
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Introduction: Belief and Software
Section Anthropology and Software

This extract includes the book’s front matter
and part of the introductory chapter.

Copyright ©2013, 2019  Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This section explores the similarity of mechanistic software beliefs 
to primitive beliefs.

The entire book, each chapter separately, and also selected sections, 
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com




SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS



Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization.  2. Computer software – Social aspects.
3. Computer software – Philosophy.  I. Title.

QA76.9.C66S67 2013  303.48'34  C2012-906666-4



Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four





Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii





Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix



Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents



Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi





Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii



entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface



(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv



The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface





Introduction: Belief and Software

Anthropology and Software Anthropology and Software
If the theories of software engineering are founded on a myth, it is not
surprising that they do not work. The software practitioners, though, continue
to believe in software mechanism, and this prevents them from gaining
knowledge and experience. Thus, because of their ignorance, the world
of programming resembles a primitive society. Also, as other professions
increasingly depend on computers, and hence on the mechanistic software
myth, the users of software are now prevented from gaining knowledge and
experience. So the whole world resembles, increasingly, a primitive society. We
can learn a great deal about our software delusions, therefore, by comparing
the attitudes of programmers and users with those of the primitives.

Let us turn, then, to the field of social anthropology. In the first subsection,
we will study the practice of magic as a complement to proven knowledge. And
in the second subsection, we will study the invocation of supernatural powers
in general.

Software Magic

Software Magic
1 1
When analyzing the names of software products,É we cannot help noticing the
large number of names that evoke magic practices. For example, a popular
database management system is called Oracle, a word meaning “prophet”
and “prophecy” in antiquity. An application development system is called
Delphi, after the location of a temple in ancient Greece where oracles were
issued. A network system is called Pathworks; pathworking is a form of group
visualization practised by those who believe in the occult. One utility is called
Genie Backup Manager; others are called Clipboard Genie and Startup Genie.
We also have Install Wizard, Disk Clean Wizard, Search Wizard, Web Wizard,
PC Wizard, Registry Wizard, Barcode Wizard, etc. To back up drivers we could
use Driver Magician, and to create help files Help Magician. A catalogue of
hardware and software products describes certain entries as “magic solutions,”
and offers discounts on other entries to help us “get more magic for less.”Ê

É As we will see later, the belief that software is a kind of product is one of the fallacies
of the software myth. So I use the term “software product” only when I want to stress the
absurdity of this concept (as in the present section).

Ê IBM RS/6000 catalogue (spring 2000), pp. 8, 2.

42 anthropology and software introduction



But to leave no doubt as to the supernatural qualities of their products,
many software companies include the word “magic” in the product’s name:
Network Magic, CADmagic, Barcode Magic, Label Magic, vCard Magic,
Brochure Magic, Magic eContact, Image Gallery Magic, Magic Transfer, QS
Flash Magic Menu Builder, Screenshot Magic, Magic Styles, Web Design
Magic, SCP Button Magic, Magic Internet Kit, Magic Recovery Professional,
MagicTracer, Magic Xchange, Macro Magic, AttributeMagic Pro, Color Magic
Deluxe, Magic Photo Editor, Magic Speed, Magic Separator, Magic/400,
Clipboard Magic, Magic Flash Decompiler, Order Page Magic, MagicWeb,
MagicFlare, Magic Window Hider, ZipMagic, Magic TSR Toolkit, Antechinus
Draw Magic, Slideshow Magic, Magic Folders, Magic Connection, Magic Mail
Monitor, Magic ASCII Studio, Raxso Drive Magic, Magic Writer, File Magic,
Magic Blog, Magic Cap, Magic Inventory Management, Magic Calendar
Maker, Developer Magic, Magic Link, Magic C++, Spectramagic NX, Magic
Net Trace, Exposure Magic, Magic Audio Recorder, MAGic, Word Magic,
Voice Magic, Focus Magic, Magic ScreenSaver, Magic Memory Optimizer,
Monitor Magic, Pad Magic, PartitionMagic, ClipMagic, SupportMagic, Magic
DVD Copier, Backup Magic, SpeechMagic, Video Edit Magic, MagicISO, etc.

Or, software companies adopt the word “magic” for their own name:
Computer Magic Inc., InfoMagic Ltd., General Magic Inc., Magic Multimedia
Inc., Design Magic Ltd., PC-Magic Software, NeoMagic Corp., Inmagic Inc.,
Software Magic Inc., Magic Software Enterprises Ltd., Magic Solutions Ltd.,
PlanMagic Corp., WebMagic Inc., TeleMagic Inc., Imagic Inc., Viewmagic Inc.,
Geomagic Inc., etc.

In an industry famous for its preoccupation with the latest technological
advances, at a time when all we hear is proclamations about progress and the
future, one would expect vendors to take special care in avoiding terms associ-
ated with primitive beliefs, as these associations could hurt their credibility.
The opposite is the case, however: the ignorance that pervades the world of
software has created an environment where primitive beliefs are again an
important factor, so the software vendors deliberately employ terms that evoke
magic powers.

To those who lack knowledge, the world appears as a mysterious place, full
of uncertainties and unexplained events. Superstitions and magic systems are
then an effective way of coping with situations that would otherwise cause
great anxiety. Irrational beliefs, held by most people in a repressed form even
in our modern world, can become dominant and can easily be exploited when
ignorance renders rational thinking impossible. And so it is how our society,
which is increasingly dominated by software and hence by ignorant software
practitioners and users, increasingly resembles the ancient and primitive
societies, where priests, magicians, shamans, and prophets were consulted in

software magic 43introduction



all important affairs. Far from avoiding associations with supernatural forces,
software vendors and gurus – today’s priests and prophets – know that for
ignorant programmers and users it is precisely these associations that matter.

�

Magic – a pseudoscience – claims that certain objects, spells, or acts have
the power to influence persons and events, although this power cannot be
explained. Magic theories appear to provide important benefits, but persons
who believe in magic must accept these theories without proof. For this reason,
magic beliefs tend to manifest themselves as wishful thinking. Magic systems
have existed as long as human societies, so they have always reflected our
current preoccupations, fears, and desires. Thus, we have had magic systems
to help us win battles, attract mates, predict the future, lose weight, and create
software applications without programming.

The person who believes in magic refuses to face reality: he clings to his
beliefs and disregards all evidence of their falsity. The validity of most magic
theories can easily be determined – by carefully monitoring the successes and
failures, for example. But the believer never bothers with such details, and is
annoyed when someone suggests it. He already knows that the theory works.
He enthusiastically accepts any success as verification of the theory, while
dismissing major failures as insignificant exceptions.

The problem with magic thinking, then, is not so much one of ignorance as
one of method. Even when we are ignorant, logical methods of inquiry enable
us to test hypotheses, and hence to adopt only those theories that work. We
favour theories that promise simple solutions to difficult problems, naturally;
but it is precisely these theories that are most likely to be false. The most
important advantage we have over primitive societies is not our scientific
and technological knowledge, but our logical methods of inquiry. Our capabil-
ities, which had grown only slowly throughout the centuries, have been
growing exponentially since we adopted these methods. Those content to
invoke specious explanations when reaching the limits of their understanding,
instead of seeking to expand their knowledge, are condemned to intellectual
stagnation. Their knowledge grows very slowly, or not at all.

Given the success that science had in explaining nature and extending our
knowledge, it is not surprising that, until recently, magic practices were
considered to be a vestige of our primitive past. All human societies, it was
believed, start with magic, and when sufficiently advanced, replace it with
science. No society can possibly continue to practise magic once the benefits
of scientific thinking are revealed to it. Magic thinking, it was thought, is
simply prescientific thinking.

44 anthropology and software introduction



Like the theory of myth (see pp. 2–4), however, the theory of magic has
undergone a dramatic shift in the last one hundred years. Far from being a
vestige of the past, far from being automatically displaced by science, we
understand now that magic beliefs affect a modern society just as much as they
do a primitive one. All that has happened is a change in theories. We may no
longer believe that weather rituals can bring rain, but we accept many other
theories – in economics, linguistics, psychology, sociology, programming –
which are, in fact, as scientific as rain magic.

Our reevaluation of the role of magic in society started following the work
of anthropologist Bronislaw Malinowski.Ë Malinowski, who studied in great
detail the life of primitive peoples, was struck by the continual blending of
magic thinking and rational thinking. To a casual observer, the primitives
appear to merely add some spurious ceremonies to all their activities. Careful
study, however, reveals a surprisingly logical pattern. Magic is not practised at
will. For each activity, tradition dictates whether magic is required at all, which
magic formula must be used, at what point it should be applied, and which
magician is qualified to perform the ritual. The ritual, which may be quite
lengthy and elaborate, must be performed with great precision, since any
deviation from the formula is believed to weaken its efficacy.

The pattern Malinowski observed is this: when the activity can be per-
formed with confidence, when the primitives expect a certain and easy success,
no magic is employed; but when the activity entails a significant degree of
uncertainty or danger, magic is deemed necessary. Also, just as one would
expect, the greater the uncertainty or danger, the more elaborate the magic
employed. This is how Malinowski puts it: “We find magic wherever the
elements of chance and accident, and the emotional play between hope and
fear have a wide and extensive range. We do not find magic wherever the
pursuit is certain, reliable, and well under the control of rational methods and
technological processes. Further, we find magic where the element of danger
is conspicuous. We do not find it wherever absolute safety eliminates any
elements of foreboding.”Ì

Primitive people employ magic, then, as an extension to their knowledge
and capabilities. When they feel that skills and labour alone will allow them to
complete a given task, their actions are totally rational. But when they know
from experience that despite their skills and labour they may still fail, they
resort to magic. This happens in activities like agriculture, hunting, and
fishing, which depend on factors that are unpredictable and beyond their

Ë See, especially, his Coral Gardens and Their Magic (New York: Dover, 1978), and
Argonauts of the Western Pacific (New York: Dutton, 1961).

Ì Bronislaw Malinowski, Magic, Science and Religion, and Other Essays (Garden City, NY:
Doubleday Anchor, 1954), pp. 139–140.

software magic 45introduction



control. They also use magic to complement their rational efforts in matters
like health or social relations, which also contain much uncertainty.

2

2
Programming and software use are saturated with magic practices, but we fail
to notice this fact. The reason we fail to notice it is the uncanny similarity
between magic practices and rational behaviour: “Magic is akin to science in
that it always has a definite aim intimately associated with human instincts,
needs, and pursuits. The magic art is directed towards the attainment of
practical aims. Like the other arts and crafts, it is also governed by a theory, by
a system of principles which dictate the manner in which the act has to be
performed in order to be effective.”Í

If we watch the activity of a person while being unfamiliar with the scientific
principles underlying that activity, we cannot distinguish between rational and
magic practices. Only if our knowledge exceeds his, can we recognize which
acts contribute to his success and which ones are spurious. Primitive people,
when engaged in pursuits like agriculture, feel that technical knowledge and
magic rituals are equally important. We, watching them from our position
in an advanced society, can recognize that only their technical knowledge
contributes to their success, and that their rituals are spurious. At the same
time, we ourselves engage in spurious activities in our software pursuits,
convinced that they are as important as our technical expertise. Thus, only a
person with superior programming knowledge can recognize the absurdity of
such concepts as structured programming and object-oriented programming.

So it is the similarity of our rational and our irrational acts that we must
study if we want to uncover the absurdities in today’s software practices. But
how can we study this similarity? We are convinced that everything we do is
rational – we never perform foolish acts deliberately – so we will always fail to
distinguish between the rational and the irrational in our own life. One way,
we will see later in this book, is to approach any software concept, product, or
theory with due skepticism. As in other disciplines, we can apply logical
methods of inquiry to confirm or refute any software claim. Besides, as these
methods are universal, they can be used even by those with limited program-
ming knowledge. And when doing this, we discover that most software claims
are associated with pseudoscientific theories, propaganda, and charlatanism.

Another way is to study the blending of the rational with the irrational in
the lives of primitive people, which, in turn, will help us to recognize the same

Í Ibid., p. 86.

46 anthropology and software introduction



conduct in our own life. For this purpose, we can find no better examples than
the garden and canoe magic systems used in the Trobriand islands of eastern
New Guinea, which were so thoroughly documented by Malinowski.

�

The natives display great agricultural expertise in tending their plantations.
They understand, for instance, the properties of the different types of soil, and
they know which crops are best suited for each type; they are familiar with the
principles of fertilization; and they can identify hundreds of varieties and types
of plants. In addition, they are conscientious workers, and they perform
skilfully such tasks as preparing the garden, planting the seeds, protecting the
growing crops, and harvesting them.

This expertise, however, is always supplemented with magic. The natives
can explain, for example, why no crops can thrive in certain areas of their
island “in perfectly reasonable, almost scientific language. . . . At the same time
they attribute the supreme fertility of some districts . . . to the superiority of one
magical system over another.”Î They devise clever ways to protect their crops
from pests, and “these practical devices they handle rationally and according
to sound empirical rules.”Ï At the same time, they build and deploy various
structures and objects in their gardens, which, they clearly explain, have no
other purpose but magic.

The natives do not use magic because they confuse it with practical work.
They realize that invoking magic powers is an entirely different type of act, but
they believe it to be just as important: “The two ways, the way of magic and the
way of garden work . . . are inseparable. They are never confused, nor is one of
them ever allowed to supersede the other.”Ð The natives know which tasks they
must perform through their own skills and work, and they never attempt to use
magic as a substitute. Thus, they “will never try to clean the soil by magic, to
erect a fence or yam support by a rite. . . . They also know that no work can be
skimped without danger to the crops, nor do they ever assume that by an
overdose of magic you can make good any deficiencies in work. . . . Moreover,
they are able to express this knowledge clearly and to formulate it in a number
of principles and causal relations.”Ñ

Malinowski includes two diagrams showing stages in the growth of one of
the local crops, drawn from information provided by the natives themselves.ÉÈ
It seems that the natives have greater knowledge about their crops than some

Î Bronislaw Malinowski, Coral Gardens and Their Magic, vol. 1 (New York: Dover,
1978), p. 75. Ï Ibid., p. 77. Ð Ibid., p. 76. Ñ Ibid.
ÉÈ Ibid., pp. 140–141.

software magic 47introduction



modern farmers have about theirs. They can describe in great detail the entire
development process, from the time the seed is placed in the ground until the
plant matures. There are more than twenty native terms in these diagrams – for
various parts of the seed, roots, branches, etc. – showing their keen interest in
the botanic aspects of their work.

At the same time, the natives have elaborate systems of magic, which they
apply scrupulously throughout the growth process. The magic varies from
specialized spells and charms addressing individual parts of the plant, to rituals
for their tools and for the whole garden. Most of this magic is performed by
professional magicians, who receive fees for their services. There are several
magic systems in use, and the natives discuss their relative merits with the
same seriousness as programmers discussing their application development
systems. Some magic systems are owned by individuals, families, or clans, and
in this case others must pay for their use – a practice not unlike our patents and
copyrights.

We discover a similar combination of rational and irrational acts in canoe
building and the associated fishing and trading activities.ÉÉ The natives build
sturdy and attractive craft, their size and design matching their intended use:
a simple type for coastal transport, a more elaborate type for fishing, and a
relatively large and complex type, carrying more than a dozen men, for long
sea voyages. Limited to primitive tools, the building of a dugout canoe is a
major construction project for them, demanding coordinated team work and
timely contribution from specialists. But they are capable of accurate planning
and efficient labour organization. Also, they are familiar with the principles of
buoyancy and stability, sailing and navigation. They understand, for example,
why the outrigger must have a certain, optimal span, measured as a fraction of
the canoe’s length: a larger span offers greater stability, but at the same time it
weakens the outrigger. And they can explain clearly why one canoe is faster
than another, or why, in a storm, they must follow one procedure rather than
another. “They have,” Malinowski points out, “a whole system of principles of
sailing, embodied in a complex and rich terminology, traditionally handed on
and obeyed as rationally and consistently as is modern science by modern
sailors.”ÉÊ

Despite these skills, however, every stage in the building of the canoe is
accompanied by a magic ritual, deemed necessary to ensure a fast and safe
craft. To pick just one example – which also demonstrates the importance of
details in magic – a ritual performed before painting the canoe involves
burning under its bottom a mixture of such substances as the wings of a bat,

ÉÉ Bronislaw Malinowski, Argonauts of the Western Pacific (New York: Dutton, 1961),
esp. chs. IV–VI. ÉÊ Malinowski, Magic, Science and Religion, p. 30.

48 anthropology and software introduction



the nest of a small bird, cotton fluff, and grass. “The smoke is supposed to
exercise a speed-giving and cleansing influence. . . . All the substances are
associated with flying and lightness. The wood used for kindling the fire is that
of the light-timbered mimosa tree. The twigs have to be obtained by throwing
at the tree a piece of wood (never a stone), and when the broken-off twig falls,
it must be caught by hand, and not allowed to touch the ground.”ÉË Malinowski
describes dozens of additional rites, spells, and ritual performances.

�

What are we to make of this? How is it possible for people to be so rational, and
yet so irrational, at the same time? To answer this, we must start by noting that
people appear irrational only when judged from outside their system of belief.
Judged from within that system, their conduct is logical and consistent. All it
takes is one unproven concept, one false assumption. An entire system can
then be built around it, and even if every theory and method in the system is
logically derived, that one assumption will render the system nonsensical.

In the case of magic, the false assumption is that certain objects, spells, and
ritual performances have the power to influence people’s lives, or the forces
of nature, or the course of events. In the case of programming, the false
assumption is that software applications are akin to the appliances we build in
a factory, so programming is akin to manufacturing; that, like appliances, we
can separate an application into independent modules, each module into
simpler ones, and so on, down to some small parts; that all we need to know is
how to program these small parts, because there exist methods and devices
which allow us to build applications from software parts just as we build
appliances from physical parts; and that, moreover, we can complete our
software manufacturing projects even faster if we start with prefabricated
subassemblies – large modules that already contain many parts.

In programming as in magic, many principles and methods have been
invented, and organized into logical systems. There isn’t much that can be
criticized when studying such a system from within itself; that is, when using
as criteria of validity only concepts that are part of the system. This is what
believers are doing, and why the system appears sound to them.

Thus, an individual who believes in magic will always use magic systems;
then, within a magic system, his conduct will always be logical. Similarly,
theorists and practitioners who assume that programming is similar to man-
ufacturing will always pursue mechanistic software ideas; then, within the
mechanistic ideology, their decisions and acts will always be logical.

ÉË Malinowski, Argonauts, p. 140.

software magic 49introduction



But the validity of each part of the system depends ultimately on the validity
of that one fundamental assumption, which may well be the only concept
linking the system to the real world. If that concept is wrong, the entire system,
no matter how logical, becomes worthless. Believers never question that
concept. The larger the system they build around it, the smaller and less
important the concept appears to be. Eventually, they forget altogether that the
concept was never anything but an assumption.

3

3
We are now in a position to explain the blending of rational and irrational
behaviour. Primitive societies are closed societies. Their members follow
elaborate traditions – rigid patterns of thought and conduct – in all their
activities. The traditions derive from ancient myths, which are the charter and
the foundation of their culture.

Among other things, tradition establishes for each activity what is within
the power of the individual and what is beyond his power. For the part
that is within his power, the individual is expected to act rationally and to
display expertise, initiative, and creativity. But what is he expected to do when
something is believed to lie beyond his power? Recall Malinowski’s critical
observation that magic is employed only when the outcome of an activity has
a great degree of uncertainty, when the primitives know that their skills alone
cannot ensure success. Because their social system does not permit them to
acquire skills beyond the boundaries determined by tradition, it must provide
them with other means to cope with the more difficult tasks. This is the
purpose of magic. Simply by accepting one unproven theory, they gain access
to a multitude of new possibilities.

If we divide the world of primitive people into fields they understand and
control, and fields that lie beyond their knowledge and capabilities, what magic
does is bring the latter into the same category as the former. Magic assures
them that the methods they use successfully in those fields they understand
can be used equally in fields where their knowledge is inadequate.

The primitives know perfectly well when it is skills that they rely on and
when it is magic. When sailing, for example, if the wind suddenly changes they
use a spell to persuade it to return to its original direction. We, with our
knowledge and computers, are content to try to predict the weather; through
magic, however, the primitives believe they can control it. But their behaviour
is quite logical: they make use of their sailing methods as long as they work,
and turn to magic precisely because they realize that adjusting their sails would
be ineffective, that it is the wind they must now adjust rather than the sails.

50 anthropology and software introduction



Instructing the wind to change direction appears silly only if we reject the
theory that the weather can be controlled. They accept this theory; so they
apply methods that involve the weather, in the same way they apply methods
that involve the sails. Both types of methods appear to them equally rational
and effective. Magic practice is an attempt to use our current capabilities to
accomplish tasks that require, in fact, greater capabilities.

It is important to remember that magic does not ask us to accept a different
mistaken theory every time. All magic practices are based on the same mis-
taken theory. Besides, this theory is plausible: all it asks us to believe is that
we can influence events by means of spells or objects. Magic, thus, makes
processes that are impossible appear like a logical extension of processes that
are familiar and effective. After all, we do influence the world around us with
spoken words, with our bodies, with objects and tools. This is why it is so easy
for us to believe in magic, and so difficult to distinguish between our magic
activities and our rational ones. We may think that we are performing the same
kind of acts, but these acts can have a real and verifiable effect one moment and
an illusory effect the next.

�

And the same is true of software magic. In chapter 7 we will see that the
mechanistic software theories do not promise any benefits that could not be
gained simply through good programming. What the software elites are
seeking, therefore, is a substitute for programming knowledge: by incorporat-
ing various principles into a methodology, or into a development environment,
they hope to get inexperienced programmers to accomplish tasks that require,
in fact, great expertise. Following rules and methods, or using built-in features
and operations, is easier than acquiring knowledge and skills, and is within the
capabilities of inexperienced programmers. Programming systems, thus, are
perceived as magic systems: they assure programmers that they can accomplish
a difficult task with their current knowledge alone.

Software development has become the most elaborate type of magic ever
created by man, but this escapes our notice if we watch only superficially the
activities of programmers. For, in their activities, as in those of primitive
people, the rational and the irrational blend and overlap continually. We
already saw that one can distinguish irrationality only by stepping outside the
system of belief that fosters it, so we must also do this for software.

Each software activity appears logical, urgently needed, and perfectly
justified – if studied in the context of other, similar activities. This is because
most software activities are engendered by some previous software activities.
We may even be impressed by the incessant changes and innovations, the

software magic 51introduction



endless theories, languages, methodologies, and development tools, the thou-
sands of courses, exhibitions, conventions, newspapers, magazines, books,
brochures, and newsletters, and the astronomic amounts of money spent by
corporations and governments. But if we study these activities, we notice
that they only make sense if we accept the unproven theory that software
development is akin to manufacturing. This absurd theory has been accepted
for so long that it is now routinely invoked as the ideological justification for
every software concept, when there is no evidence, much less a scientific
foundation, to support it. We saw that with magic, by accepting just one
unproven theory, the primitives gain the confidence to handle tasks that lie
beyond their capabilities. Similarly, by accepting just one unproven software
theory, inexperienced programmers can confidently engage in activities that
lie beyond their capabilities.

Like magic in primitive societies, software magic is quite plausible. After all,
we build physical structures by assembling standard parts and prefabricated
modules, and computer programs appear to have their own kind of parts
and modules. We improve our manufacturing methods and tools continually,
and programming also appears to involve methods and tools. Moreover,
programming methods based on the principles of manufacturing seem to work
in simple cases – in the examples found in textbooks, for instance. Thus,
extending these methods to the large and complex applications we need in the
real world appears to be a logical step, whose validity is guaranteed by the fact
that large manufacturing projects appear to use the same methods as the small
ones; they merely involve more parts and subassemblies.

Also like primitive magic, software magic does not ask us to have faith in a
different unproven theory for each new concept. All programming methods
and systems are based on the same theory – the similarity of software develop-
ment to manufacturing – and this makes its fallaciousness harder to detect.
These concepts have become a self-perpetuating belief system: a system that
uses its own growth as confirmation of validity. No one seems to remember
that the entire system, despite its enormous size and complexity, is based
ultimately on a theory that was never proved. (See pp. 497–498.)

�

Unlike other disciplines, where mechanical analogies may lurk behind a theory
but are seldom avowed, the software practitioners are quite outspoken about
their attempt to reduce software to mechanics. We must make programming
like manufacturing, they say. They proudly add mechanical metaphors to their
software jargon, and take this as a sign of expertise: we are finally turning
software into a professional activity, like engineering. But there is no evidence

52 anthropology and software introduction



that programming can be based on manufacturing methods. So, even if
programmers actually had the training and experience of engineers (rather
than merely calling themselves engineers, and using engineering metaphors),
these skills alone would be of little benefit.

Their claim to expertise through mechanical metaphors is especially amus-
ing, as the belief in software mechanics makes their activities look less and less
like expert programming and increasingly like primitive magic. Malinowski
called this verbal pattern “the creative metaphor of magic”:ÉÌ “It is the essence
of magic that, by the affirmation of a condition which is desired but not yet
fulfilled, this condition is brought about.”ÉÍ The verbal part of a magic formula
is typically an elaborate and picturesque series of statements describing the
desired state of affairs, which, of course, is very different from reality. The
person performing the ritual asks, as it were, the forces of nature, or certain
objects, to behave in a different manner, or to possess different qualities: “The
repetitive statement of certain words is believed to produce the reality stated. . . .
The essence of verbal magic, then, consists in a statement which is untrue,
which stands in direct opposition to the context of reality. But the belief
in magic inspires man with the conviction that his untrue statement must
become true.”ÉÎ

So when programmers call themselves “engineers,” when they talk about
“software engineering” and “building” programs from software “components,”
they are practising in effect software magic: they are making statements they
know to be untrue (or, at least, know to be unproven), hoping that, through
their repeated assertion, software phenomena may be persuaded to be like the
phenomena we see in manufacturing.

4

4
Let us return to the blending of the rational and the irrational in software
activities. Programmers act quite rationally when working on small and
isolated pieces of an application. They know, for example, the importance of
expressing correctly the conditions for an iterative statement, and they don’t
expect their development tools to do it for them. They never question the need
to specify certain operations in the proper sequence, or to assign correct values
to variables, or to access the right database records. And if the resulting
program does not work as expected, it is their own logic that they suspect, not
the computer.

ÉÌ Malinowski, Coral Gardens, vol. 2, pp. 70, 238. ÉÍ Ibid., p. 70.
ÉÎ Ibid., pp. 238–239.

software magic 53introduction



But this is where their rationality ends. We all know that the difficulties
encountered in large and complex applications are not simply the accumulation
of a large number of small problems. When a software project fails, or when an
application does not provide the solution everyone expected, it is not an
individual statement or condition that must be corrected, or the subtotals in a
report that are wrong, or a data entry field that is missing – nor even a hundred
such problems. Isolated deficiencies may well contribute to the failure of the
application, but even when we manage to identify and resolve them, the
application remains inadequate. The reason is that applications are systems of
interacting structures. And the most serious software deficiencies are those
caused by the interactions: we overlooked or misjudged some of the links
between structures.

Applications, then, are more than the simple hierarchical structures we wish
them to be, more than the neat modules and relations we see in diagrams.
All programming theories are based on the idea that we must reduce the
application to one structure, and thereby eliminate the interactions. This is
what we do in manufacturing, the theorists say, so this must also be the answer
to our programming difficulties. But it is precisely the interactions that make
software such a versatile concept: it is the very fact that we can implement
interacting structures through software that lets software adapt so well to our
needs. The reason we don’t seem to be able to eliminate the interactions, no
matter what theory we follow, is that we need these interactions if software is
to mirror our affairs accurately.

Only minds can process interacting structures, so the answer to our pro-
gramming difficulties is programming expertise: the skills attained by working
for many years on large and complex applications, and on diverse types of
software. In our culture, however, programmers are restricted to simple and
isolated tasks. Like the members of a primitive society, they are expected to
display knowledge and creativity in those activities deemed to be within
their power: programming small parts of an application. Hard work may be
required, but the success of these activities is assured. Tradition does not
permit them to acquire the higher skills needed to design, program, and
maintain whole applications. This is a difficult task, full of uncertainties, for
which tradition prescribes the use of magic: methodologies, development tools
and environments, database systems, and the like. These aids encourage
programmers to think of the application as a system of independent structures
and parts, thus reassuring them that their current knowledge suffices.

Like primitive magic, then, software magic creates the illusion that the
difficult and unpredictable tasks are of the same kind as the simple ones: the
methodology, the development tools, or the database system will somehow
turn those independent structures and parts into a useful application.

54 anthropology and software introduction



It takes an experienced person to recognize how little of what programmers
do is rational, and how much effort they waste on spurious activities. Neither
the programmers themselves nor a lay person watching them can see this,
because irrational programming activities are almost identical to rational ones.
Thus, a programmer may spend much time mastering the complexities of a
particular development system, and even more time later programming in that
system, convinced that this is the only way to enhance his capabilities. If asked
to demonstrate the benefits of the system, the only thing he can do is point to
its popularity, or describe a particular function that was easy to implement.
But he cannot prove the need for that system. In reality, the most important
factor is his skills. Whatever he managed to accomplish with that system he
would have accomplished with any other system, or with no system at all (that
is, with a traditional programming language, perhaps supplemented with
libraries of subroutines). Like the primitives, though, the programmer remains
convinced that his technical knowledge and the magic system are equally
important.ÉÏ

Since no one can prove the need for a particular development system, all
related activities are specious. But there is nothing to betray their irrationality.
Studying reference manuals, attending courses, discussing problems and
solutions – all these activities are important, all can be justified. They can be
justified, however, only in the context of that development system, only if we
do not question the need for it.

As a result, even when they get to know a development system well,
programmers are no better off than before. Their programming skills did not
improve. They wasted their time acquiring worthless knowledge about yet
another methodology, yet another language, yet another theory, instead of
improving their skills simply by programming. All they did was learn how to
use a new magic system.

It is easy to see that, no matter how many years of practice these program-
mers have behind them, their real programming experience stays at the level it
was after the first year or two. They may be familiar with many magic systems,
but they have no skills beyond what the software tradition permits them to
acquire. Just like the primitives, they do not confuse programming with magic.
They know perfectly well what they can accomplish with their own skills, and

ÉÏ The benefits of a system or method can be determined only by way of controlled
experiments; that is, experiments designed to isolate and measure a specific variable while
eliminating all others, including human factors. Such experiments are practically impossible,
and this is one reason why the only meaningful way to determine the value of a system or
method is by studying the failures, not the successes. (We will discuss this problem in
“Popper’s Principles of Demarcation” in chapter 3.) Thus, any attempt to defend or promote
a concept by pointing to individual successes turns it into a pseudoscience, a fraud.

software magic 55introduction



they turn to magic for the more difficult tasks precisely because they are aware
of their limited capabilities.

I have described the rational and irrational activities of programmers, but,
increasingly, a similar blend can be seen in the activities of software users. They
too believe that the only way to improve their performance, or to solve difficult
problems, is by relying on software devices. Like the programmers, though,
whatever they manage to accomplish is due almost exclusively to their skills,
not to those devices. To advance, therefore, they must avoid the devices, and
practise their profession instead, in order to further improve their skills.

How, then, can we detect irrational activities in our software pursuits? We
must beware of those activities that can only be justified if judged from within
the software culture. We must not be impressed by how important or urgent
these activities seem to be, or how expertly the individual performs them.
Instead, we must search for evidence. Any attempt to prove the validity of an
irrational act will lead to that unproven theory – the theory that forms the
foundation of our software culture. The theory is that there exist systems which
help us to break down software-related tasks into smaller and smaller parts, so
all we need to know is how to use these systems and how to solve simple
problems. This is what we do in manufacturing, and software is no different.

�

Software propaganda has succeeded in shifting our definition of programming
expertise from its traditional, commonsensical meaning – the skills needed to
solve a difficult problem, or to complete an important task – to its modern
meaning: familiarity with the latest theories and methodologies, avoiding
programming and using instead ready-made pieces of software, etc. We are
expected to measure the expertise of software practitioners, not by assessing
their real contribution, but by how many development tools they have tried,
how many courses they have attended, how many computer magazines they
are reading, and how acquainted they are with the latest “solutions” and
“technologies” – the latest ideas, products, announcements, and rumours.

Companies need programmers, but one wouldn’t think so just by reading
job offer advertisements. For, the required qualifications we see in these
advertisements are not what one would think is expected of programmers;
namely, proven expertise in solving a company’s business problems with
software. Depending on the current fad, the requirements are for experience
with object-oriented systems, or 4GL systems, or client-server systems, or
relational database systems, or CASE tools, or a particular language or develop-
ment aid or environment; that is, knowledge of one magic system or another.
Companies are looking for magicians, not programmers.

56 anthropology and software introduction



Software Power

Software Power
1 1
The term mana, which comes from Melanesian, was introduced in anthropol-
ogy at the end of the nineteenth century by R. H. Codrington. This term,
usually translated as power, denotes a supernatural force, a mythical essence,
“an atmosphere of potency that permeates everything.”É Since then, it has been
found that archaic peoples throughout the world believe in its existence.
Although we now refer to this concept as mana, it has equivalent terms in
many languages: for some peoples of India it is sakti or barkat, for the African
Pygmies megbe, for the Iroquois orenda, for the Hurons oki, for the Dakota
wakan, for the Sioux wakanda, for the Algonquins manito.Ê It is believed that
this force exists everywhere in the universe, and that any person can use it to
accomplish tasks he would otherwise find impossible. The force is said to
derive from a number of sources, such as ghosts, spirits, and gods.

Mana can reveal itself in almost anything: a tree, a stone, an animal, and
even in such things as a gesture, a sign, a colour, and a season of the year.Ë A
typical use of mana may be as follows:Ì An individual would go alone to some
isolated spot, where, after fasting, prayer, and exposure to the elements, a spirit
might come and point to him a plant. That plant would then become a source
of good luck, and the individual would employ this power to ensure success in
his endeavours. He might carry with him at all times something symbolizing
the plant, and perhaps also offer it to others.

Mana is different from magic. Mana is a universal force available to anyone,
at any time, and to be used in any way the individual desires. Magic, on the
other hand, requires formal practice: its power is in the spell and ritual, and
magic formulas have an exact significance. Mana exists in nature and can
manifest itself in objects, acts, or ideas; magic power resides in man, and magic
formulas can only be transmitted from one person to another.Í Thus, while
primitive man may use both magic and mana, most anthropologists agree that,
despite their similarity – the belief in supernatural powers that can enhance a
person’s limited capabilities – they form two different concepts. Sometimes,

É Ernst Cassirer, Language and Myth (New York: Dover, 1953), p. 63.
Ê Mircea Eliade, Myths, Dreams, and Mysteries: The Encounter between Contemporary

Faiths and Archaic Realities (New York: Harper and Row, 1975), ch. VI passim.
Ë Ibid., p. 132.
Ì Guy E. Swanson, The Birth of the Gods: The Origin of Primitive Beliefs (Ann Arbor:

University of Michigan Press, 1964), p. 7.
Í Bronislaw Malinowski, Magic, Science and Religion, and Other Essays (Garden City, NY:

Doubleday Anchor, 1954), p. 77.

software power 57introduction



mana is taken as the general concept, and magic as one particular application
of it. As we will see in this subsection, software practitioners and users, too,
consider mana a more general concept than their formal magic systems.

�

The words “power,” “powerful,” “empower,” etc., are so common in computer-
related discourse that it is almost impossible to describe a new product without
the use of them. We have come to expect them, and we doubt the efficacy of
the product if these words are missing. After all, we already have thousands of
software and hardware products, so the only justification for a new one is that
it is more “powerful.” An analysis of these words, however, reveals that the
power of a product is usually perceived, not as certain qualities, but in the sense
of mana – as supernatural power.

From the many meanings the dictionary offers for the word “power,” it is
obvious that the one current in computer matters is the capability to effect
something. We can immediately divide this function into two kinds. First,
“power” can simply stand for a list of qualities. For example, if one computer is
faster than another, or if one text editor has better editing features than another,
we may say that they are more powerful. When used in this sense, “power” is
an abbreviation: an abstract term we can employ without fear of confusion,
since we all know what it stands for. If asked, we could readily describe the
superior features we subsumed under “power.”

Even a casual examination of books, articles, advertising, or conversations
makes it clear, however, that “power” is hardly ever used in this precise sense.
In its more common sense, “power” is still used as an abstract term, but without
being defined. Abstract terms are so common in everyday discourse that
we seldom stop to think whether we know what they stand for. So, when
encountering an undefined abstract term, we tend to assume that it stands
for the list of things we expected, or wished, to see at that point. When
encountering “power” without an explanation, then, we assume that it means
what it would mean if used legitimately, although now it is just a slogan.

Here are some typical uses of “power” and its derivatives in computer-
related discourse: “Powerful software solutions for midsize companies.”Î
“Discover the power of Primus Internet services.”Ï “Empowering the Internet
generation.”Ð “Empowered with these capabilities, your company can charge
ahead intelligently and efficiently . . . .”Ñ “Power tools for power applications.”ÉÈ
“Powering comprehensive unified communications solutions.”ÉÉ “Wireless

Î http://whitepapers.techrepublic.com.com/. Ï Primus Canada, adv. pamphlet.
Ð Cisco Systems, adv. Ñ http://www.jda.com/.
ÉÈ Microsoft Visual Basic 2.0, adv. pamphlet. ÉÉ http://www.myt3.com/.

58 anthropology and software introduction



inventory systems give you the power to have accurate information in real
time . . . .”ÉÊ “Open source empowers the user more than proprietary software
can.”ÉË “Empowering Software Development Environments by Automatic
Software Measurement.”ÉÌ “Business innovation powered by technology.”ÉÍ

When it does not describe precise and verifiable capabilities, “power” is
intended to convey something mysterious, supernatural – mana. For the
primitives, the belief in mana, like the belief in magic, is a substitute for
personal knowledge: “Mana is a substance or essence which gives one the
ability to perform tasks or achieve ends otherwise impossible.”ÉÎ Similarly,
modern individuals believe that a given product or concept has the power to
enhance their capabilities, but they don’t feel they have to understand how this
power acts.

Now, products of all kinds promise us power – weight-loss gadgets, money-
making schemes, self-help instructions, and so forth. But in no other field is
the promise of power as widespread as in software-related matters. We can see
this not only in the frequent use of “power,” “powerful,” “empower,” etc., but
also in the long list of software products whose name includes “power” (this
use of “power,” needless to say, is always in an undefined sense): PowerEncoder,
Power Keeper, PowerCrypt, PowerPoint, PowerGraphs Toolkit, NXPowerLite,
PowerShadow, PowerOLAP, Power Booleans, IT PowerPAC, Power Edit,
PDF Power Brand, PowerShop ERP, PowerGREP, RoutePower 32, Animation
Power, PowerCinema, PowerPassword, PowerPulse, Bill Power, PowerBackup,
HTML PowerSpell, PowerExchange, PowerPressed, Power Office, PowerKey
Pro, PowerConvert, HedgePower, PowerBuilder, PowerDesk Pro, PowerDraw,
Power Translators, PowerDirector, PowerProducer, Power Solids, Power Print,
EMail Developer’s Power Suite, PowerUpdate, PowerERP, Power Accounting,
OptionPower, Power LogOn, Powerpak, PowerPack, PowerGEM, PowerTerm,
PowerChain, PowerBSORT, PowerTCP Emulation, PowerSuite, PowerRecon,
ELX Power Desktop, PowerTicker, PowerAnalyzer, Power Broker, Jobpower,
PowerBASIC, Powershell, PowerWebBuilder, PowerWEB, PowerPlan, ES
Power PDF Creator, PowerToys, PowerMerge, PowerCOBOL, PowerCenter,
DQpowersuite, PowerPath, PowerVideoMaker, SQL Power Architect, Power
Sound Editor, PowerBoot, PowerISO, etc.

We can account for the abundance of “power” names in software products
only if we remember the ignorance that software practitioners and users suffer
from, the limited skills that our software culture permits them to acquire.
Faced with the difficult problem of developing, using, and maintaining serious

ÉÊ http://findmysoftware.com/. ÉË http://www.netc.org/.
ÉÌ Book title, 11th IEEE International Software Metrics Symposium.
ÉÍ Front cover banner, Information Week (1999–2007).
ÉÎ Swanson, Birth of the Gods, p. 6.

software power 59introduction



applications, modern people, like the primitives, end up seeking aid from the
only source they believe to be available – supernatural forces.

Few people, of course, would admit that they are using a software product
because its name includes “power.” But the software vendors know better. The
ability of a product’s name to influence a buying decision, and the associa-
tions created in a person’s mind between the product and the idea conveyed
by its name, are well understood in advertising. The software vendors are
simply exploiting the belief in the supernatural, which has been retained, in a
repressed form, even by modern man. This belief surfaces in moments of
insecurity, or anxiety, or fear, when, like our ancestors, we feel impotent against
some great perils. Since ignorance is a major source of insecurity, the large
number of products with “power” names merely reflects the large number of
difficult situations that ignorant programmers and users are facing.

Similarly, the phrase “power tools” is often used by software vendors to
name sets of software devices: LG Power Tools, Engineering Power Tools, SQL
Power Tools, HTML PowerTools, Windows Powertools, PowerTools PRO for
AOL, TBox Power Tools, jv16 Power Tools, Rizone’s Power Tools, Creative
Element Power Tools, Nemx Power Tools, Power Tools for ArcGIS, Rix2k
Extreme Power Tools, CodeSite Power Tools, etc.

The phrase is also popular in book titles: Java Power Tools, Unix Power
Tools, Linux Power Tools, Mac OS X Power Tools, DOS Power Tools, Scripting
VMware Power Tools, Windows Developer Power Tools, LEGO Software
Power Tools, AutoCad Power Tools, Windows XP Power Tools, Netcat Power
Tools, Wordperfect 6 Power Tools, Foxpro 2.0 Power Tools, Visual Basic .NET
Power Tools, Novell Netware Power Tools, etc.

The vendors, clearly, want us to associate a software utility, or the informa-
tion found in a book, with the efficacy of electricity; that is, with the kind of
energy used by real power tools like drills and saws. But, without an actual
explanation, the meaning of this “power” remains vague, just like the “power”
in a name. So, in the end, we perceive it the same way – as mana.

2

2
Much has been learned about the way the primitives interpret mana, from
linguistic and ethnological analyses of the archaic languages. The conclusion
has been that “mana” is not simply a word, like “power.” We must use a
multitude of concepts to convey in a modern language its full meaning:
“sacred, strange, important, marvellous, extraordinary”;ÉÏ also “remarkable,

ÉÏ Paul Radin, quoted in Eliade, Myths, Dreams, and Mysteries, p. 129.

60 anthropology and software introduction



very strong, very great, very old, strong in magic, wise in magic, supernatural,
divine – or in a substantive sense . . . power, magic, sorcery, fortune, success,
godhead, delight.”ÉÐ

Cassirer notes that “the idea of mana and the various conceptions related to
it are not bound to a particular realm of objects (animate or inanimate, physical
or spiritual), but that they should rather be said to indicate a certain ‘character,’
which may be attributed to the most diverse objects and events, if only these
evoke mythic ‘wonder’ and stand forth from the ordinary background of
familiar, mundane existence. . . . It is not a matter of ‘what,’ but of ‘how’;
not the object of attention, but the sort of attention directed to it, is the
crucial factor here. Mana and its several equivalents do not denote a single,
definite predicate; but in all of them we find a peculiar and consistent form
of predication. This predication may indeed be designated as the primeval
mythico-religious predication, since it expresses the spiritual ‘crisis’ whereby
the holy is divided from the profane.”ÉÑ

The idea of the sacred, especially in its sense as the opposite of the profane,
expresses even better, therefore, how the primitives perceive mana. This is
significant, if we want to understand the belief in software power. Like mana,
software power is a potency that can manifest itself in diverse concepts and
entities, so it does not describe their type but their character. By asserting that
a thing has power, the believer says, in effect, that he perceives it as belonging
in the domain of the sacred rather than the ordinary.

So the belief in software power, like the primitive beliefs, is a belief in the
existence of miraculous capabilities – capabilities which cannot and need not
be explained. In the following passage, Eliade describes the concept of mana,
but this can just as easily describe the concept of software power: “Among the
‘primitives’ as among the moderns, the sacred is manifested in a multitude of
forms and variants, but . . . all these hierophanies are charged with power. The
sacred is strong, powerful, because it is real; it is efficacious and durable. The
opposition between sacred and profane is often expressed as an opposition
between the real and the unreal or pseudo-real. Power means reality and, at the
same time, lastingness and efficiency.”ÊÈ

�

Software power, then, is the modern counterpart of mana. We can confirm this
by noting the many similarities between the two beliefs. First, and most

ÉÐ Nathan Söderblom, quoted in Cassirer, Language and Myth, p. 66.
ÉÑ Cassirer, Language and Myth, pp. 65–66.
ÊÈ Eliade, Myths, Dreams, and Mysteries, p. 130. (The term hierophany was coined by

Eliade to denote any manifestation of the sacred.)

software power 61introduction



significantly, everyone realizes that supernatural power acts like a tool, or like
an appliance: we can benefit from it directly, without having to gain new
knowledge. Thus, the primitives understand that “mana is an object, not a body
of skills and abilities which are obtained through learning. Access to it is
acquired, in the sense that a house or a wife or a spear is acquired, that is as a
gift, as a purchase, or through the performance of appropriate acts.”ÊÉ Similarly,
the believers in software power do not expect to acquire any skills by using
software devices. They understand that this power is a substitute for knowledge
and experience. Vendors, in fact, make this point the main attraction of
software devices: simply by purchasing one, you gain access to a power that will
allow you to accomplish your tasks immediately.

Second, supernatural power is perceived by everyone as a truly general
potency. For the primitives, mana “is not so much the idea of . . . particular
embodiments, as the notion of a ‘power’ in general, able to appear now in this
form, now in that, to enter into one object and then into another.”ÊÊ Similarly,
the great variety of means by which we can acquire software power shows that
believers do not associate it with specific things – a company, a product, a
function – but with a universal potency that can materialize in any software-
related concept. It can appear in development environments as well as in
applications, in database systems as well as in utilities, in user interface as well
as in computations.

And, although we are discussing software power, we must note that this
universal potency can materialize in anything else associated with computers.
Thus, it can appear in whole computers (Power Mac, PowerBook, PowerEdge,
AcerPower, Power Spec, Prime Power), and also in the parts of a computer, and
in related devices: in a monitor (“empower your business with advanced display
technology,”ÊË “. . . these stylish, powerful and efficient monitors improve the
atmosphere of any desktop”ÊÌ), a graphics card (“Radeon 7500 is a powerful
and versatile graphic solution,”ÊÍ “GeForce GTX 480 powers interactive
raytracing”ÊÎ), a hard drive (“fast performance and huge capacity to power
today’s storage-hungry applications”ÊÏ), a motherboard (“empowered by
integrated graphics and Intel Hyper-Threading Technology . . .,”ÊÐ “it delivers
awesome power . . .”ÊÑ), a scanner (“empower your information management
with digital technology”ËÈ), a network device (PowerConnect switch), a mouse

ÊÉ Swanson, Birth of the Gods, p. 6. ÊÊ Cassirer, Language and Myth, p. 63.
ÊËNEC Corp., adv. ÊÌ http://www.samsung.com/.
ÊÍ http://ati.amd.com/. ÊÎ http://www.nvidia.com/.
ÊÏ Seagate ST3160316AS Barracuda 7200.12, http://www.tigerdirect.ca/.
ÊÐAsus P4V8X-MX motherboard, http://ca.asus.com/.
ÊÑGigabyte GA-X58A-UD3R motherboard, http://www.acousticpc.com/.
ËÈ Ricoh Aficio scanners, The Ricoh Report (Nov. 2000).

62 anthropology and software introduction



(Power Wheelmouse, PowerScroll), a storage system (PowerVault), a CD
device (PowerCD, PowerDisc), a processor (PowerPC), a camera (PowerShot),
or a microphone (PowerMic). And it can appear even in such concepts as
a newsletter (IBM PowerTalk, APC PowerNews), a business relationship
(Samsung Power Partner program), a panel discussion (Power PanelsËÉ),
a trade show (“over 700 high-powered exhibits”ËÊ), or a course (“a powerful
3-day course”ËË).

Lastly, the term “power,” like “mana,” is employed in a variety of grammati-
cal roles. Analyzing the ways in which the Sioux use “wakanda,” McGee notes
that “the term was applied to all sorts of entities and ideas, and was used
(with or without inflectional variations) indiscriminately as substantive and
adjective, and with slight modification as verb and adverb.”ËÌ Similarly, through
its derivatives, “power” is used indiscriminately as noun, adjective, verb, and
adverb. Let us see some examples.

As noun: “Discover the power of MetaFrame and WinFrame software.”ËÍ
“Relational database power made easy.”ËÎ “The power to build a better business
Internet.”ËÏ “This empowerment is most visible in backend solutions like
servers and networks.”ËÐ “Experience the power of software instrumenta-
tion.”ËÑ “SaaS Business Empowerment programs are designed to help Progress’
SaaS partners focus on the early-stage fundamentals . . . .”ÌÈ “Accrisoft Freedom
web empowerment software provides all the tools you need . . . .”ÌÉ “. . . AutoPlay
Media Studio gives you the power to quickly create just about any software
application you can dream up.”ÌÊ “IT empowerment with ITSM education from
Hewlett-Packard.”ÌË “Enjoy visual power.”ÌÌ

As adjective: “Powerful network storage software with built-in intelligence
and automation . . . .”ÌÍ “Discover hundreds of new uses for this empowering
tool.”ÌÎ “Visual Two-Way-Tools for power programming.”ÌÏ “Powerful soft-
ware for solving LP, NLP, MLP and CGE models.”ÌÐ “Control your duplicate
files with this powerful utility.”ÌÑ “This powerful feature allows affiliates to

ËÉComdex Canada Exhibition (1995), adv. pamphlet.
ËÊDatabase and Client/Server World Exposition (1994), adv.
ËËGlobal Knowledge, adv. pamphlet.
ËÌWilliam McGee, quoted in Cassirer, Language and Myth, p. 68.
ËÍCitrix Systems, Inc., adv. pamphlet.
ËÎ Borland Paradox for Windows, adv. pamphlet.
ËÏOracle Corp. iDevelop 2000 event, adv. pamphlet.
ËÐ http://www.netc.org/. ËÑ http://www.ocsystems.com/.
ÌÈ http://web.progress.com/. ÌÉ http://accrisoft.org/.
ÌÊ http://www.indigorose.com/. ÌË Hewlett-Packard Company, adv.
ÌÌMicrosoft Visual Basic 2.0, adv. pamphlet. ÌÍ http://www.compellent.com/.
ÌÎ http://www.indigorose.com/. ÌÏ Borland Delphi, adv. pamphlet.
ÌÐ http://web.uvic.ca/. ÌÑ http://www.kewlit.com/.

software power 63introduction



create advertising channels.”ÍÈ “Simple, useful and powerful software tools.”ÍÉ
“Powerful database design made simple.”ÍÊ “A powerful software tool to tweak,
optimize, maintain and tune up your Windows XP . . . .”ÍË “Develop powerful
Internet applications.”ÍÌ “Create powerful, dynamic Windows programs.”ÍÍ
“A powerful, easy-to-use process improvement tool.”ÍÎ

As verb: “Oracle software powers the Internet.”ÍÏ “We can power you, too.”ÍÐ
“Empowered by innovation.”ÍÑ “MV Software has been powering business
solutions for over two decades.”ÎÈ “Empower employees to collaborate and
innovate.”ÎÉ “Windows Principles: . . . empowering choice, opportunity, and
interoperability.”ÎÊ “XML: powering next-generation business applications.”ÎË
“Learning powered by technology.”ÎÌ “Utoolbox.com . . . is powered by a
dedicated team of professionals.”ÎÍ “Empowering software engineers in human-
centered design.”ÎÎ “Empowering software debugging through architectural
support for program rollback.”ÎÏ “Powering the lean, consumer-driven supply
chain for manufacturers worldwide.”ÎÐ “We can empower your organization
through adoption of IT Service Management . . . .”ÎÑ “Data Query empowers
the end user to create reports . . . .”ÏÈ “Empowering software maintainers
with semantic web technologies.”ÏÉ “Powering on demand applications.”ÏÊ
“Powering the digital age.”ÏË

As adverb: “Accurate Shutdown is a powerfully automatic software that
turns off your computer at the user-specified time.”ÏÌ “RSConnect Suite
corporate management software: . . . powerfully simple, powerfully quick.”ÏÍ
“QSR software . . . provides a sophisticated workspace that enables you to work
through your information efficiently and powerfully.”ÏÎ “XP Picture Manager
can correct your photos powerfully and quickly.”ÏÏ “The building blocks of

ÍÈ http://www.qualityunit.com/. ÍÉ http://www.utoolbox.com/.
ÍÊ SDP Technologies S-Designor, adv. pamphlet.
ÍË http://www.freedownloadscenter.com/.
ÍÌMicrosoft Visual Studio 6.0, adv. pamphlet.
ÍÍ Borland Turbo Pascal for Windows 1.5, adv. pamphlet.
ÍÎ IEEE Computer Society Press, LearnerFirst Process Management, adv. pamphlet.
ÍÏOracle Corp., adv. ÍÐ Dell Computers, adv.
ÍÑ http://www.nec.com/. ÎÈ http://www.mvsoftware.com/.
ÎÉCisco Systems, adv. ÎÊ http://www.microsoft.com/.
ÎË http://www.dbmag.intelligententerprise.com/.
ÎÌ Brochure subtitle, U.S. Dept. of Education, Transforming American Education (2010).
ÎÍ http://www.utoolbox.com/. ÎÎ http://portal.acm.org/.
ÎÏ http://iacoma.cs.uiuc.edu/. ÎÐ http://www.jda.com/.
ÎÑGlobal Knowledge, IT and Management Training catalogue (Dec. 2006), p. 12.
ÏÈOracle Discoverer/2000, adv. pamphlet. ÏÉ http://www.rene-witte.net/.
ÏÊ https://www-304.ibm.com/. ÏË http://www.swiftdisc.com/.
ÏÌ http://www.accuratesolution.net/. ÏÍ http://www.necpos.com/.
ÏÎ http://www.qsrinternational.com/. ÏÏ http://www.softtester.com/.

64 anthropology and software introduction



virtual instrumentation include powerfully productive software . . . .”ÏÐ “HP
StorageWorks Command View EVA software provides you with a powerfully
simple storage management experience . . . .”ÏÑ “The intelligent technology
in our electrical calculation software powerfully calculates and performs
your electrical calculations and designs . . . .”ÐÈ “Powerfully advanced mailing
software.”ÐÉ

In addition, the phrase “powered by” is commonly used in promotional
slogans to mention a given product, in place of a phrase like “made by,” “works
with,” or “employs.” Some examples of this practice: “powered by Google,”
“powered by IBM,” “powered by Sun,” “powered by AOL Mail,” “powered by
Microsoft Access,” “powered by XMB,” “powered by Cognos,” “powered by
FIS,” “powered by Mozilla,” “powered by HitsLink,” “powered by PayPal,”
“powered by WebsiteBaker,” “powered by Trac,” “powered by ATI,” “powered
by Merril Lynch,” “powered by Geeklog,” “powered by vBulletin,” “powered by
eBay Turbo Lister,” “powered by GetSimple,” “powered by TAXWIZ,” “powered
by nexImage,” “powered by MindTouch,” “powered by Joomla,” “powered by
ShopFactory,” “powered by Network Solutions,” “powered by Sothink.”

3

3
As programmers and as users, we wish to benefit from the power of software,
but without taking the time to develop software expertise. Consequently, we
have come to regard this power as the kind of power that we can acquire. And it
is through the devices supplied by software companies that we hope to acquire
it. So, when describing their devices as powerful, the software companies are
simply exploiting this belief.

Like all beliefs we carry from our primitive past, the belief that certain
devices possess a mysterious power can only be dispelled through learning. As
in other domains, once we possess the necessary skills in software-related
matters, we can easily recognize which devices are helpful and which ones are
fraudulent. In a rational society, this education would be the responsibility of
the software elites – the universities, in particular. In our society, however, the
opposite is taking place: since the elites can profit far more by exploiting society
than by educating it, ignorance and primitive beliefs serve their interests. Thus,
only if we remain ignorant will we believe that their devices, which are based
on mechanistic concepts, can solve our complex problems. So the elites are
doing all they can to prevent us from developing software knowledge.

ÏÐ http://www.scientific-computing.com/. ÏÑ https://ads.jiwire.com/.
ÐÈ http://solutionselectricalsoftware.com/. ÐÉ http://www.satorisoftware.co.uk/.

software power 65introduction



Software devices can replace expertise only in solving mechanistic problems;
that is, problems which can be broken down into simpler and simpler ones, and
hence modeled with isolated hierarchical structures. Most problems we want
to solve with software, however, are non-mechanistic. They can only be
represented as systems of interacting structures, so they require a human mind,
and expertise. The problems associated with programming, particularly, are of
this kind. In the end, less than 1 percent of the software devices we are offered
are genuine, beneficial tools; the rest are fraudulent. What distinguishes the
latter is their claim to solve complex, non-mechanistic problems; in other
words, to act as substitutes for minds. They address naive programmers and
users, promising them the power to accomplish tasks that require, in fact,
much knowledge and experience.

So the software elites are not responsible organizations, but charlatans. They
present their devices as the software counterpart of the traditional tools and
instruments, but at the same time they invoke the notions of magic and
supernatural power. They tell us that we need these devices in the same way
that engineers and doctors need theirs. But the tools and instruments we use
in engineering and in medicine are promoted on the basis of real qualities,
and provide real benefits. Their vendors do not exploit our ignorance and
irrationality when persuading us to use them. Clearly, then, if software devices
must be promoted in this fashion, it is because they are generally useless,
because the possession of an imaginary power is their only quality. To put it
differently, if software devices were promoted by demonstrating their real
benefits, we would use only the few that are truly useful.

The harm caused by this charlatanism extends, however, beyond the waste
of time and resources. For, when restricted to the mechanistic knowledge
required to operate devices, we forgo all opportunities to develop complex,
non-mechanistic knowledge. Without this knowledge we cannot solve our
complex problems. But if we believe that it is only through devices that we can
solve them, we continue to depend on devices, and hence to restrict ourselves
to mechanistic knowledge, in a process that feeds on itself. The only way to
escape from this vicious circle is by expanding our knowledge, so as to exceed
the mechanistic capabilities of devices. And we cannot do this as long as we
agree to depend on them. Thus, by enticing us with software devices, the elites
ensure our perpetual ignorance. They prevent us from gaining knowledge and
also from solving our problems.

The propaganda depicts the software elites as enligthened leaders who
are creating a new world for us – a world with higher and higher levels of
efficiency. But now we see that the reality is very different: they are fostering
ignorance and irrational beliefs, so they are creating a less efficient world.
When presenting their devices as magic systems or as sources of supernatural

66 anthropology and software introduction



power, they are encouraging us to behave like the primitives. This degradation
started with the software practitioners, in their programming activities. Now,
as our dependence on computers is spreading, it is increasingly affecting
everyone, in every activity.

Bear in mind, though, that it is not software or programming that causes
this degradation, but mechanistic software and programming, the kind pro-
moted by the software elites. Mechanistic software-related activities restrict us
to mechanistic thinking, thereby preventing us from using our natural, non-
mechanistic capabilities. Left alone, without software elites and the mechanistic
dogma, human beings would learn to develop and use software as effectively
as their minds permit them. Complex software phenomena, and complex
software knowledge, would then join the many other complex structures that
make up human existence. Our software-related activities would then enhance
our minds, as do other complex phenomena (the use of language, for instance).

software power 67introduction




	Software and Mind
	Disclaimer
	Contents
	Preface
	Introduction: Belief and Software
	Anthropology and Software
	Software Magic
	1
	2
	3
	4

	Software Power
	1
	2
	3




