen as the most desirable quality of a software
device, and software companies will do almost anything in order to realize it –
even invent, as we saw previously, devices that make application development
more difficult. What matters is only the claim that we no longer have to “write
code” (write, that is, statements or instructions).

It is not surprising, of course, to see this phrase employed for devices
addressing software users – office workers, managers, amateur developers, and
the like. Since no device can allow someone without programming knowledge
to perform tasks requiring programming, the claim is a fraud. But we can
understand the wish of naive people to have such a device, and consequently
their exploitation by charlatans. What is surprising is to see the same phrase
employed for devices addressing programmers – those individuals whom one
would expect to possess programming expertise (and hence to have no use for
such devices), to be proud of their programming capabilities, and even to enjoy
programming.

The fact that the software charlatans employ the same means of deception
in both cases ought to draw attention to the absurdity of our software culture:
individuals whom we all consider professional programmers have in reality
about the same knowledge, ambitions, and expectations as average computer
users; like mere users, their chief preoccupation is to improve, not their
programming skills, but their skills in avoiding programming.

And it is not just the software companies that foster these delusions.
Researchers in universities participate by inventing mechanistic software
theories, the business media by promoting worthless software concepts,
corporations by employing programmers who rely on aids and substitutes,
governments by permitting the software bureaucracy to exploit society, and in
the end, each one of us by accepting this corruption. For, simply by doing
nothing, by continuing to worship the software elites and to depend on
the software bureaucrats, we are in effect supporting them. The cost of the
mechanistic software delusions (probably exceeding one trillion dollars a year

the delusion of high levels 457chapter 6

globally) is passed in the end to society, to all of us. So, just by doing nothing,
we are in effect paying them, each one of us, thousands of dollars every year,
and helping them in this way to increase their domination.

6

6
In chapter 4 we discussed Jonathan Swift’s criticism of the mechanistic ideology
that was sweeping the scientific world at the end of the seventeenth century; in
particular, his attack on the mechanistic language theories (see pp. 317–318).
The idea that there is a one-to-one correspondence between language and
knowledge, and the idea that languages can be studied, designed, and improved
as we do machines, were seen in Swift’s time as a foregone conclusion, and
were defended by pointing to the successes of mechanism in the natural
sciences. Thus, even though the mechanistic theories of language were mere
speculations, most scientists were taking them seriously. To ridicule these
beliefs, Swift has his hero, Gulliver, describe to us the language machine
invented by a professor at the Grand Academy of Lagado.Ê

The machine is a mechanical device that contains all the words of the
English language, and their inflections. By manipulating a number of cranks,
the operator can instruct the machine to generate random combinations of
words. And by selecting those combinations that constitute valid phrases and
sentences, the professor explains, any person intelligent enough to operate the
machine – intelligent enough, that is, to turn the cranks – can produce any text
in a particular field of knowledge. Thus, a person with no knowledge of
philosophy, or history, or law, or mathematics, can now write entire books on
these subjects simply by operating the machine.

The professor emphasizes that his invention is not meant to help a person
acquire new knowledge, but on the contrary, to enable “the most ignorant
person” to write in any field “without the least assistance from genius or
study.”Ë The machine, thus, will allow an ignorant person to generate any
text without having to know anything he does not already know. And this
is possible because the person will generate the text (as we say today in
programming) “without writing a single line.”

Now, one could certainly build such a machine, even with the mechanical
means available in the seventeenth century. Swift is not mocking the technical
aspects of the project, but the belief that the difficulty of developing ideas is the
mechanical difficulty of combining words. If we hold this belief, we will

Ê Jonathan Swift, Gulliver’s Travels and Other Writings (New York: Bantam Books, 1981),
pp. 180–183. Ë Ibid., p. 181.

458 software charlatanism chapter 6

inevitably conclude that a machine that helps us to manipulate words will
permit us to perform the same tasks as individuals who possess knowledge,
talent, and experience.

It is obvious that the quality of the discourse generated by a language
machine depends entirely on the knowledge of the operator. The machine can
indeed produce any text and any ideas, but only by randomly generating all
possible combinations of words. So, in the end, it is still the human operator
that must decide which combinations constitute intelligent sentences and
ideas. Although it appears that the machine is doing all the work and the
person is merely operating it, in reality the machine is replacing only the
mechanical aspects of language and creativity.

Thus, a person using the machine will not accomplish anything that he
could not accomplish on his own, simply by writing. Now, however, since he is
only selecting things, it can be said that he is generating ideas “without writing
a single line.” Whatever the level of intelligence of a person, it is in fact more
difficult to generate a piece of text by operating this machine than by directly
writing the text. But if we believe that it is the mechanical acts involved
in writing that make writing difficult, or if we have to employ as writers
individuals known to be incapable of writing, we might just decide that
language machines make sense.

Returning to our software delusions, we indeed believe that the difficulty of
programming lies in its mechanical aspects, in combining pieces of software;
and, what is worse, we indeed have to employ as programmers individuals
known to be incapable of programming. So we have decided that programming
machines make sense.

The similarity between Swift’s hypothetical language aid and our real
programming aids is striking. We note, in both cases, devices that address
ignorant people; assure them that they don’t need to know anything they don’t
already know; promise them the power to perform tasks that require, in fact,
much knowledge; and reduce their involvement to a series of selections.

The similarity is not accidental, of course. We already know that our
software delusions and our language delusions stem from the same belief;
namely, the belief that the elements of software structures and language
structures correspond on a one-to-one basis to the elements that make up
reality. So we must not be surprised that devices based on software delusions
end up just like the device invented by a satirist to mock the language delusions.

Swift was trying to demonstrate the absurdity of the mechanistic language
theories by exposing their connection to the belief that a mechanical device
can replace human knowledge. But today, through the mechanistic software
theories, we are actually attempting to realize this fantasy: we are building
software devices to replace human knowledge – programming knowledge, in

the delusion of high levels 459chapter 6

particular. Concepts that were only academic speculations in Swift’s time, easily
ridiculed, have become a reality in our time in the world of software. The kind
of device that three centuries ago was only a fantasy – a satirical exaggeration
of a delusion – is actually being built today by software companies, and is being
used by millions of people.

�

There is no better way to illustrate the essence of software charlatanism than
by imagining how the professor from Lagado would design his language
machine today. He would make it a software device, of course, rather than a
mechanical one. And, as a matter of fact, it is quite easy to design a software
system that allows anyone – including persons who are normally unable to
express themselves – to produce books in any domain “without writing a single
line.” To imagine this device, all we have to do is combine the concepts
implemented in Swift’s language machine with those implemented in our
software systems.

The promise, thus, would be the familiar claim that the only thing we need
to know is how to operate the device, and that this knowledge can be acquired
in a short time. To operate the mechanical language machine, all they did was
turn cranks; to operate a modern language machine, all we would do is “point
and click” with a mouse. We are assured, in both cases, that the power of the
device is ours to enjoy “at a reasonable charge, and with a little bodily labour,”Ì

and only by making selections: we would never have to write a single sentence.
The phrase we would use today is “powerful yet easy to use.”

Let us examine some of the possibilities. Instead of typing words, we
can have the system display them for us in the form of selections within
selections. If, for example, we need the sentence “the dog runs,” we first select
the grammatical function by clicking on noun; this displays a list of noun
categories, and we select animal; within this category we select domestic, and
finally dog; what is left is to click on singular and definite article. Then, for
“runs” we select the grammatical function verb, which displays a list of verb
categories; we select action, within this category we select motion, and finally
run; we then click on present tense, third person, and singular, and the complete
sentence is displayed for us.

The popular expedient of icons could be profitably employed to help even
illiterate persons to use this system: if tiny pictures were used to depict words,
categories, and grammatical functions (a picture of a dog for “dog,” an animal
together with a man for “domestic,” a running figure for “run,” one and two

Ì Ibid.

460 software charlatanism chapter 6

objects for “singular” and “plural,” etc.), even those of us who never learned to
read and write could benefit from the power of language machines.

It is obvious that, with such a system, anyone could generate text on any
subject without writing a single line. And future versions could introduce even
more powerful features – built-in sentences, for instance. Instead of words, we
would be able to select entire sentences, and even entire paragraphs, from lists
of alternatives representing classes and categories of topics. With only a little
practice, anyone would then be able to generate page after page of exquisite text
just by pointing and clicking.

The more elaborate this imaginary language system becomes, the easier it is
to recognize its similarity to our software systems – our programming aids, in
particular. But, while few people would be deceived by a language machine,
the whole world is being deceived by the software charlatans and their applica-
tion development machines. Not even illiterates could be persuaded to try
a device that promises to replace writing skills. But the most important
individuals in society – decision makers working in universities, corporations,
and governments – keep trying one software theory after another, and one
programming substitute after another, convinced that a device can replace
programming skills.

�

Recall also our discussion in “The Software Theories” in chapter 3. Scientists
believe that a device based on selections can replace human knowledge because
they see intelligence and creativity, not as the indeterministic phenomena they
are, but as the process of selecting a particular mental act from a predetermined
range of alternatives. So they conclude that it is possible to account for human
knowledge. Specifically, they claim that high-level forms of intelligence can be
described with mathematical precision as a function of some low-level mental
elements: all grammatically correct sentences that a person can utter can be
predicted from the individual words, all behaviour patterns can be explained
as a combination of some simple bits of behaviour, and all social customs can
be described in terms of some basic human propensities.

This idea leads to the belief that we can incorporate in a device – in a
software system, for instance – the low-level elements, and the methods used
to derive from them the high-level ones. The device would then be a substitute
for intelligence: by selecting and combining the high-level elements generated
by the device, anyone would be able to perform the same tasks as a person who
generates in his mind high-level elements starting with low-level ones. The
device would replace, in effect, the experience of a person who took the time
to develop whole knowledge structures, starting from low levels.

the delusion of high levels 461chapter 6

The fallacy, we saw, lies in the belief that the alternatives created when
starting with high-level elements are about the same as those possible when
starting from low levels. In reality, we would be limited to a small fraction of
the possible alternatives. The impoverishment is caused by abstraction, but
also by reification, because when we lose the low levels we also lose the links
between the particular knowledge structure that is our immediate concern,
and all the other structures present in the mind. This impoverishment explains
why mechanistic theories of mind can represent only some aspects of human
intelligence, and why ignorant persons equipped with software devices can
accomplish only some of the tasks that experienced persons can with their
minds alone.

7

7
Whether addressing programmers or software users, an honest development
system simply provides low-level elements and the means to combine them so
as to create the higher levels. The low levels come (for programmers, at least)
in the form of general-purpose programming languages; and, when practical,
higher levels are available through existing subroutines. Systems that provide
only high levels, and claim that it is possible to create any application in this
manner, are dishonest: they invariably end up reinstating the low levels in a
different, and more complicated, form. These systems are for programming
what language machines are for writing: not useful tools, but means of
deception and exploitation. Their purpose, we saw, is to induce ignorance
and dependence, by consuming our time and preventing us from improving
our skills.

Honest systems allow us to create the higher levels on our own, and to select
any subroutines we like. With honest systems, therefore, we can choose any
combination of low-level elements and built-in operations. Dishonest systems
provide an environment with high starting levels, and add the low levels as a
special feature. The software charlatans have reversed, in effect, the principles
of programming: instead of a simple system based on low levels, where we can
create the high levels independently, they give us a complicated environment
based on high levels, where the low levels are provided as “enhancements.”
What we had all along in any programming language – the low levels – is
presented now as a new and powerful feature of their high-level environment.
Instead of programming being the standard development method, and the
high levels a natural outcome, they make the high levels the standard method,
and turn programming into a complicated extension.

Clearly, if we use a general-purpose development system, if we want to

462 software charlatanism chapter 6

create original applications, and if these applications require a particular level
of detail and functionality, our lowest-level elements must be the same mixture
of variables, conditions, loops, and statements no matter what development
method we use.

The software charlatans prefer environments based on high levels because
this is how they can induce dependence. A system based on low levels and
subroutines leaves us free to develop and maintain our applications in any
way we like. The dishonest systems lure us with the promise of high starting
levels, but must include the low levels anyway. They lose, therefore, the only
benefit they could offer us. But, because we trusted them and based our
applications on their high levels, we will now depend forever on them and on
the software companies behind them. While no dependence is possible when
using traditional development methods, it is quite easy to control our work,
our time, our knowledge, and our expectations through systems based on high
levels. For, instead of simply developing applications and expanding our
programming skills, we are now forced to spend most of our time with the
problems generated by the systems themselves, with complicated concepts,
with special languages, and with their endless changes.

The only time a high-level system is justified is when its functions cannot
be effectively implemented as subroutines. This is the case, typically, in
systems meant for highly specialized applications. Thus, operations involving
indexed data files can be added as subroutines to any language. They are more
convenient when implemented in the form of statements (as in COBOL), but it
would be silly to adopt a new language, or a whole development environment,
just for this reason. On the other hand, the features found in an advanced
file editing system cannot be simply added to a language as subroutines,
because, by its very nature, the editing system must have its own environment
(windows, commands, special use of the keyboard, etc.). And what an honest
system does, in this case, is make it as easy as possible to transfer the files to
and from other systems.

�

It is worth repeating here that “subroutine” refers to a broad range of high-level
software elements, including functions, procedures, subprograms, and the like,
which may be explicit or implicit. This term refers, thus, to any elements that
can be implemented as a natural extension of a general-purpose programming
language. The subroutines that perform file operations, for example, are
implemented by way of functions in a language like C, but we see them as
ordinary statements in a language like COBOL. The important point is that the
foundation of the application be a general-purpose language, not the high-level

the delusion of high levels 463chapter 6

entities of a development environment. The level of this language may vary,
depending on the application; thus, parts of the application, if restricted to
narrow, specific domains, can often be developed in a higher-level language.

And I refer to individual statements, conditions, iterations, etc., as “low-
level” software elements only because they are lower than subroutines, or
built-in operations, or the high-level functions provided by development
environments. But these “low-level” elements are what we find, in fact,
in general-purpose languages (like COBOL and C) called “high-level” (to
distinguish them from assembly languages, which use true low-level elements).

This confusion in terminology is due to the software mechanists, who have
distorted the meaning of low and high levels by claiming that it is possible
to raise forever the level of the starting elements. Thus, the term “fourth
generation” (4GL) was coined for the languages provided by development
environments, and “third generation” for the traditional high-level languages,
in order to make environments look like an inevitable evolution. Assembly
languages were declared at the same time to be “second generation,” and
machine languages, which use even lower-level elements, “first generation.”

The level of these languages, however, has little to do with an advance in
programming concepts. Thus, the first three “generations” are still in use today,
and will continue to be, because the lower levels are the only way to implement
certain types of operations. It is true that, historically, we started with low-level
languages and only later invented the high-level ones; but this doesn’t prove
that there can exist general-purpose languages of even higher levels. And it is
true that, in most programming tasks, we were able to replace low-level
languages with high-level ones without reducing the functionality of the
resulting applications; but it doesn’t follow that we can repeat this success, that
we can develop the same applications starting from even higher levels.

Everyone agrees that it is more efficient to start from higher levels, and that
we should use the highest-level entities that are practical in a given situation.
But, as we saw earlier, for typical business applications this level cannot be
higher than what has been called third generation. Consequently, the fourth
generation is not, relative to the third, what the third is relative to the second.
(Thus, the most advanced features that can be added naturally to a second-
generation language will not turn it into a third-generation one; but most
features found in fourth-generation languages can be added naturally to any
third-generation one.) While we may agree that the first three generations
represent a certain progression in programming concepts, the fourth one is a
fraud. Not coincidentally, it was only when the fourth one was introduced that
the term “generation” was coined; formerly we simply had “low-level” and
“high-level” languages.

It is precisely because no further “generations” are possible beyond the

464 software charlatanism chapter 6

third one (in the case of general-purpose languages and general business
applications) that the software mechanists were compelled to reverse the
principles of programming; that is, to provide low levels within a high-level
environment, instead of the other way around. To put it differently, the only
way to make a 4GL system practical is by reinstating the traditional, third-
generation concepts; but, to maintain the illusion of higher starting levels,
the software companies must provide these concepts from within the 4GL
environment.

A fourth-generation language, in the final analysis, is merely a third-
generation language (assignments, iterations, conditions, etc.) plus some
higher-level features (for display, reporting, etc.), bundled together in a
complicated development environment. A programmer can enjoy the same
blend of low and high levels by starting with traditional languages (COBOL, C,
etc.) and adding subroutines and similar features, created by himself or by
others.Í

8

8
As an example of development environments, let us examine the communica-
tions systems. If what we need in our business applications is high-level
operations in the domain of communications (say, transferring data under
various protocols between computers, or converting files from one format to
another), nothing could be simpler than providing these operations in the form
of subroutines. We could then develop the applications in any programming
language we like, and invoke these operations simply by specifying a number
of parameters.

Needless to say, this is not how the popular communications systems
make their operations available. What programmers are offered is a whole
environment, where the operations are invoked interactively. Then, because
the interactive method is impractical when the operations must be part of an
application, these systems also provide a “powerful feature”: a programming
language. (To further distract us, euphemisms like “scripts,” “macros,” or
“command files” are employed to describe the resulting programs.) In short,
we are taken back to the lower levels of traditional programming. But we

Í In forty years of programming – from simple utilities and applications to large data
management systems and business systems – I have never encountered a situation where
I could benefit from a commercial development environment. Even when the project calls
for a higher-level programming method, I find it more expedient to implement my own,
simple, customized environment (by means of “third-generation” and “second-generation”
languages) than to depend on those monstrous systems sold by software companies.

the delusion of high levels 465chapter 6

already had programming languages; all we wanted was a few high-level
communications operations. Instead, we must get involved with, assimilate,
and then become dependent on, yet another system, another language, another
software company, and the related documentation, newsletters, seminars,
websites, version changes, bug reports, and so on.

Most of these activities are spurious, in that they are caused, not by the
communications operations we needed, but by the environment we were
forced to adopt in order to have these operations. And, what is worse, the
languages that come with these environments are more primitive and less
efficient than the general-purpose languages we already had. Only ignorant
programmers, of course, can be deceived by this fraud; true professionals
recognize that these systems are unnecessary, that their sole purpose is to
prevent programming freedom. The popularity of development environments,
and the ease with which practitioners can be persuaded to depend on them,
demonstrates therefore the incompetence that pervades the world of pro-
gramming. It is in the interest of the software companies to maintain this
incompetence. Thus, by providing environments instead of honest develop-
ment systems, they ensure that programmers waste their time with spurious
activities instead of expanding their knowledge and experience.

As explained previously, programmers are deceived by the development
environments because they trust the mechanistic software theories, which
claim that it is possible to create applications by starting with high-level
software entities. While this may work in narrow, specialized fields, or when
the details are unimportant, it is rarely true for general business applications.
Systems based on high levels are dishonest, therefore, because they make
claims that cannot possibly be met.

Communications systems are only one kind of environment, of course. If we
are to depend on development environments for our high-level operations, we
will also need systems for display, for user interface, for database operations,
for graphics, for reporting, for system management, etc. – each one with its own
language, documentation, newsletters, seminars, bugs, changes, and so on.Î

Development environments must include programming languages because
their high-level operations, no matter how impressive they may be on their
own, are only useful when combined with other operations. An application is
not simply a series of high-level operations. The operations provided by one

Î Thus, software reseller Programmer’s Paradise boasts on its catalogue cover, “20,000+
software development tools” (for example, the issue Nov–Dec 2008). Perhaps 1 percent of
them are genuine programming tools. The rest are environments and the endless aids
needed to deal with the problems created by environments. Individuals who need such tools
are not true programmers, but a kind of users: just as there are users of accounting systems
and inventory management systems, they are users of development systems.

466 software charlatanism chapter 6

system are related to those provided by another, and also to the operations
developed specifically for that application. The relations between these opera-
tions occur mainly at low levels, so they must be implemented through
conditions, loops, statements, and variables; in other words, through the same
low-level elements as those found in the traditional programming languages.
Like the language machine we examined previously, the environments promise
us high levels, but provide in reality the same mixture of levels we had all along.
To develop a given application we need the same knowledge as before, but
applying that knowledge is now much more difficult.

The complications created by this charlatanism are so great that a new kind
of system had to be invented, whose only purpose is to help programmers and
users connect the operations of the other systems or transfer data from one
system to another; its only purpose, thus, is to solve the problems created by
the idea of software environments. These new systems come, of course, with
their own environments, languages, procedures, documentation, newsletters,
seminars, bugs, changes, and so on. Another kind of system engendered by
software charlatanism is the one meant to standardize the operations provided
by other systems – to sit above them, as it were, and make their diverse
operations available in a common format. Every software company tries to
establish its system as the standard one, but this struggle merely results in
even more facts, languages, procedures, documentation, reviews, etc., that
programmers must assimilate.

These complications, to repeat, are a result of the reversal of programming
principles: instead of starting with low-level elements and creating the higher
levels freely, programmers are forced to develop applications starting with
high-level elements. The low levels are then provided only through the devel-
opment environments, and through the high levels, thus establishing the
dependence.

A system based on low levels and subroutines also offers the benefits of
high-level elements, and without inducing any dependence. After all, we
already have many programming languages – languages better than those
we must learn with each development environment; and through these lan-
guages, we can create software levels that are as low or as high as we want.
Software companies do not promote environments because our general-
purpose languages are inadequate, but because traditional concepts like
subroutines would not allow them to control our work and our applications as
do these environments. Were the high-level operations provided simply as
subroutines, our general-purpose languages would provide everything we need
to relate them and to create the higher levels. So instead of large software
companies, and instead of our incessant preoccupation with their systems, we
would simply have independent programmers giving us subroutines, and

the delusion of high levels 467chapter 6

independent programmers creating and maintaining applications. When we
realize how much power the software companies attain through the concept
of development environments, it is easy to understand why they like the
mechanistic software theories: these theories provide the ideological justifica-
tion for reversing the traditional programming principles, and hence for their
environments.

�

The ultimate consequence of programming incompetence, then, is the domi-
nation of society by the software elite. Programmers are expected to be
mere bureaucrats, operators of software devices; so they are not accountable
for their applications as other professionals are for their work. If the respon-
sibility of programmers is limited to the use of development systems, it is, in
effect, the software companies behind these systems that control the resulting
applications.

Consider this language analogy: We can be praised or blamed for what we
say because we are free to create any sentences and express any ideas. But if we
lived in a society where sentences and ideas could only be produced with some
language machines supplied by an elite, the conception of responsibility and
knowledge would be different. If everyone believed that language machines are
the only way to express ideas and to communicate, we would be judged, not by
what we say, but by how skilled we are at operating the machines. Moreover, if
the only thing we knew were how to operate these machines, there would be
very little intelligent discourse in society. But that would be considered a
normal state of affairs. In the end, the only knowledge possible would be the
ready-made sentences and ideas built into these machines by the elite.

It is obvious that an elite could dominate society if it could prevent us from
developing linguistic competence, and if it could consume our time with
worthless linguistic theories and devices. We have no difficulty understanding
this for language, but we are allowing it to happen through software. Software
and language, though, fulfil similar functions. Thus, incompetence and charla-
tanism in software will have, in the end, the same consequences as they would
in language. If we allow ignorance and exploitation in our software pursuits, by
the time we depend on software as much as we depend today on language our
society will be completely dominated by the software elite.

Through careful indoctrination, the knowledge of corporate managers is
shaped to serve the interests of the software companies. They are encouraged,
not to help their organizations use computers effectively, but on the contrary,
to make the use of computers as complicated and expensive as possible, and to
accept the dependence on software companies. This is accomplished by

468 software charlatanism chapter 6

promoting the mechanistic software ideology. An important factor in this
ideology is the reliance on software devices – programming aids, development
environments, ready-made pieces of software – in preference to the expertise
and work of individuals. But software devices can only replace the simple
aspects of programming. The complex problems remain unsolved, forcing
everyone to search for newer devices, in a never-ending process. So the
mechanistic ideology guarantees programming incompetence, and hence a
perpetual preoccupation with software devices.

�

To summarize, the only thing that software companies can give us is higher
levels of abstraction for our software elements; and this is precisely what cannot
help us. The higher levels come in the form of built-in operations that address
isolated software structures (that is, individual aspects of an application). They
cannot help us because these structures must interact at low levels, and when
we start with high-level elements we can no longer implement the links
between structures. Starting from high levels impoverishes the complex
structure that is the application (by reducing the number of alternatives for the
value of the top element). This impoverishment is caused both by abstraction
(reducing the alternatives within each structure) and by reification (severing
the links between structures). As a result, we can implement only a fraction of
the possible combinations of elements, and our applications are not as useful
as software can be.

Systems based on high starting levels can be beneficial for creating simple
applications, especially if these applications are in narrow domains (statistics,
for example, or text editing, or graphics), and if they are only weakly linked to
other applications. They are useless for creating general applications, though,
because in this case we cannot give up the lower levels. The mechanistic
software theories, and the development environments based on them, assume
that the various types of operations that make up an application (database,
display, user interface, etc.) can be implemented as independent processes. But
this is a fallacy, because most operations in an application must interact, and
the interactions must take place at low levels. This is why any attempt to
implement general applications through high-level systems leads in the end to
the reinstatement of the low levels, in a more complicated way.

The conclusion must be that we don’t need software companies. Practically
all software supplied by these companies – development environments, system
and database management tools, ready-made applications – is based on the
notion of high levels. It is true that only large companies can create and
support these complicated systems, but if high levels cannot help us, then these

the delusion of high levels 469chapter 6

systems, while impressive, are worthless. At the same time, the kinds of systems
that can help us – customized applications, libraries of subroutines, simple
tools based on low levels – are precisely what can be created by individual
programmers.

This fact is no more a coincidence than the equivalent fact that language
machines supplied by large companies could not replace the linguistic per-
formance of individual persons. For software as for language, even the most
sophisticated knowledge substitutes can replace just the simple, mechanistic
aspects of knowledge. Only with our minds, through personal experience, and
by starting from low levels of abstraction, can we hope to attain the complex
knowledge needed to solve our problems.

The Delusion of Methodologies

The Delusion of Methodologies
1 1
So far we have discussed the development of applications mainly from the
perspective of programmers. Let us see now how the mechanistic delusions
affect the expectations of the users of applications – those individuals whose
needs are to be embodied in the new software.

When developing a new application, managers familiar with the relevant
business practices cooperate with analysts and programmers. The resulting
software, thus, will reflect not only programming skills, but also the knowledge
and experience of users. And the mechanistic theories and methodologies
expect these individuals to express their knowledge and their requirements
precisely, completely, and unambiguously; that is, to reduce knowledge and
requirements to a form that can be used by analysts and programmers to
develop the application. We will examine this absurdity in a moment, but first
let us briefly discuss the alternative.

Instead of developing custom software, users can procure ready-made (or
what is known as packaged, or canned) applications. With this alternative, the
application is available immediately, thus bypassing the lengthy and difficult
stages of design and programming. From what we have already discussed,
though, it should be obvious that packaged applications are part of the same
delusion as all ready-made, or built-in, pieces of software: the delusion of high
levels, the belief that one can accomplish the same tasks by starting from high-
level software elements as when starting from low-level ones. This delusion
finds its ultimate expression in the idea of ready-made applications: the
starting level is then the top element itself, the complete application, and the
impoverishment is total. From the infinity of alternatives possible for the top

470 software charlatanism chapter 6

element when programming the application, we are now left with only one
alternative: the particular combination of operations built into the package by
its designers. Most packages include options, of course, for some of their built-
in operations. But combinations of options still provide only a fraction of the
combinations of operations that may be required by an organization. So, in the
end, packages remain a poor substitute for custom applications.

Organizations are tempted by the promise of packaged applications because
they underestimate the limitations they will face later, when they get to depend
on this kind of software. And even when the users realize that the package
permits them to implement only some operations, and addresses only some of
their needs, they still fail to appreciate the real consequences of inflexible
software. What they tend to forget is that their needs and practices evolve
continually, so their software applications must evolve too. It is difficult
enough to judge whether a certain application can answer our current needs
(the only way to be absolutely sure is by running it live, by depending on it); but
it is impossible to assess its usefulness for the next ten years, simply because we
cannot know what our needs will be. No one can predict the changes that an
organization will face in the future. How, then, can anyone expect a piece of
software that is based on a particular combination of built-in processes and
operations to cope with such changes?

Note that it is not the quality of the application that is at issue here: no
matter how good and useful it is today, and even if the company supporting it
will bring it up to date regularly in the future, it will always be a generic piece
of software, designed to answer only that subset of needs common to many
organizations; it cannot possibly adapt to the specific needs of every one
of them.

It is quite incredible, thus, to see so many organizations depend on packaged
software; and they do, not just for minor applications, but also for their
important business needs. Most packages fail, of course, so we must not be
surprised at the frequency with which these organizations try new ones. The
failure of a package rarely manifests itself as major deficiencies, or as software
defects. What we see typically is a failure to answer the needs of its users,
something that may only become evident months or years after its adoption.
Since this type of failure is so common, the reason why organizations continue
to depend on packages is, clearly, not their usefulness, but the incompetence of
the software practitioners: if programmers lack the skills necessary to create
and maintain applications, ready-made software, however unsatisfactory,
becomes an acceptable expedient.

More subtle and more harmful than the inadequacy of an application is the
tendency of users to lower their expectations in order to match its limitations.
In other words, instead of rejecting an inadequate application, they modify the

the delusion of methodologies 471chapter 6

way they conduct their affairs so as to be able to use it. To help them rationalize
this decision, the software elites stress the importance of adopting the latest
“technologies” – relational databases, object-oriented environments, graphic
user interface, client-server systems, and so forth. Ignorant users are impressed
and intimidated by these concepts, so they end up interpreting the application’s
shortcomings as modern and sophisticated features which they don’t yet
appreciate. Thus, instead of objectively assessing the application’s usefulness,
they merely judge it by how closely it adheres to the software innovations
promoted by the elites, even if these innovations are worthless. So, in the end,
the application appears indeed to satisfy their requirements; but this is because
they agreed to replace their true requirements with spurious ones.

2

2
Having established that packages are rarely a practical alternative for serious
applications, let us return to the subject of software development. Developing
their own applications is what many organizations must do, even if lacking the
necessary skills, because this is the only way to have adequate software.

An application, we recall, consists of many structures, all sharing the same
software entities (see “Software Structures” in chapter 4). These structures are
the various aspects of the application – the processes implemented in it. Each
structure, thus, is one way of viewing the application; and it is this system of
interacting structures that constitutes the actual application. Although in our
imagination we can treat each aspect as a separate structure, the only way to
create the application is by dealing with several structures at the same time.
This is true because most entities in a piece of software – most statements and
modules – are affected by several aspects of the application, not just one. When
writing a statement, for example, it is seldom sufficient to think of only one
logical structure; we may well perceive a particular structure as the most
important, but the same statement is usually an element in other structures
too. It is this capability of software entities to be part of several structures
simultaneously, and hence link them, that allows software applications to
mirror our affairs. This capability is important because our affairs consist of
processes and events that already form interacting structures.

If this is what software applications actually are, let us review what the
software theories assume them to be. Applications, the theories tell us, must be
developed following a methodology. Although many methodologies have been
proposed, all are ultimately founded on the same fallacy; namely, the belief that
it is possible to reduce a software application to a definition. The definition of
an application is a set of specifications (formal descriptions, flowcharts, block

472 software charlatanism chapter 6

diagrams, and the like) believed to represent, precisely and completely, the
actual software. Methodologies, thus, are a manifestation of the mechanistic
belief – the belief that a complex structure (the software application, in this
case) can be reduced to simple ones.

To define an application, users and analysts spend many hours discussing
the requirements – the business practices that are to be embodied in the
application. This activity is known as analysis and design, and the methodolo-
gies prescribe various steps, which, if rigorously followed, are said to result in
a complete definition; namely, a definition that represents the application
as precisely as drawings and specifications represent a house or a car. It
is believed, thus, that a set of mechanistic expedients can capture all the
knowledge inhering in a complex phenomenon: the structures that make up
the application, their interactions, and their effects when the application is
running.

The reason we start with a definition, of course, is that we prefer to work
with specifications rather than the statements of a programming language.
Deficiencies, for example, are easier to correct by modifying the definition
than by rewriting software. Thus, we are told, if we follow the methodology, we
should be able to create the entire application in the form of a definition, and
then simply translate the definition into a programming language. To put
this differently, the methodologies claim that it is possible to represent an
application with expedients other than the software itself – expedients that
are simpler than software, and accessible to users and programmers alike.
Although simpler than the actual application, these expedients represent it
completely and precisely. The definition is, in effect, the application.

The fallacy of this claim ought to be obvious: if it were possible to express
by means of diagrams, flowcharts, etc., all the details of the application, we
wouldn’t need programming languages. For, a compiler could then translate
the definition itself into the machine language, and we wouldn’t need to write
the programs. In reality, definitions are simpler than programs precisely
because they do not include all the details that the programs ultimately will.

So definitions are imprecise and incomplete representations of the applica-
tion. They are useful only because people can interpret them, because people
can add some of their own knowledge when converting them into software.
One reason why definitions are simpler than programs, thus, is that they need
not be perfect. An error in the program can render the application useless, but
in the definition it is harmless, and may even go unnoticed. The impossibility
of translating automatically definitions into software proves that definitions
are incomplete, faulty, and ambiguous, and require human minds to interpret
and correct them.

But an even more important reason why definitions are simpler than

the delusion of methodologies 473chapter 6

programs is that they represent separately the software structures that make up
the application. The difficulty in programming, we saw, is dealing with several
structures simultaneously. Our programming languages permit us to create
software entities that can be shared by diverse structures, and this is why it is
possible to develop useful applications. In a definition, on the other hand, we
usually specify each structure separately: the business practices, the database
relations and operations, the display and report layouts – we strive to represent
each one of these processes clearly, so we separate them. Even if we wanted to
relate them in the definition it would be difficult, because the diagrams,
flowcharts, and descriptions we use in definitions are not as versatile as
programming languages. Definitions are simpler than programs, thus, because
most specifications do not share their elements, as software structures do.
What this means is that a definition cannot represent the application precisely
and completely. So the methodologies are wrong when claiming that defini-
tions are important.

The fallacy of definitions is easy to understand if we recall the concept of
simple and complex structures. A definition is, in effect, the reification of
a complex structure (the application) into its constituent simple structures.
It is, thus, an attempt to reduce a complex phenomenon to a mechanistic
representation. This can be done, as we know, only when the separated
structures can usefully approximate the actual phenomenon. In the case of
software phenomena, this can be done for trivial requirements. For typical
business applications, however, mechanistic approximations are rarely accurate
enough to be useful. In the end, we like software definitions for the same
reason we like all other mechanistic concepts: because of their promise to
reduce complex problems to simple ones. Definitions are indeed simpler than
the applications they represent, but they are simpler because they are only
approximations.

Thus, since applications cannot be represented accurately by any means
other than the programs themselves, the conclusion must be that definitions
are generally irrelevant to application development. They may have their uses,
but their importance is overrated. No definition can be complete and accurate,
and an application created strictly from a definition is useless. Application
development cannot be reduced to a formal activity, as the software theorists
say. Since no one can specify or even envisage all the details, and since most
details will change anyway (both before and after the application is completed),
it is futile to seek a perfect set of specifications. Some brief and informal
discussions with the users are all that an experienced programmer needs in
order to develop and maintain an application.

�

474 software charlatanism chapter 6

The failure of the mechanistic concepts in the early days were so blatant that
the software gurus had to modify their methodologies again and again. The
invention of new methodologies, thus, became a regular spectacle in the world
of programming, and there were eventually nearly as many methodologies as
there were gurus. (Most methodologies are known by the name of their
creators, a practice borrowed apparently from the world of fashion design.)

Some methodologies tried to eliminate the rigidity of the traditional
development phases, and introduced notions like prototyping and stepwise
refinements; others attempted to modify the traditional roles played by users,
analysts, and programmers. But, in the end, no matter how different they may
appear to the casual observer, all methodologies are alike. And they are alike
because they all suffer from the same fallacy: the belief that indeterministic
phenomena – the applications, and their development and use – can be treated
as mechanistic processes. The idea of methodologies, thus, is just another
manifestation of the belief that programming expertise can be replaced with
some easy skills – the skills needed to follow rules and methods.

The similarity between the various methodologies is betrayed by the trivial
innovations their creators introduce in an effort to differentiate themselves.
For example, they use pretentious terms to describe what are in fact ordinary
features, in order to make these features look like major advances. But most
ludicrous is their preoccupation with the graphic symbols employed in dia-
grams, as if the depiction of processes, operations, and conditions with
one symbol rather than another could significantly alter the outcome of a
development project. For example, the traditional rectangular boxes are
replaced with ovals, or with a shape resembling a cloud, or a bubble, or one
known as a bubtangle (a rectangle with rounded corners). And we must
remember that these idiocies are discussed with great seriousness in books and
periodicals, and are taught in expensive courses attended by managers and
analysts from the world’s most prestigious corporations.

Programming methodologies, thus, are like the development environments
we discussed previously: they provide elaborate systems to replace the easy
aspects of programming, those parts demanding mechanistic knowledge; but
they cannot replace what are the most important and the most difficult aspects,
those parts demanding complex knowledge. Since the same knowledge is
required of people to create a serious application whether or not they use a
methodology, the methodologies, like the development environments, are in
the end a fraud. They are another form of software exploitation, another way
for the software elites to prevent expertise and to induce dependence on
systems and devices which they control.

When a methodology appears successful, its contribution was in fact
insignificant. For, why should some techniques that work for one organization

the delusion of methodologies 475chapter 6

fail to work for others? It is the people, obviously, that made the difference.
When people have the necessary knowledge, they will develop applications
with or without a methodology; and when they lack this knowledge, no
methodology can help them. Development environments, we saw, promise
programmers and users higher levels of abstraction, and then trick them into
working at low levels, as before. Similarly, methodologies promise them
simpler, high-level concepts, and then demand the same skills as before.
In both cases, this charlatanism complicates the development process, so
inexperienced practitioners are even less likely to succeed. Besides, they waste
their time now assimilating worthless concepts, instead of using it to improve
their skills by creating and maintaining applications.

3

3
The delusion of methodologies and definitions is reflected in the distorted
attitude that everyone has toward the subject of maintenance. Software mainte-
nance is the ongoing programming work needed to keep an application up to
date. And all studies agree that, for most business applications, this work over
the years exceeds by far the work that went into the initial development.
We should expect the theorists, therefore, to propose more solutions to the
problems arising in maintenance than to those arising during development.
What we find, though, is the exact opposite: all theories and methodologies
deal with the creation of new applications, and barely mention the subject of
maintenance. Moreover, we find the same distorted attitude among corporate
managers: maintenance is treated as incidental work, is avoided whenever
possible, and is relegated to the least experienced programmers.

In reality, the obsession with new applications is a reaction to the problem
of programming incompetence: because programmers cannot keep the existing
applications up to date, new ones must be developed. But without proper
maintenance the new ones quickly fall behind, so the users find themselves in
the same situation as before. At any given time, then, companies are either
installing new applications, or struggling with the current ones and looking
forward to replacing them. The software elites encourage this attitude, of
course, as it enhances their domination. They present the latest fads – fourth-
generation or object-oriented systems, CASE tools or relational databases,
graphic interface or distributed computing – as revolutionary advances, and as
solutions to the current problems. Their applications are inadequate, the
companies are told, because based on old-fashioned software concepts. They
must replace them with new ones, based on these advances.

So the preoccupation with new applications helps everyone to rationalize

476 software charlatanism chapter 6

the failure of maintenance. It takes great skills to modify a live application
quickly and reliably: much programming experience, and a good understand-
ing of the existing functions. In contrast, creating a new application from a
definition, as the methodologies recommend, is relatively easy. It is easy
because the neat definition is only a simplified version of the actual application.
As we saw, definitions can only approximate the true, complex needs. But the
belief that the next application can be precisely defined inspires everyone with
confidence, so a new development project always looks like a wise decision.

To put this differently, practitioners prefer a new application to maintenance
because new projects make self-deception possible. A methodology permits
them to create, instead of the required application, an imaginary, simpler one:
the application matching a neat definition and their limited skills. And when
that application proves to be inadequate, the practitioners still do not suspect
their practices. They blame the changing requirements, or the imperfection of
the original specifications. They refuse to see these facts as a reality they must
cope with, as the very essence of business software. So, instead of accepting
the facts, they continue to claim that their practices are sound, and that
precise definitions are possible. In other words, if reality does not match the
mechanistic software principles, something is wrong with reality.

In new development projects, then, self-deception helps practitioners to
deny their failures and to cling to the easy, mechanistic concepts. And they
dislike maintenance because, in this type of work, self-deception cannot help
them. Each maintenance project is relatively small and well-defined, so it is
harder to replace it with an imaginary, simpler one. Ultimately, in maintenance
work it is harder to find excuses for failures.

�

We note a marked discrepancy between the perception and the reality of
applications. On the one hand, everyone strives to create a perfect application
– by following a strict methodology, and by using the latest development
systems. It is far more expensive to modify the software itself later, we are told,
so we must eliminate the imperfections in the design stage. This is why
definitions are important. On the other hand, all studies show that less than
5 percent of new applications are adequate. The others must be modified if they
are to be used at all, and many are so different from the actual requirements
that they must be abandoned. Moreover, even those that are adequate must
immediately start a process of ongoing modifications, simply because business
requirements change constantly.

Thus, whether it is the original differences (due largely to the fact that no
definition can reflect the actual requirements) or the future ones (due to the

the delusion of methodologies 477chapter 6

normal, unpredictable changes in requirements), it is obvious that modifying
business applications is an essential programming activity. Yet, for over forty
years, all theories and methodologies have been attempting to create “perfect”
applications; that is, applications matching some fixed specifications, and
requiring as few changes as possible. In reality, all software changes are alike –
whether due to faulty specifications, or varying user preferences, or the need
for additional features, or the adoption of new business rules, or some external
factors. So, if we must be able to deal with endless changes in any case, the idea
of a perfect application is meaningless, and there is no point in trying to design
one initially.

It is wrong, in fact, even to think of maintenance as modifying the applica-
tion. The role of business software is to satisfy, at any given time, the current
needs. An application, therefore, must be seen as that particular software
system which accomplishes this. Business needs change constantly, so the
application must change too. Thus, rather than first developing an application
and then maintaining it, it is better to think of this work as a continuous, never-
ending development.

�

We find further evidence of the distorted attitude toward maintenance in the
notion of application life cycles. All experts agree that applications cannot
last more than a few years. So, even while encouraging us to create a new one,
they warn us to prepare for its demise. Borrowed from biology, the idea of
life cycles holds that software resembles live things, so the existence of an
application can be divided into stages: birth (definition of requirements),
growth (development and testing), maturity (normal operation), and death
(obsolescence). Each application represents a cycle, and is followed by another
one, and then another one, forever.

But this is an absurd idea, contrived specifically in order to justify the need
for new applications. Software, by its very nature, is modifiable. In principle,
then, an application never needs to be replaced; it only needs to be kept up
to date. Everyone acknowledges the need for changes, and acknowledges
also the inability of programmers to implement them. So the idea of life
cycles was introduced as a compromise: every few years, a new application is
created in order to implement together all the changes that should have been
implemented one at a time in the past. The theorists and the practitioners
can now defend the lack of proper maintenance, and hence the need for
a new application, by invoking the idea of software life cycles. This logic,
however, is circular; for, the idea of life cycles was itself an invention, a
response to the incompetence that prevents proper, ongoing maintenance.

478 software charlatanism chapter 6

Instead of trying to eradicate the incompetence, everyone looks for ways to
rationalize it.

Business software can fulfil its promise only if it is as changeable as the
business issues themselves: inflexible business software can be as bad as
inflexible business practices. Thus, replacing the whole application from time
to time is a poor substitute for the ability to satisfy new needs as soon as they
arise. So the ultimate price we pay for distorting the subject of maintenance is
having to depend on perpetually inadequate applications. This is true because,
even though an inadequate application is eventually replaced, it reaches that
condition gradually, one unsatisfied requirement at a time. This means that it
was always inadequate, even in its period of normal use. The difference
between that period and the time when it is actually replaced is only in the
degree of inadequacy; namely, how far it is from the users’ actual needs, how
many unsatisfied requirements have accumulated to date.É

4

4
The delusion of methodologies and definitions is also demonstrated by the
failure of CASE (Computer-Aided Software Engineering, see pp. 535–536).
The elimination of programming from the process of application development
was seen by most theorists as the undisputed next step in development tools,
as the ultimate benefit of software engineering. Ambitious CASE systems
were promoted for a number of years with the claim that managers and
analysts could now create directly, without programming, applications of any
complexity – simply by manipulating block diagrams, flowcharts, and the like,
on a computer display. The system would guide them in creating the definition,
and would then translate the definition automatically into software.

The belief that an application can be generated automatically is a logical
consequence of the belief that a definition can represent all the knowledge
embodied in an application. (Could definitions do that, automatic program-
ming would indeed be possible.) The CASE fantasy, thus, was born from the

É The longest I maintained one of my applications is thirty years (until the manufactur-
ing company using it ceased production). This was a complex, integrated business system,
which combined all the computing needs of that company. At any given time there was a list
of requirements, some of them urgent; but I always implemented them, so no one ever saw
the need for new applications. The system kept growing, and was eventually a hundred times
larger than it had been in the first year, due to countless new functions; but no one perceived
these developments as new applications. Most work, though, was in modifying existing
parts (replacing or adding features and details). Again, a properly maintained application
never needs to be replaced, because it always has what the users need.

the delusion of methodologies 479chapter 6

concepts of methodologies and definitions that we have just discussed –
concepts which continue to dominate the programming theories, despite the
failure of CASE. No one seems to realize that, if CASE evolved from these
concepts, its failure proves the fallaciousness of these concepts too. Let us
analyze this connection.

Even when following a methodology, people do more than implement rules
and standards. The software created by programmers contains more than
what the analysts specified in their definition, and the definition created
by analysts contains more than what the users specified in their requirements.
Each individual involved in the development of the application has the
opportunity to add some personal knowledge to the project, but this is
largely an unconscious act. Simply to understand a set of requirements or
specifications, the person must interpret them; that is, he must combine the
knowledge found in the document with some previous knowledge, present in
his own mind. For, if this were not the case, if the only thing that analysts and
programmers did were follow rules and methods, then a person who knows
nothing about software or about a particular company, but who can follow
rules and methods, could also develop applications.

The knowledge missing from the formal requirements and specifications,
and hence contributed by individuals, varies from general facts on computers
and software to details specific to their organization, and from common
business practices to the knowledge shared by people living in a particular
society. It is precisely because most people already possess this kind of knowl-
edge that we take it for granted and do not include it in instructions and
documents. Recall also that the most important part contributed by human
minds constitutes non-mechanistic knowledge: not isolated knowledge struc-
tures, but the complex structure that is their totality. The capacity for non-
mechanistic knowledge must be provided by human minds because it cannot
exist in simple structures like instructions or diagrams.

Thus, all the people involved in the development of an application may be
convinced that they are following the rules prescribed by the methodology,
while depending on personal knowledge and experience to fill in the missing
pieces, or to resolve the ambiguities and inconsistencies found in specifi-
cations. If the application is successful, they will praise the methodology,
convinced that it was the principles of software engineering that led to their
success. Most likely, they will not realize that it was in fact their own minds that
provided the most important part (the non-mechanistic knowledge), and that
the principles, theories, and methods addressed only the simple part (the
mechanistic aspects of the project).

Clearly, if the methodology provides only mechanistic principles while our
activities are mostly non-mechanistic, the only way to use a methodology is by

480 software charlatanism chapter 6

taking its practical parts and ignoring or overriding the rest. People may be
convinced that they are following the methodology, when they are using it
selectively. So it is not too much to say that, to develop an application success-
fully, people must work against the methodology: if they rigorously followed
the mechanistic principles, they would never complete the application. Thus,
when a software project is successful, this is not due to the methodology but
despite it.

And it is during programming that people make the greatest contribution.
For it is in programming, more than in any other activity, that people have the
need and the opportunity to override the rules imposed by a mechanistic
methodology. So it is the programmers – more than the managers with their
specifications, or the analysts with their definitions – that must use the non-
mechanistic capabilities of their minds. We can perhaps delude ourselves in
the early stages of development that specifications and definitions represent
the application completely and precisely. But if we want to have a useful
application, we must permit human minds to deal at some point with the
missing pieces, with the ambiguities, and with the inconsistencies. It is during
programming, therefore – when the application is created and tested, when it
must mirror reality if it is to be used at all – that the delusions of formal
methodologies and precise definitions, of neat diagrams and flowcharts, must
come to an end.

�

It should be obvious, then, why CASE failed. The CASE systems were based on
methodologies: they literally incorporated some of the popular methodologies,
thus allowing managers and analysts who wished to follow a particular
methodology to do so through a software system rather than on their own.
The system could now force people to follow the methodology, eliminating the
temptation to omit or modify some of the steps – what was believed to be the
chief cause of development failures. Since the methodology was now part of
the development environment, the experts claimed, anyone could enjoy its
benefits; and since the resulting specifications and definitions were stored
in the computer, the system could use them to generate the application
automatically, eliminating the programming phase altogether.

CASE failed because it eliminated the opportunities that people had to
override the methodologies and definitions. By automating the development
process, CASE made it impossible for people to contribute any knowledge that
conflicted with the mechanistic software theories. They could only use now
trivial, mechanistic knowledge, which is insufficient for developing serious
applications. What CASE eliminated – what the software mechanists thought

the delusion of methodologies 481chapter 6

was the cause of development failures – was in fact the very reason why
methodologies and definitions appeared occasionally to work: the contribution
made by people when, out of frustration, and perhaps unconsciously, they
were using their non-mechanistic capabilities to override the methods, rules,
and specifications. Thus, the failure of CASE proves that people normally
contribute to the development process a kind of knowledge – non-mechanistic
knowledge – that cannot be replaced with formal methodologies and theories.

There is another way to look at this. A CASE environment is logically
equivalent to a traditional development environment where the users, the
analysts, and the programmers follow a methodology rigorously; where analysis
and design, specifications and definitions, theories of programming and
testing, are all implemented exactly as dictated by the principles of software
engineering; where everyone refrains from interpreting the specifications or
the definitions; where no one uses personal knowledge to add details to the
formal documents, or to resolve ambiguities and inconsistencies. A CASE
environment is equivalent to all this because, when the methodologies and
programming theories are part of the development system, people are forced to
follow them rigorously.

Logically, then, the only difference between a CASE environment and a
traditional environment is the non-mechanistic knowledge contributed by
people – the knowledge that cannot be incorporated in a CASE system. So, if
CASE failed, we must conclude that this knowledge plays a critical part in a
development project. With traditional development methods, when people
possess this knowledge the project is successful, and when they do not the
project fails. In a CASE environment, people had no opportunity to use
this knowledge, whether they possessed it or not; so the result was the
same as when people used traditional development methods and lacked
this knowledge. The promoters of CASE did not recognize the need for this
knowledge. They believed that mechanistic knowledge suffices for developing
applications; and, since mechanistic knowledge can be embodied in software
devices, they believed that the contribution made by people can be reduced to
the knowledge required to operate these devices.

The main purpose of this argument, you will recall, is not to show the
absurdity of CASE, but to show how the failure of CASE demonstrates the
fallaciousness of all methodologies and definitions – which, in turn, demon-
strates the fallaciousness of all mechanistic software theories. For, it is software
mechanism – the belief that applications consist of independent structures,
which can be fully and precisely specified – that is the fundamental delusion.
This delusion leads to the delusion that programming expertise can be replaced
with rules and methods, which then leads to the notion of methodologies and
definitions, and eventually to CASE. The CASE systems merely implemented

482 software charlatanism chapter 6

formally what the theories had been claiming all along, what practitioners had
been trying before to do manually. So the only logical explanation for the
failure of CASE is that these theories are invalid.

the delusion of methodologies 483chapter 6

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 6: Software as Weapon
	Software Charlatanism
	The Delusion of High Levels
	1
	2
	3
	4
	5
	6
	7
	8

	The Delusion of Methodologies
	1
	2
	3
	4

