
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Introduction: Belief and Software

This extract includes the book’s front matter
and the introductory chapter.

Copyright ©2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This chapter is an introduction to the mechanistic myth and
the mechanistic software myth, and an analysis of the similarity of
mechanistic software beliefs to primitive beliefs.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Introduction: Belief and Software

introduction

Belief and Software

This book is largely a study of delusions – mechanistic delusions. But, whereas
in the following chapters we discuss the logical aspects of these delusions, in
this introductory chapter we concentrate on their human aspects.

Belief, as we all know, is stronger than reason. For a person who believes that
the number 13 brings misfortune, a hundred logical arguments demonstrating
the fallacy of this idea amount to nothing; at the same time, one story of an
accident that occurred on the 13th day of a month suffices to validate the idea.
Similarly, we will see, it is quite easy to expose the absurdity of the mechanistic
beliefs. Yet hundreds of millions of people – people who think of themselves as
modern and rational – spend a great part of their life engaged in activities that
are, essentially, an enactment of these beliefs. Clearly, it would be futile to
attempt to understand the mechanistic myth without taking into account its
emotional roots.

It is in order to emphasize their primacy, therefore, that I deal with the
human aspects of the mechanistic myth before its logical aspects. But this book
is concerned, ultimately, with logical thinking. Thus, a second reason for
including the study of human nature in the introduction is that it is only a brief
discussion of this important topic.

1

Modern Myths Modern Myths
The historian of religions Mircea Eliade predicts that “the understanding of
myth will one day be counted among the most useful discoveries of the
twentieth century.”É Myths used to be considered – along with fairy tales,
legends, and fables – merely folklore: picturesque stories transmitted to us from
ancient times, perhaps carrying some moral lessons, but generally of little
value in the modern world. It is only recently, starting with the work of
anthropologists like Bronislaw Malinowski, that we have come to view myths
in a new light. These scholars studied the life of primitive societies extant in
various parts of the world by living among those people and learning their
languages and customs. As these cultures exemplify all early societies, this
information, combined with our historical knowledge, has helped us to form a
more accurate picture of the capabilities, values, and beliefs of archaic man.
Even more importantly, it has helped us to understand the development and
nature of our own, present-day culture.

One thing we have discovered from these studies is the critical function that
myth fulfils in a human society. Myth, according to Malinowski, “supplies
the charter for ritual, belief, moral conduct and social organization.”Ê Far
from being simply folklore, myths are the foundation upon which the entire
social system rests: “Studied alive, myth . . . is not symbolic, but a direct
expression of its subject matter; it is . . . a narrative resurrection of a primeval
reality, told in satisfaction of deep religious wants, moral cravings, social
submissions, assertions, even practical requirements. Myth fulfills in primitive
culture an indispensable function: it expresses, enhances, and codifies belief;
it safeguards and enforces morality; it vouches for the efficiency of ritual
and contains practical rules for the guidance of man. Myth is thus a vital
ingredient of human civilization; it is not an idle tale, but a hard-worked active
force.”Ë

It is wrong to study a myth by inquiring whether it makes sense. Myths are
a sacred tradition, and “the main object of sacred tradition is not to serve as a
chronicle of past events; it is to lay down the effective precedent of a glorified

É Mircea Eliade, Myths, Dreams, and Mysteries: The Encounter between Contemporary
Faiths and Archaic Realities (New York: Harper and Row, 1975), p. 38.

Ê Bronislaw Malinowski, “Myth as a Dramatic Development of Dogma,” in Malinowski
and the Work of Myth, ed. Ivan Strenski (Princeton, NJ: Princeton University Press,
1992), p. 122.

Ë Bronislaw Malinowski, Magic, Science and Religion, and Other Essays (Garden City, NY:
Doubleday Anchor, 1954), p. 101.

2 modern myths introduction

past for repetitive actions in the present.”Ì We must study, therefore, not so
much the text of a story or legend, as its effects on living society. Myths make
absurd claims, but we must ignore their scientific inaccuracy. The “extravagant
elements in the myth . . . can only be understood by reference to ritual, ethical,
and social influences of the story on present day conduct.”Í

A myth, then, must be judged solely by its power to inspire large numbers
of people. Blatant impossibilities or inconsistencies do not detract from its
power. On the contrary, since it is precisely the fantastic elements in a myth
that impress us, they are its most important value. Thus, a story that makes
only reasonable and verifiable claims cannot possibly serve as myth.

Eliade notes how quickly our perception of the function of myth has
changed, from the belief that it is “only fables,” to the appreciation that “a man
of the traditional societies sees it as the only valid revelation of reality.”Î The
function of myth is the exact opposite of what we thought it to be: rather than
relying on proven knowledge in their important activities and turning to myths
in their diversions, it is actually in their important activities that the primitives
rely on myths. Because they are inherited from previous generations, myths are
believed to represent unquestionable facts: “The myth is thought to express
absolute truth, because it narrates a sacred history. . . . Being real and sacred,
the myth becomes exemplary, and consequently repeatable, for it serves as a
model, and by the same token as a justification, for all human actions.”Ï

Conversely, something that is not reflected in myths is deemed to be untrue
and profane.

The greatest benefit that emerges from the study of myth is not a better
understanding of primitive cultures, but a better understanding of our own,
modern culture. We must “integrate the myth into the general history of
thought, by regarding it as the most important form of collective thinking.
And, since ‘collective thinking’ is never completely abolished in any society,
whatever its degree of evolution, one did not fail to observe that the modern
world still preserves some mythical behaviour.”Ð Thus, “upon the plane of social
living, there was no break in the continuity between the archaic world and the
modern world.”Ñ

But there seem to be few myths left in the modern world. Moreover, those
that still exist do not seem to provide anywhere near the powerful inspiration
that myths provided in earlier civilizations. So this important question arises:
“If the myth is not just an infantile or aberrant creation of ‘primitive’ humanity,
but is the expression of a mode of being in the world, what has become of myths

Ì Malinowski, “Dramatic Development,” p. 123. Í Ibid.
Î Eliade, Myths, Dreams, and Mysteries, p. 24. Ï Ibid., p. 23.
Ð Ibid., p. 24. Ñ Ibid.

modern myths 3introduction

in the modern world? Or, more precisely, what has taken the essential place
occupied by myth in traditional societies?”ÉÈ “It seems unlikely that any society
could completely dispense with myths, for, of what is essential in mythical
behaviour – the exemplary pattern, the repetition, the break with profane
duration and integration into primordial time – the first two at least are
cosubstantial with every human condition.”ÉÉ

The absence of myths in modern society, thus, is an illusion. In reality,
because human nature has not changed, modern cultures too are founded on
myths. All that has happened is a shift in the type of myths that inspire us: our
preoccupations are different from those of our ancestors, so our myths too are
different. It is a mistake to study the old myths, and to conclude that, since we
no longer take them seriously, we no longer depend on myths.

To understand the mass delusions that possess our present-day society, we
must uncover the myths that shape our collective thinking today. Let us briefly
review some of these myths.

�

George Steiner refers to the intellectual, political, and social ideologies of the
nineteenth and twentieth centuries as surrogate creeds, anti-theologies, meta-
religions, or mythologies.ÉÊ These ideologies emerged as a result of the decline
of formal religion since the Renaissance. Thanks to the growth of knowledge,
Western man’s absolute belief in God, which had guided him for centuries,
suddenly came to an end. This created a spiritual vacuum and the longing for
a new, equally powerful subject of belief: “Where there is a vacuum, new
energies and surrogates arise. Unless I read the evidence wrongly, the political
and philosophic history of the West during the last 150 years can be understood
as a series of attempts – more or less conscious, more or less systematic,
more or less violent – to fill the central emptiness left by the erosion of
theology.”ÉË

Steiner discusses three ideologies: Marxism, Freudian psychoanalysis, and
Lévi-Strauss’s structuralism. These systems of ideas have several characteristics
in common: “totality, by which I simply mean the claim to explain everything;
canonic texts delivered by the founding genius; orthodoxy against heresy;
crucial metaphors, gestures, and symbols.”ÉÌ And it is these characteristics that
betray their mythological nature: “The major mythologies constructed in the

ÉÈ Ibid. ÉÉ Ibid., p. 31.
ÉÊ George Steiner, Nostalgia for the Absolute (Toronto: CBC Enterprises, 1974), p. 2.
ÉË Ibid.
ÉÌ Ibid., p. 4. We will also encounter these three ideologies in chapter 3, where we will see

that, unsurprisingly, they are based on pseudoscientific theories.

4 modern myths introduction

West since the early nineteenth century are not only attempts to fill the
emptiness left by the decay of Christian theology and Christian dogma. They
are themselves a kind of substitute theology. They are systems of belief and
argument which may be savagely anti-religious, which may postulate a world
without God and may deny an afterlife, but whose structure, whose aspirations,
whose claims on the believer, are profoundly religious in strategy and in
effect.”ÉÍ

Isaiah BerlinÉÎ shows that, in their attempt to explain social evolution
“scientifically,” the modern social theories were compelled to ignore the role
played by individuals. Human history, according to these theories, is controlled
by some mysterious forces and processes – variously represented as class
struggles, cultural clashes, geo-political conditions, technological changes, etc.
While described in scientific terms, these mighty forces and processes are
perceived as supernatural, mythological entities. They manage to explain social
evolution only by remaining unexplained themselves, so in the end, these
theories – in reality, pseudosciences – are no different from the religious beliefs
of the past: “There has grown up in our modern time a pseudo-sociological
mythology which, in the guise of scientific concepts, has developed into a new
animism – certainly a more primitive and naive religion than the traditional
European faiths which it seeks to replace.”ÉÏ

Eliade compares the modern political myths with the classical myths:
“Eschatological and millennialist mythology recently reappeared in Europe
in two totalitarian political movements. Although radically secularized in
appearance, Nazism and Communism are loaded with eschatological elements:
they announce the end of this world and the beginning of an age of plenty
and bliss.”ÉÐ

Both Communism and Nazism were seen by their followers as the modern
equivalent of the struggle between good and evil – a common mythological
theme. Communism is based on “one of the great eschatological myths of the
Middle Eastern and Mediterranean world, namely: the redemptive part to be
played by the Just (the ‘elect,’ the ‘anointed,’ the ‘innocent,’ the ‘missioners,’ in
our own days by the proletariat), whose sufferings are invoked to change the
ontological structure of the world. In fact, Marx’s classless society, and the
consequent disappearance of all historical tensions, find their most exact
precedent in the myth of the Golden Age which, according to a number of
traditions, lies at the beginning and the end of History.”ÉÑ

ÉÍ Ibid.
ÉÎ Isaiah Berlin, “Historical Inevitability,” in Four Essays on Liberty (Oxford: Oxford

University Press, 1969). ÉÏ Ibid., p. 110.
ÉÐ Mircea Eliade, Myth and Reality (New York: Harper and Row, 1975), p. 69.
ÉÑ Eliade, Myths, Dreams, and Mysteries, pp. 25–26.

modern myths 5introduction

As for the other great political myth of the twentieth century, “in its effort
to abolish Christian values and rediscover the spiritual sources of the ‘race’ –
that is, of Nordic paganism – Nazism was obliged to try to reanimate the
Germanic mythology.”ÊÈ Thus, “the ‘Aryan’ represented at once the ‘primordial’
Ancestor and the noble ‘hero,’ . . . the exemplary model that must be imitated
in order to recover racial ‘purity,’ physical strength, nobility, the heroic ‘ethics’
of the glorious and creative ‘beginnings.’”ÊÉ

Some of our myths are embodied in literary works, movies, television
shows, sports, and popular entertainment. Archaic societies had no need for
such distractions, because in their normal life – daily work, hunting, war,
family and social activities – they were constantly reenacting sacred myths.
Having desacralized our world, and especially our work, we had to invent some
useless activities, collective and personal, as substitutes for the reenactment of
myths.ÊÊ

For example, a popular myth in current American culture is the myth of the
lone saviour: “A community in a harmonious paradise is threatened by evil:
normal institutions fail to contend with this threat: a selfless superhero emerges
to renounce temptations and carry out the redemptive task: aided by fate,
his decisive victory restores the community to its paradisal condition: the
superhero then recedes into obscurity.”ÊË Variations of this myth form the main
theme in countless movies and television series, and its popularity can be
explained by comparing it with the old religious myths: “The supersaviors in
pop culture function as replacements for the Christ figure, whose credibility
was eroded by scientific rationalism. But their superhuman abilities reflect a
hope for the divine, redemptive powers that science has never eradicated from
the popular mind. The presentation of such figures in popular culture has the
power to evoke fan loyalties that should be compared with more traditional
forms of religious zeal.”ÊÌ

Similarly, “the characters of the comic strips present the modern version of
mythological or folklore Heroes.”ÊÍ For instance, “the myth of Superman
satisfies the secret longings of modern man who, though he knows that he is a
fallen, limited creature, dreams of one day proving himself an ‘exceptional
person,’ a ‘Hero.’”ÊÎ

Cultural fashions – in literature, art, music, philosophy, even science – act in
effect as modern mythologies: “One of the fascinating aspects of the ‘cultural
fashion’ is that it does not matter whether the facts in question and their

ÊÈ Ibid., p. 26. ÊÉ Eliade, Myth and Reality, p. 183.
ÊÊ Eliade, Myths, Dreams, and Mysteries, p. 37.
ÊË Robert Jewett and John S. Lawrence, The American Monomyth (Garden City, NY:

Anchor/Doubleday, 1977), p. xx. ÊÌ Ibid.
ÊÍ Eliade, Myth and Reality, pp. 184–185. ÊÎ Ibid., p. 185.

6 modern myths introduction

interpretation are true or not. No amount of criticism can destroy a vogue.
There is something ‘religious’ about this imperviousness to criticism. . . . Their
popularity, especially among the intelligentsia, reveals something of Western
man’s dissatisfactions, drives, and nostalgias.”ÊÏ

Paul KurtzÊÐ discusses the similarities between classical religions and
modern belief systems. He accepts the fact that human beings are susceptible
to irrational beliefs, that we are possessed by a “transcendental temptation.”
But, he says, we must find a way to overcome this weakness, because a society
dominated by myths faces great dangers: “The transcendental temptation lurks
deep within the human breast. It is ever-present, tempting humans by the lure
of transcendental realities, subverting the power of their critical intelligence,
enabling them to accept unproven and unfounded myth systems. Can we live
without myths? Can we overcome the defect, as it were, in our natures? Is it so
rooted in our natures that it cannot be overcome, but will crop up in generation
after generation, the forms and functions of the transcendental temptation the
same, with only the content different?”ÊÑ

Although the growth of science seems to offer a hope for overcoming it, we
must remember that “these are relatively recent developments and of short
duration in human history. . . . The transcendental temptation has held sway for
millennia, and to hope to mitigate or obviate its continued power may be to
engage in wishful thinking. . . . What guarantee do we have that science too will
not be overwhelmed and superseded by new faiths of unreason commanding
human imagination?. . . One cannot predict the future course of human history
with any degree of confidence. Regrettably, often the unthinkable becomes
true. Will the unimaginable again overtake us, as we slip into a new dark age
of unreason? The only option for us to prevent this is to continue to use the arts
of intelligence and skeptical criticism against the blind faiths, old and new. . . .
Is there any hope that a scientific, secular, or humanist culture can develop and
prevail, devoid of transcendental myths?. . . If salvation myths are no longer
tenable, what will take their place? The dilemma is always that new faiths and
new myths may emerge, equally irrational.”ËÈ

Science, however, has been redefined in our universities to mean a blind
pursuit of mechanistic theories – whether sound or not, whether useful or not.
Science, thus, has already been “overwhelmed and superseded by new faiths of
unreason” – by the mechanistic dogma. The mechanistic belief is the new myth
that has emerged to replace the old ones.

ÊÏ Mircea Eliade, Occultism, Witchcraft, and Cultural Fashions: Essays in Comparative
Religions (Chicago: University of Chicago Press, 1978), p. 3.

ÊÐ Paul Kurtz, The Transcendental Temptation: A Critique of Religion and the Paranormal
(Buffalo, NY: Prometheus Books, 1991). ÊÑ Ibid., pp. 477–478.

ËÈ Ibid., pp. 481–482.

modern myths 7introduction

The Mechanistic Myth The Mechanistic Myth
1 1
In this book we are concerned with one particular myth – the mechanistic
myth; and we are especially concerned with its latest manifestation – the
software myth. Mechanism is the belief that everything can be represented as a
hierarchical structure; that is, as a structure of things within things. This is true,
we are told, because every entity is necessarily made up of simpler entities,
which are in their turn made up of even simpler ones, and so on, down to some
basic building blocks.

Thus, if we want to understand a complex phenomenon, all we have to do –
according to the mechanistic doctrine – is discover what simpler phenomena
make it up. Then, for each one of those, we must discover what phenomena
make it up, and so on. Clearly, if we continue this process to lower and
lower levels of complexity, we are bound to reach, eventually, phenomena
simple enough to understand intuitively. So, by understanding those simple
phenomena and the process of simplification that revealed them, we will
understand the original, complex phenomenon. Ultimately, working in this
fashion, everything that exists in the world can be understood.

Similarly, if we want to build a complicated machine, all we have to do is
design it as a combination of subassemblies. Because the subassemblies on
their own are simpler than the whole machine, they are easier to design and
make. Then, we design the subassemblies themselves as combinations of
simpler subassemblies, the latter as combinations of even simpler ones, and so
on, down to some small parts that can be made directly.

If we want to study a set of related entities – the people in an organization,
the parts stored in a warehouse, the various types of animals – all we have to
do is depict them with a hierarchical classification. We divide them first into
several categories in such a way that all the entities in a category share a certain
attribute. Then, we divide each category into several smaller ones on the basis
of a second attribute, and so on, until we reach some categories where the
entities share all their important attributes and are therefore very similar. In the
case of an animal classification, for example, we may divide them into wild and
domestic, the domestic ones into types like horses, chickens, and dogs, each
type into various breeds, and finally each breed into individual animals.

If we wonder how linguistic communication works, we start by noting that
language is made up of sentences, sentences are made up of clauses, and clauses
are made up of words. Words correspond to the facts that exist in the world –
nouns for objects, verbs for actions, adjectives for properties, and so on. Thus,
since everything in the world can be represented as a hierarchical structure, it

8 the mechanistic myth introduction

seems that what we do when communicating is create hierarchical structures
of linguistic elements which correspond to the structures that exist in the
world.

Finally, if we want to create large and complex software applications, we
must start by breaking them down into modules. We then break down each
module into smaller ones, and so on, until we reach some simple software
constructs, which we can program directly. This method, clearly, allows us to
implement the most complex applications with skills no greater than those
required to program the smallest constructs.

�

It appears, thus, that the mechanists are right: everything in the world can
indeed be represented with a hierarchical structure. The explanation for this
versatility lies in the two principles that constitute the mechanistic philosophy:
reductionism and atomism. Reductionism assures us that everything can be
represented as a combination of simpler things; at the same time, atomism
assures us that there is an end to this reduction, that we will eventually reach
some elementary entities, which cannot be further divided into simpler ones.
Together, therefore, these principles assure us that every problem can be solved.

The term “mechanism” derives from the fact that in the seventeenth century,
when this philosophy was established, the elementary entities were believed to
be the simplest mechanical entities; namely, bits of matter. All phenomena,
in other words – from those encountered in the study of mechanics to those
encountered in the study of minds and societies – were believed to be reducible,
ultimately, to the phenomena associated with the motion of bits of matter.

Formal reductionism still claims this, although the idea is so absurd that
most scientists today avoid discussing it. In any case, rigorous mechanism –
that is, a reduction to truly elementary entities – is too difficult to practise, so
it is an easier variant that has been adopted in universities as “the method
of science.” This form of mechanism employs partial reductionism, and
academics like it because it can make trivial activities resemble scientific
research. Thus, to explain a given phenomenon we no longer have to actually
reduce it to some basic, indivisible entities; we are free to end the reduction at
any convenient level, and simply call those entities elementary. Theories
grounded on this method explain nothing, of course; but they look scientific,
so the method is very popular.

Mechanism is also described as a method that leads to precise and complete
explanations – mathematical explanations, in particular. It is easy to see why
mathematical models are logically equivalent to the hierarchical structures of
mechanism: Mathematical systems are themselves based on hierarchical

the mechanistic myth 9introduction

structures. In a given system, a complex theorem can be expressed as a
combination of simpler theorems, which can then be reduced to even simpler
ones, and so on, until we reach the premises, axioms, and basic elements
upon which the system is founded. Thus, since we can always invent a mathe-
matical system whose entities correspond to entities from the real world, a
phenomenon that can be represented with a hierarchical structure can also be
represented mathematically.

And indeed, those aspects of the world that have been successfully explained
through reductionism and atomism also have exact, mathematical models.
They include the subjects studied by sciences like physics, chemistry, and
astronomy, and their applications – engineering, manufacturing, construction.
Mechanism and mathematics, however, have been far less successful in other
areas. Sciences like biology, physiology, and medicine benefit to some extent
from mechanistic theories, but their main problems are non-mechanistic. As
for those sciences that study human phenomena – psychology, sociology,
linguistics, economics, politics, history, anthropology – their problems are
almost entirely non-mechanistic. Finally, our software-related activities, despite
their dependence on computers and hence on engineering, entail largely non-
mechanistic problems.

So the mechanistic principles only appear to be universal. In reality, they are
useful for some phenomena and useless for others. In three hundred years of
mechanistic philosophy, not one mechanistic model was successful in the
human sciences. Countless mechanistic theories have been advanced, and
more are being advanced today than ever before, but when a theory fails no
one tries to understand the reason. The response, invariably, is to start working
on another mechanistic theory. Reductionism and atomism have been so
successful in those fields where they do work that science is now universally
identified with mechanism. For most of us, science means simply the attempt
to extend the success of mechanism to every other aspect of the world. So an
individual is perceived as scientist simply if pursuing a mechanistic theory. No
one cares whether the theory works or not, or whether mechanism is valid at
all in that particular field. Thus, while known as the method of science,
mechanism is now largely the method of charlatanism.

2

2
The obsession with finding a mechanistic representation for every aspect of the
world is especially silly in view of the fact that it is quite easy to see why
mechanism cannot explain every phenomenon. All that the researchers have to
do is study with an open mind any one of their failures. For, when mechanism

10 the mechanistic myth introduction

fails, the reason is always the same: the phenomenon is too complex to be
represented with a neat structure of things within things. We will examine
these failures in the following chapters, but from what we have discussed so far
we can already recognize why mechanism is limited.

In the hierarchical structure that is the mechanistic representation of a
phenomenon, what determines the relations between levels is the totality of
attributes possessed by the structure’s elements. Thus, for the structure to
provide an exact and complete explanation, the elements must possess these
attributes in such a way that the relations we see in the structure are the only
relations between them. But this is rarely true.

The entities that make up the world possess many attributes, and are
therefore interrelated in many different ways. For certain types of phenomena,
though, a few of these attributes, and the resulting relations, are much more
important than the others. Thus, if we agree to ignore the other attributes, a
hierarchical structure will provide a useful approximation of reality. For
these phenomena, then, we note that mechanistic theories work. Putting this
in reverse, for certain types of phenomena there are many attributes that give
rise to important relations and cannot be ignored. For those phenomena, then,
we note that mechanistic theories fail: they cannot be usefully approximated
with a hierarchical structure.

Recall the earlier examples. Hierarchical classifications of things are possible
only if we take into account some of their attributes (one attribute, or a small
set of attributes, per level) and ignore the others. It is impossible to include all
their attributes in one classification. Thus, animals can be divided into wild
and domestic, into types, and into breeds, as we saw. But this is just one way to
represent them. The biological classification – dividing animals into classes,
orders, families, genera, and species – is based on different attributes, and the
resulting hierarchy is different. Tigers and horses belong to different categories
(wild and domestic) in one classification, but to the same category (class of
mammals) in the other. Clearly, there are many ways to classify animals, all
valid and useful; and each classification can take into account only some
of their attributes. It is impossible to represent all their attributes in one
hierarchical structure. The totality of animals and their attributes is, therefore,
a non-mechanistic phenomenon. A mechanistic representation – one structure
– is valid only if we agree to study animals from one narrow perspective; it
becomes useless as soon as we remember their other attributes.

Similarly, we can represent an appliance as a hierarchy of parts and sub-
assemblies only if we restrict ourselves to those attributes that determine their
position and function in that appliance. For, the same parts and subassemblies
form at the same time other hierarchical structures, based on other attributes –
their cost, or supplier, or life expectancy. We purposely design appliances in

the mechanistic myth 11introduction

such a way that the other attributes can be ignored in the manufacturing
process. But the attributes are important when we study the appliances from
other perspectives. And the other hierarchies are usually different from the one
that represents the physical and functional attributes; for example, parts
made by the same supplier may belong in different subassemblies, and parts
belonging in the same subassembly may have different life expectancy. It is
impossible to represent the parts and all their attributes in one hierarchical
structure. Again, a mechanistic representation is valid only if we can restrict
ourselves to one view.

Sentences appear to form a neat hierarchy of clauses and words only if
we take into account the syntactic structure and ignore the meaning of the
words. For, the things represented by words possess many attributes, and are
therefore related through many structures. Consequently, the words themselves
are related through many structures, which are different from the syntactic
one. It is impossible to depict, with a syntactic structure alone, everything that
a sentence can convey.

Finally, software applications appear to form perfect hierarchies of smaller
and smaller entities (modules, blocks of statements, statements) only if we
study them from the perspective of one attribute. The attributes of a software
entity are such things as files, variables, subroutines, and business practices.
Software entities possess many attributes, and are therefore related through
many structures – one structure for each attribute. The programming theories
attempt to simplify programming by forcing us to view each application as a
neat hierarchical structure of software entities. Thus, since applications consist
in fact of multiple, simultaneous structures, it is not surprising that the theories
keep failing.

�

Mechanism, then, is not the solid scientific concept it is believed to be. Its
prestige is due largely to its early successes in the exact sciences, and especially
to its successes relative to the scholastic doctrines of the Middle Ages, which it
was displacing. Just as the religious philosophy had been accepted for centuries
as the absolute truth, the mechanistic philosophy was seen now as an absolute
method – a method that can explain everything. Mechanism became, in effect,
a new religion. It seems that societies cannot exist without some great ideas to
inspire them – ideas that people can accept blindly.

Most of us perform both rational and irrational acts, but the two kinds
appear to us equally important. In the easier pursuits, when our knowledge
guarantees success, we are completely rational and follow only sound and
proven principles. But in difficult pursuits, when our knowledge is insufficient,

12 the mechanistic myth introduction

we behave irrationally. Irrationality, thus, emerges when we have no proven
theories to rely on: if we wish to understand a given phenomenon but lack the
necessary knowledge (and if, in addition, we believe that all phenomena can be
understood as we understand the simple ones), we are bound to invent a
fantastic concept and use it as explanation. This is how myths are born. People
are always in need of myths, because there is always much that is unknown or
unpredictable, in any society. Consequently, people always display a blend of
rational and irrational thinking, rational and irrational activities.

We like to justify our acts by basing them on accepted concepts, but we are
less keen on justifying the concepts themselves. As a result, we perceive
the two kinds of activities, rational and irrational, as equally effective. The
former become pursuits like science and business, while the latter make up
pursuits like magic and superstitions. But the individual activities that make up
these pursuits are very similar: they are always logical and consistent, always
grounded on an accepted concept. The difference is only that the concept is a
valid theory in one case and a fantasy in the other.

Thus, as we will see in the course of this book, it is possible for a person,
and even an entire society, to engage in activities that are perfectly logical
individually, while the body of activities as a whole constitutes a delusion. So,
to judge whether a certain pursuit is rational or not, it is not enough to study
the logic of the individual activities which make up that pursuit.

In chapter 3 we will learn that the best way to distinguish between rational
and irrational pursuits is by studying, not the successes, but the falsifications of
an idea. Just as important is how people react to these falsifications. Serious
researchers react by doubting the idea. Most people, however, react by ignoring
the falsifications, or by contriving ways to cover them up. They never admit
that the idea has been refuted. This shows that, for them, the idea is not a
rational pursuit but a belief.

Astrology, for instance, has been around for thousands of years, and we
could always show that it doesn’t work. All we have to do is note the predictions
made in the course of a year, and then count how many actually materialized.
Believers, though, never do this. Similarly, today we can note the mechanistic
claims in a field like linguistics, economics, or software, and count how many
match reality. But, again, believers never do this. Mechanism continues to be
trusted, regardless of how successful or unsuccessful it is.

We will see that it is possible to distinguish between the two types of
thinking, the scientific and the pseudoscientific. And we will see that what the
mechanists do is simply ignore the falsifications, just like the traditional
pseudoscientists. Thus, our mechanistic theories – while embraced by famous
scientists, taught in respected universities, and practised throughout society –
form in reality a new kind of pseudoscience.

the mechanistic myth 13introduction

The conclusion must be that mechanism does not function as scientific
doctrine in our society, but as myth. It is precisely the lack of doubts that
betrays its mythical status. When a method works, we are not afraid to debate
it, modify it, or replace it with a better one. Only concepts that cannot be
proved become unquestionable truths. Were mechanism perceived merely as
an important research method, we would rely on it in those fields where it is
useful, and seek other methods in those fields where it fails. But this is not what
we see. Mechanism is considered the only valid method of science, in all fields.
Academics are trained to think mechanistically, and are expected to pursue
only mechanistic ideas, regardless of whether these ideas are useful or not.
Moreover, non-mechanistic ideas are dismissed as “unscientific,” even if shown
to be useful. We have redefined science, in effect, to mean simply the pursuit
of mechanism. And as a result, our academic institutions have degenerated
into a self-serving bureaucracy.

Recall the earlier quotations: modern societies are founded on myths, just
like the primitive ones; myths are the most important form of collective
thinking; myths are thought to express absolute truth; myths serve as models
and as justification for all human action; and so on. Thus, if science and its
applications – especially the pursuits we call technology – serve as warrant for
our actions and decisions, and if science is grounded on mechanism, then, for
us, mechanism serves the purpose of myth. When we judge something as
important or unimportant, as useful or useless, as moral or immoral, as valid
or invalid, simply by invoking a scientific or technological concept, we judge it
in effect by invoking the mechanistic myth.

3

3
Myths can be good. When people possess only limited knowledge, as in a
primitive society, most phenomena they observe are unexplainable. They have
nothing to lose then, and much to gain, by attributing these phenomena to
some mythical powers. The myths replace their anxiety and fears with a sense
of confidence and security. The fact that this confidence is based on false
assumptions does not detract from the value of the myths, since the primitives
cannot arrive at the correct explanation in any case. If they wish to understand
what caused a certain disease, for example, and they know nothing about
microorganisms, the assumption that it was caused by sins, or demons, or black
magic, is quite effective. As they cannot cure the disease, these beliefs provide
at least the comfort of knowing its origin. With this comfort they are in a better
position to face other problems, so they can accomplish more in those fields in
which they are knowledgeable.

14 the mechanistic myth introduction

Thanks to the importance of myths, the individuals who provide myth-
related services – magicians, shamans, astrologers – enjoy great respect. Their
knowledge, limited as it is to myths, is necessarily specious. Nevertheless, just
as the myths themselves fulfil a vital function in society while being in fact
unreal, the services provided by these experts are crucial even while being
specious. The experts, as a result, become a powerful elite. But this position is
well-deserved: if a society benefits from its myths, and if the practice of myths
requires a certain expertise, then the individuals who possess this expertise
are as essential to society as the myths themselves. Thus, when the myths
are good for a society, an elite whose existence depends on these myths is a
good elite.

Myths, however, can also be bad. A society may reach a point in its evolution
where enough knowledge has been accumulated to attain better explanations
than what the myths can provide. Most likely, the new explanations include
mythical elements of their own, rather than being completely rational. Even so,
being closer to reality, they constitute an improvement. In retrospect, then, the
practical benefits of abandoning the old myths are obvious. But the actual
transition is difficult. The old myths are usually part of a belief system that had
guided society for generations, and it takes more than the promise of an
improvement to abandon them. So the same myths that hitherto served society
are now turning against it, by preventing it from enjoying the benefits of the
new knowledge. The good myths become bad.

The elite too – those experts whose privileged position depends on the
myths – is now turning against society. Because they would be redundant
without the old myths, the experts continue to praise their value even as society
no longer needs them. Whereas formerly they were practising those myths,
now they are enforcing them. They describe this struggle as an effort to
preserve some proven social values, but in reality it is their own privileges that
they want to preserve. Thus, when the myths turn from good to bad, the elite
too becomes bad.

The best-known transition in Western history is the Renaissance and the
Scientific Revolution, which took place between the fifteenth and seventeenth
centuries. This is when modern science, expressed through the mechanistic
philosophy, replaced the religious myths that had dominated Europe for more
than a thousand years. One of the most remarkable aspects of this transition is
the ferocity with which the church – guardian of the old myths – fought to
prevent it. Previously, the church was perhaps a good elite, insofar as myths like
the idea of salvation could provide some comfort in an age when science had
little to offer. But now that the real benefits of the growing knowledge exceeded
the emotional benefits of myths, the only way the church could maintain its
power was by suppressing that knowledge. This was the task of the Inquisition.

the mechanistic myth 15introduction

Thus, regardless of how one feels about the value of the religious myths in
earlier times, we all agree that obstructing the truth, and torturing and burning
alive innocent people, is not something that a good elite would do. The myths,
and with them the elite, had become bad.

�

The foregoing analysis should help us to recognize that a similar transition is
taking place in our own time. What is being defended now is mechanism –
the very myth that was being repressed in the earlier transition. And the
elite struggling to maintain its power is embodied now in our educational
institutions – our universities, in particular. The academic bureaucrats are the
greatest beneficiaries of the mechanistic myth, as this myth affords them a
privileged position in society regardless of whether their activities are useful or
not. So it is not surprising to see them defend the mechanistic ideology as
fiercely as the church was defending earlier the religious one.

When astrology was important, astrologers retained their position regard-
less of whether their predictions were correct or not; when alchemy was
important, alchemists continued to be trusted regardless of whether their
transmuting methods worked or not; and when religion was important, the
church bureaucracy retained its power regardless of whether its promises of
salvation materialized or not. Today, mechanism is important, so we continue
to trust and respect the academic bureaucrats even as the mechanistic theories
are failing. As we will see in the following chapters, it is quite easy to prove that
these theories are fraudulent; and yet we treat their defenders as scientists, not
as charlatans.

As part of its power, the academic elite controls education. And it has used
this monopolistic position to turn the process of education into a process
of indoctrination: all we are taught is what can be explained mechanistically.
Thus, while promoting knowledge, intelligence, and creativity, the academic
elite has redefined these qualities to mean, not the utmost that human minds
can attain, but merely the skills needed to follow the mechanistic ideology:
knowledge of the latest mechanistic theories, the intelligence to appreciate
the mechanistic principles, and the creativity to accomplish a task with
mechanistic methods alone. Mechanism is not just practised – it is enforced.
Together with the corporations (the other beneficiaries of the mechanistic
myth), and protected by irresponsible governments, our universities have
brought about a social order that is, in effect, a new form of totalitarianism.

Totalitarian ideologies differ in detail, but their goal is always the same: to
create a perfect society. For us, this means a society founded upon solid,
mechanistic principles. We have already proved the value of these principles in

16 the mechanistic myth introduction

certain areas – in the exact sciences, for instance, and in manufacturing – so all
we have to do now is extend their use to every other aspect of human life.

Here is how we can accomplish this: Since everything can be represented
with hierarchical structures, we can improve our performance by breaking
down all challenges into simpler and simpler ones. In the end, we will only
need to deal with the terminal elements of these structures; that is, with trivial
issues. In practice, the structures will be embodied in theories and methods,
and the terminal elements will be some simple rules. Thus, just by obeying
these rules, anyone will be able to perform tasks that previously demanded
much knowledge and experience.

Better still, once we represent our problems with hierarchical structures, we
can build devices that embody these structures. Then, to solve a given problem,
all we need to know is how to operate a device. The skills required to operate
devices are easier than those required to solve problems, so we will all be more
productive: first, because devices eliminate the lengthy learning periods we
needed in the past, and second, because devices are faster, more accurate, and
more dependable than humans.

Finally, with our latest invention, computers, we can implement even those
structures that are too large or too complex for the traditional devices. Thanks
to the power and versatility of software, practically every human endeavour
can be translated into a series of easy acts – the acts required to operate a
software device. From simple calculations to difficult decisions, from personal
concerns to business issues, we can have a software device for every task.
Various types of knowledge are now being incorporated into these devices, and
made available to us through easy-to-use menus, lists, buttons, and the like; in
other words, through a hierarchical structure of selections, and selections
within selections, corresponding to the hierarchical structure that is the
knowledge itself. So, just by purchasing a software device, we will be able to
perform almost any task without having to develop that knowledge in our
own minds.

�

Our idea of a perfect society, then, is one where all human affairs have been
reduced to the simple acts required to follow methods and to operate devices.
The methods and devices are developed by various elites – experts who know
how to translate the complexity of the world into concepts simple enough
for us to understand. The responsibility of the elites is to represent the world
with exact, mechanistic theories; and our responsibility is to obey these
theories. Anything that cannot be represented mechanistically is unscientific,
and hence devoid of value. Thus, as our goal is endless progress, we cannot

the mechanistic myth 17introduction

afford to spend any time with non-mechanistic notions, even if we might
otherwise enjoy it.

If we doubt the efficacy of this scheme, we only need to recall the progress
we have made in our manufacturing activities. From the handful of simple
consumer products available two hundred years ago, and which few people
could afford, we have arrived at today’s astounding array of sophisticated
products, which almost anyone can afford. And we have accomplished this, not
by increasing, but by reducing, the knowledge and skills of the workers who
make these products. The secret for the great progress in manufacturing is
found, as everyone knows, in concepts like the assembly line (which permits
us to employ unskilled workers and to control their output), division of
labour and narrow specialization (which permit us to reduce each individual’s
education and training, and hence the cost of employment), and, in general,
fragmentation of the labour process (which reduces all types of work to
simple, routine activities, eliminating the dependence on personal skills or
initiative) and scientific management (which creates a rigid environment,
where everyone is forced to work in the manner dictated by a superior).

These principles are, clearly, an application of the mechanistic ideology:
from a rather haphazard series of activities, the manufacturing process has
been turned into an exact system – a system that can be represented with a
hierarchical structure. In this structure, the elements are the various compo-
nents, stages, persons, and activities, and the efficiency of this arrangement is
assured by the mechanistic concept itself. So there can be little doubt that, to
be as efficient in the other fields as we are in manufacturing, we must follow
the same principles. We must modify the entire society to resemble, so to
speak, a giant factory: each person, each act, each thought, must be designed
to function as an element in a giant structure of things within things. We
are currently in the process of implementing this idea in our educational
and business activities; and soon we will extend it to all social and personal
affairs.

Thus, while this may seem paradoxical, it is a fact that if we want to become
more efficient we must be less knowledgeable, less skilled, less experienced. It
is our natural tendency to gain knowledge that slows progress. So we must stop
trying to develop such old-fashioned qualities as expertise or individuality, and
admit that we can accomplish more by being an insignificant part in a great
whole. We must allow the elites, who have proved the value of this idea in fields
like manufacturing, to design that great hierarchical social structure for us.
And we must restrict ourselves to those activities which they prescribe.

This ideology – totalitarianism – is quite old, in fact, and was always
appreciated by enlightened leaders. The reason it seems new is that only in the
twentieth century it became practical on a large scale. The first attempts,

18 the mechanistic myth introduction

Communism and Nazism, were rather crude and violent. They were political
movements, and failed. We learned from these mistakes, however, and we rely
now on universities and corporations, instead of political institutions, to
implement it. Our totalitarianism is better, and it will succeed.

4

4
Despite its obvious benefits, totalitarianism is not without critics. The first
objection concerns the process of dehumanization that inevitably accompanies
it. Thinkers of various outlooks – philosophers, sociologists, science-fiction
authors – have been warning us for a hundred years that we are being turned
into automatons. The vision of a society where human beings are treated
as parts of a giant machine, and restricted to some simple and repetitive
acts, is not very appealing – even if this is done in the name of efficiency or
progress.

As answer to this objection, we point to the great improvements in standard
of living and in life expectancy that all sections of society have enjoyed thanks
to totalitarianism. Thus, as in any social project, our decision to pursue this
ideology amounts to a compromise: we are trading more and more aspects of
our humanity for greater and greater prosperity. This has worked out well so
far, and there is no reason to doubt that we can continue this trade in the
future. Besides, people don’t seem to mind this dehumanization: following
rules and methods is easier than developing expertise, and most of us are quite
happy to be merely parts of a whole, as this absolves us from responsibility for
our acts and choices.

More recently, a second objection has arisen to the totalitarian ideology.
This objection concerns the environmental problems associated with infinite
progress. Specifically, we are reminded that, even if we agree to become full-
fledged automatons in our unending quest for prosperity, we may never
get there. Growth is limited by such factors as increasing pollution and
diminishing natural resources, so the assumption that an ideology which
worked in the past will continue to work in the future is invalid. In other
words, our ideology is wrong, not so much because it dehumanizes us, but
because at the current rate of growth we will destroy ourselves by ruining the
environment before we do it by becoming automatons.

Unlike the first one, this objection is gaining in popularity, owing largely
to the ease with which we can delude ourselves that we care about the
environment. All we need to do is read books and articles, watch television
documentaries, and discuss the issue from time to time – while keeping our
lifestyles and expectations unchanged. This stratagem permits us to feel

the mechanistic myth 19introduction

concerned and involved, without having to give up anything. In reality, an
endless increase in prosperity is possible only through an exponential growth
in production and consumption. To prevent the environmental problems,
therefore, we would have to reduce our prosperity even more than we would
have to in order to prevent our dehumanization. And we already saw what is
our attitude on the latter. People who agree to pay for prosperity by living their
lives as automatons are not likely to renounce the same prosperity for the
benefit of future generations. So, despite its apparent popularity, the second
objection will not stop the spread of totalitarianism any more than the first
objection did in the past.

It is not these two objections that ought to preoccupy us, however, but a
third one; namely, the risk that the totalitarianism we are being offered may not
be at all what it is said to be. We believe the problem is simply whether the price
we pay for progress and prosperity is too high, while the real problem is
whether we are getting anything at all for this price. The elites justify the
totalitarian ideology by telling us that it is grounded on mechanistic, and hence
scientific, principles. But if these principles are becoming less and less useful,
the elites are deceiving us – regardless of the price we are willing to pay.

The justification entails a succession of ideologies: mechanism, scientism,
utopianism, totalitarianism. The belief in mechanism leads to scientism – the
application of mechanistic concepts in the study of minds and societies, where
they cannot work. Then, despite the failure of their theories, the mechanists
conclude that society can be greatly improved by actually implementing these
theories; so, scientism leads to utopianism. Finally, everyone agrees that the
only practical way to carry out this project is through totalitarianism: by
allowing an elite to control all aspects of society.

Totalitarianism, thus, is justified by pointing to its origin, mechanism. Our
infatuation with mechanism is so strong that even when noticing its failures,
or its harmful consequences, we still do not question the ideology itself. So we
accept and respect the idea of totalitarianism, even when criticizing it, simply
because we believe it to be scientific. We have no evidence that totalitarianism
works, but we cannot help trusting those who advocate it.

5

5
The declining usefulness of mechanism has engendered a new phenomenon:
charlatanism practised in the name of science or in the name of business. This
charlatanism consists in the promise to solve a non-mechanistic problem with
mechanistic methods. Since mechanism is universally accepted as “the method
of science,” we trust implicitly anyone who invokes the mechanistic principles.

20 the mechanistic myth introduction

Thus, once we decided to measure the value of an idea solely by its mechanistic
qualities, it became impossible to distinguish between serious mechanistic
ideas and mechanistic delusions.

Mechanistic delusions have always been part of our culture. Until recently,
however, their harm was overshadowed by the mechanistic successes. Today,
fewer and fewer problems have simple, mechanistic solutions, so the harm
caused by delusions exceeds the benefits derived from successes.

Totalitarianism, in particular, is a mechanistic delusion. We like totalitari-
anism for the same reason we like all other mechanistic ideas: because it offers
what appears to be simple solutions to difficult problems. However, while the
pursuit of an ordinary mechanistic delusion means merely a waste of resources,
the pursuit of totalitarianism can lead to the collapse of society. For, if the
world is too complex to be improved mechanistically, the claimed benefits
are a fantasy, while the price we pay for them is real. Our problems are
getting bigger, while our minds are getting smaller: if we restrict ourselves to
mechanistic thinking, we leave our non-mechanistic capabilities undeveloped;
so we cope perhaps with the simple, mechanistic problems, but the complex,
non-mechanistic ones remain unsolved, and may eventually destroy us.

In universities, the charlatanism is seen in the activity known as research.
The rule is simple: any work that follows the mechanistic principles of reduc-
tionism and atomism is deemed scientific, and is therefore legitimate. Whether
these principles are valid or not in a given field, or whether the resulting
theories work or not, is immaterial. Thus, when faced with a problem in the
human sciences, all one has to do is perceive it as a hierarchical structure. The
problem can then be broken down into smaller and smaller parts, until
reaching problems simple enough to describe with precision. But this method,
borrowed from the exact sciences, fails when applied to human phenomena. It
fails because human phenomena consist, not of one structure, but of multiple,
interacting structures.

So the researchers are admired for the rigour with which they study those
small problems, even while the real problem remains unsolved. Clearly, their
only defence is that they are following the mechanistic principles. But why
should principles that are useful in modeling the material world be accepted
without reservation in the study of minds and societies? As soon as we
question the value of mechanism in these fields, any research project grounded
on mechanism changes from scientific pursuit to mechanistic fantasy. What
stands between perceiving these academics as scientists or as charlatans, then,
is only our blind acceptance of the mechanistic ideology.

In business, the charlatanism is seen in the activity known as marketing.
The elites, we saw, tell us that our future must be based on an endless growth
in production and consumption, and that this can only be achieved through

the mechanistic myth 21introduction

mechanistic methods. But if, in fact, there is less and less that can be discovered
or improved mechanistically, the only way to attain the required growth is
by replacing the making of useful things with the making of whatever can
be made mechanistically (that is, efficiently and profitably). To put this
differently, if the old experts – scientists, inventors, entrepreneurs – cannot
keep up with our demand for growth, we must replace them with a new kind
of experts: charlatans, who know how to make useless things appear important,
and thereby help us to delude ourselves that our system is working just as it did
in the past.

Thus, from its modest origin as a complement to trade, the process of
selling has become more important than the merchandise itself. The fact that
it is possible to cheat people, to persuade them to buy something that is not
what it appears to be, is now the driving force of the economy. Deceptive
advertising – messages purporting to inform while in reality exploiting human
weaknesses and ignorance – is no longer limited to domains like fashion
or cosmetics, but covers practically all products and services. Dishonest
techniques (testimonials and success stories, background music, pictures of
happy faces, and the like) are widely employed in order to influence, distract,
and confuse. These techniques are logically equivalent to lying (they are
needed precisely because the usefulness of those products and services cannot
be proved), but we no longer notice this. Language itself has ceased to be a
means of communication, and is used as a kind of weapon: words are carefully
chosen, not to convey information, but to deceive and to manipulate.

Finally, and most disturbingly, the idea of “selling” has transcended the
domain of commerce and is now found in every activity where there is an
opportunity to influence people. From what we say in a résumé to what
governments say in their policies, from business meetings to military decisions,
from lectures and seminars to television news and documentaries, it is vital
that we know how to persuade our audience; that is, how to mislead – how to
use special effects so as to make unimportant things appear important, and
important things unimportant.

The fact that we have to lie so much ought to worry us, ought to prompt us
to doubt our system. We need more and more lies, obviously, because our real
achievements do not fulfil our expectations. We have experienced continuous
growth ever since the Scientific Revolution, and our world view has evolved
accordingly: we have yet to accept the fact that there is a limit to discoveries
and improvements. We are still making progress, of course, but at a slower and
slower rate. Since the exponential growth that we are accustomed to cannot be
sustained indefinitely, we are now supplementing the real growth with an
imaginary one, based on fantasies. But instead of interpreting the perpetual
increase in charlatanism as evidence that our system is failing, we perceive the

22 the mechanistic myth introduction

charlatanism as a new sort of science, or a new sort of business, and hence its
increase as progress.

Much of the current growth, thus, is actually growth in delusions, and in the
stupidity necessary in order to accept these delusions. It is as if, having realized
that the human capacity for intelligence does not guarantee infinite growth, we
are now trying to achieve the same growth by relying instead on the human
capacity for stupidity. Like oil and minerals, we treat stupidity as a kind of
resource, as something that we can exploit and benefit from. To make the most
of this resource, though, human beings must be carefully indoctrinated, in
order to neutralize their natural capacity for intelligence. The incessant lies and
delusions, then, serve to replace the reality that surrounds us with the fantasies
that – according to the elites – are the world we must strive to create instead.

�

To summarize, the mechanistic myth has outlived its usefulness. What started
as a good myth, helping us to expand our knowledge of the world, has become
bad. The same qualities that make mechanism such a useful concept are now
turning against us. For, mechanism can only explain simple phenomena – those
that can be represented with isolated hierarchical structures; and in today’s
world we are facing more and more complex phenomena, which can only be
represented with systems of structures. One reason for the complexity, thus, is
that there are fewer and fewer mechanistic phenomena left to be explained. If
we want to expand our knowledge today, we must increasingly deal with those
phenomena that we chose to ignore in the past – when there were so many
simple, mechanistic ones, waiting to be studied. Another reason for the
complexity is that, as we keep expanding our knowledge, we are creating
ourselves new, non-mechanistic phenomena (the software phenomena are an
example).

So the mechanistic myth works against us because it restricts us to mecha-
nistic thinking while our most important problems are non-mechanistic. The
past successes of the mechanistic philosophy, together with its irresistible
appeal, prevent us from noticing how limited mechanism really is. We are
trying to explain everything mechanistically while less and less is mechanistic.
As a result, we are wasting our resources on absurd ideas, neglecting the real
problems. Only minds can process complex structures. So, to contend with our
current problems, we must develop the highest intelligence and expertise that
human minds are capable of. Instead, the mechanistic culture restricts us
to novice levels: we are taught to treat every challenge as simple, isolated
structures, so we are using only our mechanistic capabilities.

Along with the mechanistic myth, our elites too have turned from good to

the mechanistic myth 23introduction

bad. The elites defend the mechanistic myth because it is through this belief
that they hold their privileged position. Thus, as long as we accept mechanism
unquestioningly, all they have to do to gain our respect is practise mechanism.
If we judged them instead by assessing the validity or usefulness of their ideas,
we would realize how little of what they do is important. We would stop
respecting them, and they would lose their elitist position.

So we shouldn’t be surprised that our elites praise the mechanistic ideology
and cover up the failure of the mechanistic ideas. In the past, when most
mechanistic ideas were useful, the elites did not have to resort to lies and
delusions; they gained our respect through real achievements. Today, the
mechanistic ideas are becoming increasingly worthless; so the only way for the
elites to maintain their position is through charlatanism, by fooling us into
accepting mechanistic ideas.

Mechanism, moreover, has become totalitarian: We are asked now, not just
to accept the mechanistic delusions promoted by the elites, but to become
devoted mechanists ourselves. Like the elites, we must restrict ourselves to
mechanistic thinking and adhere to this ideology regardless of whether our
activities are successful or not.

Our totalitarianism, thus, is the ultimate mechanistic fantasy. For, if our
problems stem from the declining usefulness of mechanism, it is absurd
to attempt to solve them through totalitarianism, which only adds to our
mechanistic practices. So, when listening to the elites, we are moving in the
wrong direction: we are aggravating the problems. The elites tell us that
totalitarianism is necessary in order to become more efficient. But if it is
based on mechanism, and if mechanism itself is less and less useful, how can
totalitarianism help us?

6

6
By way of conclusion, let us speculate on the alternatives to mechanism. We
saw earlier that all human societies are founded on myths. For us, since the
seventeenth century, the most important myth has been the mechanistic
philosophy. Usually described as a shift from religion to science, the transition
to mechanism was in fact a shift from religion myths to science myths: all we
accomplished was to replace one kind of myths with another. Mechanism is
not an ultimate concept, but merely an improvement, a better way to represent
the world.

The usefulness of mechanism has been exhausted, however, and it can no
longer function as myth: rather than helping us to advance our knowledge, it
holds us back now, and allows evil elites to exploit us. There is an urgent need

24 the mechanistic myth introduction

to abandon it. But it is highly unlikely that, during the next few decades, we can
achieve something that no human society ever could – learn to live without
myths. The only practical alternative, therefore, is to replace mechanism with
a different myth. We must effect, in our lifetime, the next transition: from this
naive, seventeenth-century myth, to a modern one, adequate for our time. If
we must believe in myths, we should at least choose one that can help us to
solve today’s problems.

We will continue to use mechanism, of course, but only where appropriate.
What we want to avoid is the mechanistic delusions. In those fields where it
works, mechanism remains the best method, the best way to represent the
world. So what we must do is demote it: from its position as myth, to a
more modest position, as method. Then, we must turn to the new myth for
inspiration in solving our complex, non-mechanistic problems.

What is left is to decide what belief should replace mechanism as myth. It
is obvious that the new myth must be more than just a more sophisticated
variant of the mechanistic method. The greatest challenges we face today do
not entail merely a larger number of mechanistic problems, or more involved
mechanistic problems, but non-mechanistic problems. And there is only one
way to solve this type of problems: by using our minds. As we will see in
chapter 2, our minds excel at solving precisely the type of problems that
mechanism leaves unsolved. In our infatuation with mechanism, we have been
neglecting these problems. Moreover, we have been neglecting our own, non-
mechanistic capabilities: we have been using only a fraction of the capacity of
our minds, only what we need in order to think mechanistically.

The next myth, thus, must be a belief in the unlimited potential of our minds.
Like all myths, this is a fantasy, since the potential of our minds is not
unlimited. But we can believe that it is; and the very belief will inspire us.
In fact, we are using now so little of this potential that, for all practical
purposes, it is unlimited. Once accepted as myth, the new belief will motivate
us to appreciate and to use our non-mechanistic capabilities. And with these
capabilities we will accomplish more than we do now.

This process would be similar to the way mechanism itself functioned in the
seventeenth century. As we will see in chapter 1, it was its role as myth, rather
than its usefulness as method, that imparted to mechanism its strength. It was
the belief that its potential is unlimited that inspired the seventeenth-century
scientists. Had they perceived mechanism as just a new method of research,
they would not have had the confidence to propose those radical theories, and
the Scientific Revolution would not have happened. Today there are more
mechanistic delusions than discoveries, so it is obvious that the potential of
mechanism is not unlimited. But this fact did not detract from its value in the
seventeenth century. All we have to do, then, is undergo a similar process with

the mechanistic myth 25introduction

the new myth. And this will help us to bring about advances of a different kind:
in non-mechanistic knowledge.

If it seems improbable that we can start to believe now in a new myth, we
must remember that human societies can adopt any myth. Thus, if we managed
to believe for three hundred years that every phenomenon can be represented
with a neat structure of things within things (an idea easily shown to be false,
as we saw), it shouldn’t be so difficult to believe now that the potential of our
minds is unlimited.

But regardless of which myth we decide to adopt next, we must end our
dependence on the mechanistic myth, and on the elites that profit from it. The
blind belief in mechanism is destroying our minds, and is preventing us from
dealing with our problems. The mechanistic software beliefs, in particular, have
permitted a powerful software elite to arise. In just a few decades, organizations
that have in fact little to offer us have attained so much power that they
practically control society. As we will see in the course of this book, their power
rests almost entirely on mechanistic software delusions, and on the stupidity
engendered by these delusions.

Software, thus, has emerged as the most effective means for an elite to
enforce the mechanistic dogma. Software should have been our most modern
pursuit; instead, degraded by the software elite, it is now merely the most
modern way of pursuing a seventeenth-century myth.

The Software Myth The Software Myth
1 1
The software myth is the idea of software mechanism – the enactment of
mechanistic beliefs through software. If traditional mechanism holds that
every phenomenon can be represented with a hierarchical structure, software
mechanism holds that every phenomenon can be represented with a hierarchi-
cal software structure. This is true because, once we reduce a phenomenon
hierarchically to its simplest entities, these entities can be emulated by means
of simple software entities. To represent the original phenomenon, all we
have to do then is combine these entities hierarchically, and thereby generate
a software structure that corresponds to the structure of entities that is the
phenomenon itself.

In particular, the phenomena associated with human knowledge can be
represented with software. Since any type of knowledge can be reduced
hierarchically to simpler and simpler pieces down to some basic bits of
knowledge, by incorporating these bits in a software device we can emulate the

26 the software myth introduction

original knowledge structure. Then, simply by operating the device, anyone
will be able to perform the same tasks as a person who took the time to acquire
the actual knowledge.

Software devices, thus, are perceived as substitutes for knowledge, skills,
and experience. Whereas in the past we needed much learning and practice in
order to attain expertise in a given field, all we need to know now, it seems, is
how to operate software devices.

One type of knowledge that we have been trying especially hard to represent
with software is programming knowledge. If software devices are only now
gaining acceptance in our businesses and in our homes, their counterparts in
the world of programming have existed since the 1960s. Thus, if the use of
software devices as substitutes for expertise still sounds plausible for other
types of knowledge, we have already had several decades to assess their value
in programming work. And, as we will see in chapter 7, the claim that there exist
substitutes for programming expertise has proved to be a fraud.

The study of software mechanism in the domain of programming can help
us to understand, therefore, the delusion of software devices in general. For, it
is the same myth that the elites invoke when promoting knowledge substitutes,
whether they address programmers or other workers. Programming is the only
domain in which we can, today, actually demonstrate the failure of software
mechanism and the dishonesty of the software elites. Thus, we must make
the most of this experience. If we understand how the software myth has
destroyed the programming profession, we will be in a better position to
recognize its dangers, and to prevent it perhaps from destroying other fields
of knowledge.

2

2
The reason it is so tempting to think of software development as a mechanistic
process is that software applications are indeed hierarchical structures –
modules within modules. No matter how large or complex, it seems that an
application can always be depicted as a neat structure of software entities, just
as a manufactured object can be depicted as a neat structure of parts and
subassemblies.

As we do in manufacturing, therefore, we should break down the process of
software development into smaller and smaller parts, until we reach software
entities that are easy to program. Then, as in manufacturing, we will be able to
create applications of any size and complexity by employing inexperienced
workers – workers who, individually, can only program small and simple pieces
of software.

the software myth 27introduction

This idea, known as software engineering, is behind every programming
theory of the last forty years. But the idea is wrong. We already saw that
software applications are in fact systems of hierarchical structures, so the
structure of modules that appears to represent an application is merely one
of the structures that make it up. The software entities that constitute the
application possess many attributes: they call subroutines, use database fields,
reflect business practices, etc. Since each attribute gives rise to a structure, each
structure represents a different aspect of the application: one subroutine and
its calls, the uses of one database field, the implementation of one business
practice, etc. But because they share their elements (the software entities that
constitute the application), these structures are not independent. So the only
way to develop applications is by dealing with several structures at the same
time – something that only minds can do, and only after much practice.

Thus, while software engineering is said to turn programmers from old-
fashioned artisans into modern professionals, its true purpose is the exact
opposite: to eliminate the need for programming expertise. And this, the elites
believe, can be accomplished by discovering scientific (i.e., mechanistic)
programming theories, and by restricting programmers to methodologies
and development systems based on these theories. The aim is to separate
applications into their constituent structures, and further separate these
structures into their constituent elements, at which point programmers will
only need to deal with small, isolated software entities. For example, the theory
of structured programming claims that the only important structure is the one
that represents the application’s flow of execution, and that this structure can
be reduced to some simple, standard constructs; and the theory of object-
oriented programming claims that we can treat each aspect of our affairs as a
separate structure, which can then be assembled from some smaller, existing
structures.

But each theory, while presented as a revolution in programming concepts,
is in reality very similar to the others. This is true because they are all based on
the same fallacy; namely, on the assumption that software and programming
are mechanistic phenomena, and can be studied with the principles of reduc-
tionism and atomism. Ultimately, the naive idea of software engineering is a
reflection of the ignorance that the academics and the practitioners suffer
from. They remain ignorant because they waste their time with worthless
theories: they are forever trying to explain the phenomena of software and
programming through the mechanistic myth. It is not an exaggeration to say
that, for the last forty years, their main preoccupation has been this absurd
search for a way to reduce software to mechanics. The preoccupation is also
reflected in their vocabulary: programmers call themselves “engineers,” and
refer to programming as “building” or “constructing” software.

28 the software myth introduction

The programming theories, thus, are mechanistic delusions, because they
attempt to represent complex phenomena mechanistically. What is worse,
instead of being abandoned when found to be useless, they are turned by their
defenders into pseudosciences. Here is how: Since neither the academics nor
the practitioners are willing to admit that their latest theory has failed, they
continue to praise it even as they struggle against its deficiencies. They deny
the endless falsifications, and keep modifying the theory in the hope of making
it practical. While described as new features, the modifications serve in fact to
mask the falsifications: they reinstate the traditional, non-mechanistic pro-
gramming concepts – precisely those concepts that the theory had attempted
to eliminate. In the end, the theory’s exact, mechanistic principles are forgotten
altogether. Its defenders, though, continue to promote it by invoking the
benefits of mechanism. Then, after perpetrating this fraud for a number
of years, another mechanistic theory is invented and the same process is
repeated.

So the software workers are not the serious professionals they appear to
be, but impostors. Whether they are academics who invent mechanistic
theories, or software companies that create systems based on these theories, or
programmers who rely on these systems, very little of what they do is genuine.
They appear to be dealing with important issues, but most of these issues are
senseless preoccupations engendered by their mechanistic delusions: since our
problems rarely have simple, mechanistic answers, there is no limit to the
specious activities that one can contrive when attempting to solve them
mechanistically.

The mechanistic software ideology, thus, is the perfect medium for incom-
petents and charlatans, as it permits them to engage in modern, glamorous,
and profitable activities while doing almost nothing useful. The software
practitioners have become a powerful bureaucracy, exploiting society while
appearing to serve it. Less than 10 percent (and often less than 1 percent) of
their work has any value. Their main objective is not to help us solve our
problems through software, but on the contrary, to create new, software-related
problems; in other words, to make all human activities as complicated and
inefficient as they have made their own, programming activities.

At the top of this bureaucracy are the software elites – the universities and
the software companies. It is these elites that control, ultimately, our software-
related affairs. And they do it by promoting mechanistic software concepts:
since we believe in mechanism, and since their theories and systems are
founded on mechanistic principles, we readily accept their elitist position. But
if software mechanism is generally useless, their theories and systems are
fraudulent, and their elitist position is unwarranted.

the software myth 29introduction

3

3
Three ingredients are needed to implement totalitarianism: a myth, an elite,
and a bureaucracy. And the spread of totalitarianism is caused by an expansion
of the bureaucracy: larger and larger portions of the population change from
their role as citizens, or workers, to the role of bureaucrats; that is, from
individuals who perform useful tasks to individuals whose chief responsibility
is to practise the myth.

A characteristic of totalitarianism, thus, is this continuous increase in the
number of people whose beliefs and acts are a reflection of the myth. Rather
than relying on common sense, or logic, or some personal or professional
values, people justify their activities by invoking the myth. Or, they justify
them by pointing to certain ideas or theories, or to other activities; but if these
in their turn can only be justified by invoking the myth, the original activities
are specious.

A totalitarian bureaucracy can be seen as a pyramid that expands down-
ward, at its base. The elite, which forms its apex, uses the myth to establish the
system’s ideology and to recruit the first bureaucrats – the first layer of the
pyramid. Further layers are then added, and the pyramid becomes increasingly
broad and deep, as more and more categories of people cease living a normal
life and join the bureaucracy. Thus, as the pyramid expands, fewer and fewer
people are left who perform useful activities; and the closer an individual is to
the top of the pyramid, the greater the number of senseless, myth-related
preoccupations that make up his life.

Since the lower layers support the higher ones, the model of a pyramid also
explains how social power is distributed under totalitarianism: each layer
exploits the layers that lie below it, and the elite, at the top of the pyramid,
exploits the entire bureaucracy. Thus, the closer we get to the top, the more
power, influence, and privileges we find. In addition, the bureaucracy as a
whole exploits the rest of society – those individuals and institutions that have
not yet joined it.

The totalitarian ideal is that all people in society join the bureaucracy
and restrict themselves to myth-related activities. But this, clearly, cannot
happen; for, who would support them all? In the initial stages of the expansion,
when enough people are still engaged in useful activities, the elite and the
bureaucrats can delude themselves that their ideology is working. As more and
more people join the bureaucracy, however, the useful activities decline and the
system becomes increasingly inefficient. Eventually, the inefficiency reaches a
point where society can no longer function adequately, and collapses. It is

30 the software myth introduction

impossible to attain the totalitarian ideal – a bureaucracy that comprises the
entire society.

It should be obvious, then, why the software myth can serve as the founda-
tion of a totalitarian ideology. Since the essence of totalitarianism is endless
expansion, the ideology must be based on an idea that appeals to every
individual in society. And few ideas can match software in this respect.
As we will see in chapter 4, software is comparable only to language in
its versatility and potency. Thus, even when employed correctly, without
falling prey to mechanistic delusions, software can benefit almost anyone.
But when perceived as a mechanistic concept, its utopian promise becomes
irresistible. The promise, we saw, is that software devices can act as substitutes
for knowledge, skills, and experience. So, simply by operating a software
device, we will be able to perform immediately tasks that would otherwise
require special talents, or many years of study and practice. The promise of the
software myth, thus, exceeds even the most extravagant promises made by the
old political or religious myths. Consequently, an elite can dominate and
exploit society through the software myth even more effectively than the
political and religious elites did through the other myths, in the past.

�

The expansion of the software bureaucracy parallels the spread of computers;
and even a brief analysis of this expansion (later in this section) will reveal the
process whereby various categories of people are turned into bureaucrats. All
it takes is a blind belief in the software myth – something that the elite is
fostering through propaganda and indoctrination. Then, judged from the
perspective of the myth, activities that are in fact illogical, or inefficient, or
wasteful, are perceived as important and beneficial; and the incompetents who
engage in these activities are perceived as professionals.

Ignorance, therefore, is what makes the belief in a myth, and hence the
expansion of a bureaucracy, possible. An individual who took the time to
develop expertise in a certain field cannot also develop irrational beliefs in the
same field, as that would contradict his personal experience. Thus, in addition
to its versatility and potency, it is its novelty that makes software such a good
subject for myth. We allowed an elite to assume control of our software-related
affairs without first giving ourselves the time to discover what is the true nature
of software. And the elite saw software, not as a complex phenomenon, but as
a mechanistic one; in other words, not as a phenomenon that demands the full
capacity of the mind, but as one that requires only mechanistic thinking.

Because of this delusion, we have remained ignorant: we depend on software
while lacking the skills to create and use software intelligently. Instead of

the software myth 31introduction

developing software expertise, we wasted the last forty years struggling with
the worthless theories and methodologies promoted by the elite. Under these
conditions, the emergence of irrational beliefs was inevitable. The software
myth, thus, is a consequence of our mechanistic culture and our software
ignorance.

4

4
The first workers to be turned into software bureaucrats were the programmers
themselves. From the start, the theorists assumed that programming can be
reduced to some simple and repetitive acts, similar to those performed by
assembly-line workers in a factory. So, they concluded, programmers do not
require lengthy education, training, and practice. If we develop software
applications as we build appliances, all that programmers need to know is how
to follow certain methods, and how to use certain aids – methods and aids
based, like those in manufacturing, on the principles of reductionism and
atomism. And to improve their performance later, all we need to do is improve
the methods and aids.

Thus, instead of trying to understand the true nature of software and
programming, the theorists assumed them to be mechanistic phenomena;
and the programming profession was founded upon this assumption. Using
the mechanistic myth as warrant, programming expertise was redefined as
expertise in the use of theories, methodologies, and development aids; in other
words, expertise in the use of substitutes for expertise. So what was required of
programmers from then on was not programming skills, but merely familiarity
with the latest substitutes.

If expertise is the highest level attainable by human minds in a given
domain, and incompetence the lowest, programmers were neither expected
nor permitted to attain a level much higher than incompetence. And, as society
needed more and more software, everyone was convinced that what we needed
was more and more of this kind of programmers. The alternative – promoting
expertise and professionalism, allowing individuals to develop the highest
possible skills – was never considered.

The effects of this ideology can be seen in the large number of software
failures: development projects abandoned after spending millions of dollars,
critical business needs that remain unfulfilled, applications that are inadequate
or unreliable, promises of increased savings or efficiency that do not material-
ize. Statistics unchanged since the 1970s show that less than 5 percent of
programming projects result in adequate applications. What these statistics do
not reveal is that even those applications that are adequate when new cannot

32 the software myth introduction

be kept up to date (because badly written and badly maintained), so they must
be replaced after a few years. The statistics also do not reveal that, with
inexperienced programmers, it costs far more than necessary to create even
those applications that are successful. And if we remember also the cost of the
additional hardware needed to run badly written applications, it is safe to say
that, for more than forty years, society has been paying in effect one hundred
dollars for every dollar’s worth of useful software.É

The conclusion ought to be that the mechanistic assumption is wrong:
programming expertise is not the kind of knowledge that can be replaced with
methods or devices, so personal skills and experience remain an important
factor. The answer to the software failures is then simply to recognize that, as
is the case in other difficult professions, to become a proficient programmer
one needs many years of serious education, training, and practice.

In our mechanistic software culture, however, this idea is inadmissible; and
someone who suggests it is accused of clinging to old-fashioned values, of
resisting science and progress. The only accepted answer to the software
failures is that we need, not better programmers, but better theories, method-
ologies, and development aids. If the previous ones failed, we are told, it is
because they did not adhere faithfully enough to the mechanistic ideology; so
the next ones must be even more mechanistic. In other words, the only
permissible solutions to the problem of programming incompetence are those
derived from the mechanistic myth – the same solutions that were tried in the
past, and which cause in fact the incompetence. No matter how many failures
we witness, the mechanistic ideology is never questioned.

The mechanistic software concepts cause incompetence because they are
specifically intended as substitutes for programming expertise. Thus, it is not
surprising that programmers who rely on these substitutes do not advance past
the level of novices: they are expected to remain at this level.

So the incompetence of programmers, and the astronomic cost of software,
are a direct consequence of the mechanistic myth. For the first time, a mecha-
nistic delusion is powerful enough to affect the entire society. Previously, it was
only in universities that individuals could pursue a mechanistic fantasy, in
the guise of research; and the failure of their projects had little effect on
the rest of society. Through software, however, the pursuit of mechanistic
fantasies became possible everywhere. Unlike the mechanistic theories in

É Software expenses, and computing expenses generally, are usually called “technology
investments,” or “technology solutions,” and are seen therefore as an asset (rather than a
liability) regardless of their real value. This is one reason why the enormous cost of software
is not obvious. Deceptive language is an important tool in the marketing of worthless
products and services, as it helps ignorant decision makers to rationalize expenses. (We will
see in chapter 5 how the slogan “technology” is used for this purpose.)

the software myth 33introduction

psychology, sociology, or linguistics, the mechanistic software theories are
not limited to academic research. Being applicable to business computing,
they spread throughout society, and degraded the notions of expertise and
responsibility in business just as mechanistic research had degraded these
notions in universities. Just as the academics perceive their responsibility to be,
not the discovery of useful theories but the pursuit of mechanistic ideas,
programmers perceive their responsibility to be, not the creation of useful
applications but the use of mechanistic software methods.

Millions of individuals are engaged, thus, not in programming but in
the pursuit of mechanistic fantasies. Probably no more than 1 percent of
the programming activities in society represent useful work; that is, work
benefiting society in the way the work of doctors does. We find ourselves today
in this incredible situation because programming is a new profession, without
established standards of expertise. We allowed the software elite to persuade us
that this profession must be based on mechanistic principles, so the standard
of expertise became, simply, expertise in mechanistic software concepts. Had
we tried first the alternative – giving programmers the time and opportunity to
develop the highest knowledge and skills that human beings can attain in this
new profession – we would easily recognize the absurdity of the mechanistic
concepts, and the incompetence of those who restrict themselves to such
concepts. It is only because we take software mechanism as unquestionable
truth that we accept the current programming practices as a normal level of
expertise. And if we consider this level normal, it is natural to accept also the
resulting cost and the failures.

Also, with so many programmers around, new types of supervisors had to
be created: more and more employees were turned into software bureaucrats –
project managers, systems analysts, database administrators – to oversee
the hordes of programmers who, everyone agreed, could not be trusted to
develop applications on their own. Again, no one questioned this logic. If the
programmers were deemed incompetent and irresponsible, the answer should
have been to improve their training. Instead, it was decided to adopt, for
software development, the assembly-line methods used in manufacturing;
namely, to treat programmers as unskilled workers, and to develop applications
by relying on management expertise rather than programming expertise.

So for every few programmers there was now a manager, and for every few
managers a higher manager. But the manufacturing methods are inadequate
for programming, because software applications are not neat hierarchical
structures of subassemblies. Consequently, turning software development into
factory-type work did not solve the problem of programming incompetence.
It only increased the software bureaucracy, and hence the cost of software, and
the failures. (Sociological studies of the programming profession, conducted

34 the software myth introduction

in the 1970s, show that the main goal of corporate management was not so
much to improve programming practices, as to repress the programmers’
attitudes and expectations. For example, the theory of structured programming
was promoted as the means to turn programming into an exact activity,
and programmers into skilled professionals, while its true purpose was the
opposite: to deskill programmers; specifically, to eliminate the need and
opportunity for programmers to make important decisions, and to give
management complete control over their work.Ê)

Finally, as the benefits expected from mechanistic software concepts are not
materializing, new types of bureaucrats must be constantly invented as a
solution to the incompetence of programmers. Thus, companies have now
employees with absurd titles like architect, systems integrator, data analyst,
business intelligence analyst, and report developer. While justified by invoking
the growing complexity of business computing, and the growing importance
of information technology, the task of these new bureaucrats is in reality to do
what programmers should be doing; that is, create and maintain business
applications. What masks this fact is that, instead of programming, they try to
accomplish the same thing through various end-user tools, or by putting
together ready-made pieces of software. But the idea that we can create useful
applications in this fashion is based on the same delusions as the idea that
programming expertise can be replaced with methods and aids. So it only adds
to the complexity of business computing, while the real problems remain
unsolved. This is interpreted, though, as a need for even more of the new
bureaucrats, in a process that feeds on itself.

�

A major role in the spread of the software bureaucracy is played by the
organizations that create the knowledge substitutes – the software companies.
These companies form the elite, of course. But in addition to propagating the
mechanistic software ideology, they function as employers; and in this capacity,
they are turning millions of additional workers into software bureaucrats.

Ê See Philip Kraft, Programmers and Managers: The Routinization of Computer Program-
ming in the United States (New York: Springer-Verlag, 1977); see also Joan M. Greenbaum,
In the Name of Efficiency: Management Theory and Shopfloor Practice in Data-Processing
Work (Philadelphia: Temple University Press, 1979). It must be noted, though, that, while
ground-breaking and as important today as they were in the 1970s, these studies treat the
deskilling of programmers as part of the traditional conflict between management and
labour. Their authors were unaware of the fallacies of software mechanism, and that theories
like structured programming do not, in fact, work. Thus, the delusion that programmers
must be a kind of factory workers – because programming is a kind of manufacturing –
constitutes a sociological phenomenon that has yet to be studied.

the software myth 35introduction

From just a handful in the 1960s, the software companies have grown in
number and in size to become an important part of the economy. And they
accomplished this simply by invoking the myth of software mechanism. For,
their software and services can be justified only if we accept unquestioningly
the mechanistic ideology. Thus, only if we agree that software development is
a form of manufacturing will we accept the resulting incompetence, and hence
the aids and substitutes supplied by these companies as the answer. Or, putting
this in reverse, if we had professional programmers instead of the current
practitioners, less than 1 percent of the software supplied by these companies
would be needed at all.

What this means is that countless organizations, while operating as legiti-
mate businesses under the banner “technology,” are actually engaged in the
making and marketing of mechanistic software fantasies. So their employees,
no matter how good they may be in these activities – programming, research,
management, administration, selling – are not performing work that is truly
useful. They belong, therefore, to the software bureaucracy.

The programmers who work for these companies hold a special place in the
bureaucracy. They are, in general, better prepared and more experienced than
the application programmers. But if their job is to develop the useless systems
sold by the software companies, their talents are wasted. These systems may
appear impressive to their users, but they cannot replace good applications, nor
the expertise needed to create good applications. So, if these systems cannot
be a substitute for expertise, the work of those who create them is just as
senseless as the work of those who use them. We are witnessing, therefore, this
absurd situation: our better programmers are employed to create, not the
custom applications that society needs, but some generic applications, or some
substitutes for the knowledge required to create custom applications. Instead
of helping to eradicate the software bureaucracy, our universities prepare
programmers for the software companies, thereby adding to the bureaucracy.
For, by catering to the needs of software bureaucrats, the system programmers
are reduced to bureaucrats themselves.

�

A different kind of software companies are the enterprises run by the indi-
viduals known as industry experts, or gurus. Unlike the regular software
companies, the gurus earn their fame personally – as theorists, lecturers, and
writers. Their role, however, is similar: to promote the ideology of software
mechanism. So they are part of the elite. Also like the software companies, their
existence is predicated on widespread programming incompetence and an
ever-growing bureaucracy.

36 the software myth introduction

Although they seldom have any real programming experience (that is,
personally creating and maintaining serious business applications), the gurus
confidently write papers and books on programming, publish newsletters,
invent theories and methodologies, lecture, teach courses, and provide consult-
ing services. Their popularity – the fact that programmers, analysts, and
managers seek their advice – demonstrates, thus, the ignorance that pervades
the world of programming. To appreciate the absurdity of this situation,
imagine a similar situation in medicine: individuals known to have no medical
training, and who never performed any surgery, would write and lecture on
operating procedures; and real surgeons, from real hospitals, would read their
books, attend their courses, and follow their methods.

While unthinkable in other professions, we accept this situation as a logical
part of our programming culture. The reason it seems logical is that it can be
justified by pointing to the software myth: if what we perceive as programming
expertise is familiarity with theories, methodologies, and software devices, it is
only natural to respect, and to seek the advice of, those who know the most in
this area. So the gurus are popular because they always promote the latest
programming fads – which, at any given time, are what ignorant practitioners
believe to be the cure for their current difficulties.

�

Programming was only the first profession to be destroyed by the software
myth. Once we agreed to treat programmers as mere bureaucrats, instead of
insisting that they become proficient and responsible workers, the spread of
the software bureaucracy was inevitable. Every aspect of the degradation that
is currently occurring in other professions can be traced to the incompetence
of programmers. For, as we increasingly depend on computers and need more
and more software applications, if the programmers are unreliable we must
find other means to develop these applications. We already saw how new types
of managers, and new types of software workers, were invented to deal with the
problem of programming incompetence. This did not help, however. So the
problem spread beyond the data-processing departments, and is now affecting
the activities of software users.

Little by little, to help users perform the work that should have been
performed by programmers, various software aids have been introduced. They
vary from simple programming environments derived from database or
spreadsheet systems (which promise users the power to implement their own
applications) to ready-made applications (which promise users the power to
eliminate programming altogether). These aids, however, are grounded on the
same mechanistic principles as the development aids offered to programmers,

the software myth 37introduction

so they suffer from the same fallacies. If the substitutes for expertise cannot
help programmers, we can hardly expect them to help amateurs, to create
useful applications.

Workers everywhere, thus, are spending more and more of their time doing
what only programmers had been doing before: pursuing mechanistic software
fantasies. Increasingly, those who depend on computers must modify the way
they work so as to fit within the mechanistic software ideology: they must
depend on the inferior applications developed by inexperienced programmers,
or on the childish applications they are developing themselves, or on the
generic, inadequate applications supplied by software companies. The world of
business is being degraded to match the world of programming: other workers
are becoming as inefficient in their occupations as programmers are in theirs;
like the programmers, they are wasting more and more of their time dealing
with specious, software-related problems.

But we perceive this as a normal state of affairs, as an inevitable evolution of
office work and business management. Because we believe that the only way to
benefit from software is through the mechanistic ideology, we are now happy
to adopt this ideology in our own work. As software users, we forget that the
very reason we are preoccupied with software problems instead of our real
problems is the incompetence and inefficiency caused by the mechanistic
ideology in programming. So, by adopting the same ideology, we end up
replicating the incompetence and inefficiency in other types of work. In other
words, we become software bureaucrats ourselves.

�

Thus, because we do not have a true programming profession, workers with no
knowledge of programming, or computers, or engineering, or science are
increasingly involved in the design and creation of software applications. And,
lacking the necessary skills, they are turning to the knowledge substitutes
offered by the software companies – which substitutes address now all people,
not just programmers. So, as millions of amateurs are joining the millions of
inexperienced practitioners, the field of application development is becoming
very similar to the field of consumer goods. A vast network of distribution and
retail was set up to serve these software consumers, and a comprehensive
system of public relations, marketing, and advertising has emerged to promote
the knowledge substitutes: books, periodicals, brochures, catalogues, news-
letters, trade shows, conventions, courses, seminars, and online sources.

The similarity to consumer goods is clearly seen in the editorial and
advertising styles: childish publication covers; abundance of inane terms like
“powerful,” “easily,” “solution,” and “technology”; the use of testimonials to

38 the software myth introduction

demonstrate the benefits of a product; prices like $99.99; and so on. Thus, while
discussing programming, business, efficiency, or productivity, the promotion
of the software devices resembles the promotion of cosmetics, fitness gadgets,
or money-making schemes. Also similar to consumer advertising are the
deceptive claims; in particular, promising ignorant people the ability to
perform a difficult task simply by buying something. The software market,
thus, is now about the same as the traditional consumer market: charlatans
selling useless things to dupes.

Again, to appreciate the absurdity of this situation, all we have to do is
compare the field of programming with a field like medicine. There is no
equivalent, in medicine, of this transformation of a difficult profession into a
consumer market. We don’t find any advertisers or retailers offering knowledge
substitutes to lay people and inexperienced practitioners who are asked to
replace the professionals.

This transformation, then, has forced countless additional workers to join
the software bureaucracy. For, if what they help to sell is based on the idea that
software devices can replace expertise, and if this idea stems from the belief in
software mechanism, all those involved in marketing the knowledge substitutes
are engaged in senseless activities.

�

Finally, let us recall that it is precisely those institutions which ought to
encourage rationality – our universities – that beget the software delusions.
Because they teach and promote only mechanistic software concepts, the
universities are, ultimately, responsible for the widespread programming
incompetence and the resulting corruption.

In the same category are the many associations and institutes that represent
the world of programming. The ACM and the IEEE Computer Society, in
particular – the oldest and most important – are not at all the scientific and
educational organizations they appear to be. For, while promoting profession-
alism in the use of computers, and excellence in programming, their idea
of professionalism and excellence is simply adherence to the mechanistic
ideology. Thus, because they advocate the same concepts as the universities
and the software companies, these organizations serve the interests of the elite,
not society.

If this sounds improbable, consider their record: They praise every pro-
gramming novelty, without seriously verifying it or confirming its usefulness.
At any given time, they proselytize the latest programming “revolution,” urging
practitioners to join it: being familiar with the current software concepts, they
tell us, is essential for advancement. In particular, they endorsed the three

the software myth 39introduction

pseudoscientific theories we examine in chapter 7, and conferred awards
on scientists who upheld them. As we will see, not only are these theories
fallacious and worthless, but the scientists used dishonest means to defend
them; for example, they claimed that the theories benefit from the rigour and
precision of mathematics, while this is easily shown to be untrue. Thus, instead
of exposing the software frauds, the ACM and the IEEE Computer Society help
to propagate them.

What these organizations are saying, then, is exactly what every software
guru and every software company is saying. So, if they promote the same values
as the commercial enterprises, they are not responsible organizations. Like the
universities, their aim is not science and education, but propaganda and
indoctrination. They may be sincere when using terms like “professionalism”
and “expertise,” but if they equate these terms with software mechanism, what
they do in reality is turn programmers into bureaucrats, and help the elite to
exploit society.

5

5
The foregoing analysis has shown that our mechanistic software culture is
indeed a social phenomenon that is causing the spread of a bureaucracy, and
hence the spread of totalitarianism. Every one of the activities we analyzed can
be justified only through the software myth – or through another activity,
which in its turn can be justified only through the myth or through another
activity, and so on. The programmers, the managers, the academics, the
gurus, the publishers, the advertisers, the retailers, the employees of software
companies, and increasingly every computer user – their software-related
activities seem logical only if we blindly accept the myth. As soon as we
question the myth, we recognize these activities as what they actually are: the
pursuit of mechanistic fantasies.

So the expansion of software-related activities that we are witnessing is not
the expansion of some useful preoccupations, but the expansion of delusions.
It is not a process of collective progress in a new field of knowledge – what our
software-related affairs should have been – but a process of degradation:
more and more people are shifting their attention from their former, serious
concerns, to some senseless pursuits.

In chapter 8 we will study the link between the mechanistic ideology and the
notion of individual responsibility; and we will see that a mechanistic culture
leads inevitably to a society where people are no longer considered responsible
for their acts. The road from mechanism to irresponsibility is short. The belief
in mechanism tempts us to neglect the natural capabilities of our minds, and

40 the software myth introduction

to rely instead on inferior substitutes: rather than acquiring knowledge, we
acquire devices that promise to replace the need for knowledge. We accomplish
by means of devices less than we could with our own minds, and the devices
may even be wrong or harmful, but no one blames us. Our responsibility,
everyone agrees, is limited to knowing how to operate the devices.

Today, the incompetence and irresponsibility are obvious in our software-
related activities, because these activities are dominated by mechanistic beliefs.
But if we continue to embrace software mechanism, we should expect the
incompetence and irresponsibility to spread to other fields of knowledge, and
to other professions, as our dependence on computers is growing.

A society where all activities are as inefficient as are our software-related
activities cannot actually exist. We can afford perhaps to have a few million
people engaged in mechanistic fantasies, in the same way that we can afford to
have an entertainment industry, and to spend a portion of our time with idle
amusements. But we cannot, all of us, devote ourselves to the pursuit of
fantasies. Thus, if the spread of software mechanism is causing an ever-
growing number of people to cease performing useful work and to pursue
fantasies instead, it is safe to predict that, at some point in the future, our
society will collapse.

To avert this, we must learn all we can from the past: we must study the
harm that has already been caused by software mechanism, in the domain of
programming. In programming we have been trying for more than forty years
to find substitutes for expertise, so we have enough evidence to demonstrate
the absurdity of this idea, and the dishonesty of those who advocate it.

Despite its failure in programming, it is the same idea – replacing minds
with software – that is now being promoted in other domains. And it is the
same myth, software mechanism, that is invoked as justification, and the same
elites that are perpetrating the fraud. So, in a few years, we should expect to see
in other domains the same corruption we see today in programming, the
same incompetence and irresponsibility. One by one, all workers will be
reduced, as programmers have been, to software bureaucrats. As it has been in
programming, the notion of expertise will be redefined everywhere to mean
expertise in the use of substitutes for expertise. As programmers are today, we
will all be restricted to the methods and devices supplied by an elite, and
prevented from developing our minds.

Thus, if we understand how the mechanistic delusions have caused the
incompetence and irresponsibility found today in the domain of programming,
we will be able perhaps to prevent the spread of these delusions, and the
resulting corruption, in other domains.

the software myth 41introduction

Anthropology and Software Anthropology and Software
If the theories of software engineering are founded on a myth, it is not
surprising that they do not work. The software practitioners, though, continue
to believe in software mechanism, and this prevents them from gaining
knowledge and experience. Thus, because of their ignorance, the world
of programming resembles a primitive society. Also, as other professions
increasingly depend on computers, and hence on the mechanistic software
myth, the users of software are now prevented from gaining knowledge and
experience. So the whole world resembles, increasingly, a primitive society. We
can learn a great deal about our software delusions, therefore, by comparing
the attitudes of programmers and users with those of the primitives.

Let us turn, then, to the field of social anthropology. In the first subsection,
we will study the practice of magic as a complement to proven knowledge. And
in the second subsection, we will study the invocation of supernatural powers
in general.

Software Magic

Software Magic
1 1
When analyzing the names of software products,É we cannot help noticing the
large number of names that evoke magic practices. For example, a popular
database management system is called Oracle, a word meaning “prophet”
and “prophecy” in antiquity. An application development system is called
Delphi, after the location of a temple in ancient Greece where oracles were
issued. A network system is called Pathworks; pathworking is a form of group
visualization practised by those who believe in the occult. One utility is called
Genie Backup Manager; others are called Clipboard Genie and Startup Genie.
We also have Install Wizard, Disk Clean Wizard, Search Wizard, Web Wizard,
PC Wizard, Registry Wizard, Barcode Wizard, etc. To back up drivers we could
use Driver Magician, and to create help files Help Magician. A catalogue of
hardware and software products describes certain entries as “magic solutions,”
and offers discounts on other entries to help us “get more magic for less.”Ê

É As we will see later, the belief that software is a kind of product is one of the fallacies
of the software myth. So I use the term “software product” only when I want to stress the
absurdity of this concept (as in the present section).

Ê IBM RS/6000 catalogue (spring 2000), pp. 8, 2.

42 anthropology and software introduction

But to leave no doubt as to the supernatural qualities of their products,
many software companies include the word “magic” in the product’s name:
Network Magic, CADmagic, Barcode Magic, Label Magic, vCard Magic,
Brochure Magic, Magic eContact, Image Gallery Magic, Magic Transfer, QS
Flash Magic Menu Builder, Screenshot Magic, Magic Styles, Web Design
Magic, SCP Button Magic, Magic Internet Kit, Magic Recovery Professional,
MagicTracer, Magic Xchange, Macro Magic, AttributeMagic Pro, Color Magic
Deluxe, Magic Photo Editor, Magic Speed, Magic Separator, Magic/400,
Clipboard Magic, Magic Flash Decompiler, Order Page Magic, MagicWeb,
MagicFlare, Magic Window Hider, ZipMagic, Magic TSR Toolkit, Antechinus
Draw Magic, Slideshow Magic, Magic Folders, Magic Connection, Magic Mail
Monitor, Magic ASCII Studio, Raxso Drive Magic, Magic Writer, File Magic,
Magic Blog, Magic Cap, Magic Inventory Management, Magic Calendar
Maker, Developer Magic, Magic Link, Magic C++, Spectramagic NX, Magic
Net Trace, Exposure Magic, Magic Audio Recorder, MAGic, Word Magic,
Voice Magic, Focus Magic, Magic ScreenSaver, Magic Memory Optimizer,
Monitor Magic, Pad Magic, PartitionMagic, ClipMagic, SupportMagic, Magic
DVD Copier, Backup Magic, SpeechMagic, Video Edit Magic, MagicISO, etc.

Or, software companies adopt the word “magic” for their own name:
Computer Magic Inc., InfoMagic Ltd., General Magic Inc., Magic Multimedia
Inc., Design Magic Ltd., PC-Magic Software, NeoMagic Corp., Inmagic Inc.,
Software Magic Inc., Magic Software Enterprises Ltd., Magic Solutions Ltd.,
PlanMagic Corp., WebMagic Inc., TeleMagic Inc., Imagic Inc., Viewmagic Inc.,
Geomagic Inc., etc.

In an industry famous for its preoccupation with the latest technological
advances, at a time when all we hear is proclamations about progress and the
future, one would expect vendors to take special care in avoiding terms associ-
ated with primitive beliefs, as these associations could hurt their credibility.
The opposite is the case, however: the ignorance that pervades the world of
software has created an environment where primitive beliefs are again an
important factor, so the software vendors deliberately employ terms that evoke
magic powers.

To those who lack knowledge, the world appears as a mysterious place, full
of uncertainties and unexplained events. Superstitions and magic systems are
then an effective way of coping with situations that would otherwise cause
great anxiety. Irrational beliefs, held by most people in a repressed form even
in our modern world, can become dominant and can easily be exploited when
ignorance renders rational thinking impossible. And so it is how our society,
which is increasingly dominated by software and hence by ignorant software
practitioners and users, increasingly resembles the ancient and primitive
societies, where priests, magicians, shamans, and prophets were consulted in

software magic 43introduction

all important affairs. Far from avoiding associations with supernatural forces,
software vendors and gurus – today’s priests and prophets – know that for
ignorant programmers and users it is precisely these associations that matter.

�

Magic – a pseudoscience – claims that certain objects, spells, or acts have
the power to influence persons and events, although this power cannot be
explained. Magic theories appear to provide important benefits, but persons
who believe in magic must accept these theories without proof. For this reason,
magic beliefs tend to manifest themselves as wishful thinking. Magic systems
have existed as long as human societies, so they have always reflected our
current preoccupations, fears, and desires. Thus, we have had magic systems
to help us win battles, attract mates, predict the future, lose weight, and create
software applications without programming.

The person who believes in magic refuses to face reality: he clings to his
beliefs and disregards all evidence of their falsity. The validity of most magic
theories can easily be determined – by carefully monitoring the successes and
failures, for example. But the believer never bothers with such details, and is
annoyed when someone suggests it. He already knows that the theory works.
He enthusiastically accepts any success as verification of the theory, while
dismissing major failures as insignificant exceptions.

The problem with magic thinking, then, is not so much one of ignorance as
one of method. Even when we are ignorant, logical methods of inquiry enable
us to test hypotheses, and hence to adopt only those theories that work. We
favour theories that promise simple solutions to difficult problems, naturally;
but it is precisely these theories that are most likely to be false. The most
important advantage we have over primitive societies is not our scientific
and technological knowledge, but our logical methods of inquiry. Our capabil-
ities, which had grown only slowly throughout the centuries, have been
growing exponentially since we adopted these methods. Those content to
invoke specious explanations when reaching the limits of their understanding,
instead of seeking to expand their knowledge, are condemned to intellectual
stagnation. Their knowledge grows very slowly, or not at all.

Given the success that science had in explaining nature and extending our
knowledge, it is not surprising that, until recently, magic practices were
considered to be a vestige of our primitive past. All human societies, it was
believed, start with magic, and when sufficiently advanced, replace it with
science. No society can possibly continue to practise magic once the benefits
of scientific thinking are revealed to it. Magic thinking, it was thought, is
simply prescientific thinking.

44 anthropology and software introduction

Like the theory of myth (see pp. 2–4), however, the theory of magic has
undergone a dramatic shift in the last one hundred years. Far from being a
vestige of the past, far from being automatically displaced by science, we
understand now that magic beliefs affect a modern society just as much as they
do a primitive one. All that has happened is a change in theories. We may no
longer believe that weather rituals can bring rain, but we accept many other
theories – in economics, linguistics, psychology, sociology, programming –
which are, in fact, as scientific as rain magic.

Our reevaluation of the role of magic in society started following the work
of anthropologist Bronislaw Malinowski.Ë Malinowski, who studied in great
detail the life of primitive peoples, was struck by the continual blending of
magic thinking and rational thinking. To a casual observer, the primitives
appear to merely add some spurious ceremonies to all their activities. Careful
study, however, reveals a surprisingly logical pattern. Magic is not practised at
will. For each activity, tradition dictates whether magic is required at all, which
magic formula must be used, at what point it should be applied, and which
magician is qualified to perform the ritual. The ritual, which may be quite
lengthy and elaborate, must be performed with great precision, since any
deviation from the formula is believed to weaken its efficacy.

The pattern Malinowski observed is this: when the activity can be per-
formed with confidence, when the primitives expect a certain and easy success,
no magic is employed; but when the activity entails a significant degree of
uncertainty or danger, magic is deemed necessary. Also, just as one would
expect, the greater the uncertainty or danger, the more elaborate the magic
employed. This is how Malinowski puts it: “We find magic wherever the
elements of chance and accident, and the emotional play between hope and
fear have a wide and extensive range. We do not find magic wherever the
pursuit is certain, reliable, and well under the control of rational methods and
technological processes. Further, we find magic where the element of danger
is conspicuous. We do not find it wherever absolute safety eliminates any
elements of foreboding.”Ì

Primitive people employ magic, then, as an extension to their knowledge
and capabilities. When they feel that skills and labour alone will allow them to
complete a given task, their actions are totally rational. But when they know
from experience that despite their skills and labour they may still fail, they
resort to magic. This happens in activities like agriculture, hunting, and
fishing, which depend on factors that are unpredictable and beyond their

Ë See, especially, his Coral Gardens and Their Magic (New York: Dover, 1978), and
Argonauts of the Western Pacific (New York: Dutton, 1961).

Ì Bronislaw Malinowski, Magic, Science and Religion, and Other Essays (Garden City, NY:
Doubleday Anchor, 1954), pp. 139–140.

software magic 45introduction

control. They also use magic to complement their rational efforts in matters
like health or social relations, which also contain much uncertainty.

2

2
Programming and software use are saturated with magic practices, but we fail
to notice this fact. The reason we fail to notice it is the uncanny similarity
between magic practices and rational behaviour: “Magic is akin to science in
that it always has a definite aim intimately associated with human instincts,
needs, and pursuits. The magic art is directed towards the attainment of
practical aims. Like the other arts and crafts, it is also governed by a theory, by
a system of principles which dictate the manner in which the act has to be
performed in order to be effective.”Í

If we watch the activity of a person while being unfamiliar with the scientific
principles underlying that activity, we cannot distinguish between rational and
magic practices. Only if our knowledge exceeds his, can we recognize which
acts contribute to his success and which ones are spurious. Primitive people,
when engaged in pursuits like agriculture, feel that technical knowledge and
magic rituals are equally important. We, watching them from our position
in an advanced society, can recognize that only their technical knowledge
contributes to their success, and that their rituals are spurious. At the same
time, we ourselves engage in spurious activities in our software pursuits,
convinced that they are as important as our technical expertise. Thus, only a
person with superior programming knowledge can recognize the absurdity of
such concepts as structured programming and object-oriented programming.

So it is the similarity of our rational and our irrational acts that we must
study if we want to uncover the absurdities in today’s software practices. But
how can we study this similarity? We are convinced that everything we do is
rational – we never perform foolish acts deliberately – so we will always fail to
distinguish between the rational and the irrational in our own life. One way,
we will see later in this book, is to approach any software concept, product, or
theory with due skepticism. As in other disciplines, we can apply logical
methods of inquiry to confirm or refute any software claim. Besides, as these
methods are universal, they can be used even by those with limited program-
ming knowledge. And when doing this, we discover that most software claims
are associated with pseudoscientific theories, propaganda, and charlatanism.

Another way is to study the blending of the rational with the irrational in
the lives of primitive people, which, in turn, will help us to recognize the same

Í Ibid., p. 86.

46 anthropology and software introduction

conduct in our own life. For this purpose, we can find no better examples than
the garden and canoe magic systems used in the Trobriand islands of eastern
New Guinea, which were so thoroughly documented by Malinowski.

�

The natives display great agricultural expertise in tending their plantations.
They understand, for instance, the properties of the different types of soil, and
they know which crops are best suited for each type; they are familiar with the
principles of fertilization; and they can identify hundreds of varieties and types
of plants. In addition, they are conscientious workers, and they perform
skilfully such tasks as preparing the garden, planting the seeds, protecting the
growing crops, and harvesting them.

This expertise, however, is always supplemented with magic. The natives
can explain, for example, why no crops can thrive in certain areas of their
island “in perfectly reasonable, almost scientific language. . . . At the same time
they attribute the supreme fertility of some districts . . . to the superiority of one
magical system over another.”Î They devise clever ways to protect their crops
from pests, and “these practical devices they handle rationally and according
to sound empirical rules.”Ï At the same time, they build and deploy various
structures and objects in their gardens, which, they clearly explain, have no
other purpose but magic.

The natives do not use magic because they confuse it with practical work.
They realize that invoking magic powers is an entirely different type of act, but
they believe it to be just as important: “The two ways, the way of magic and the
way of garden work . . . are inseparable. They are never confused, nor is one of
them ever allowed to supersede the other.”Ð The natives know which tasks they
must perform through their own skills and work, and they never attempt to use
magic as a substitute. Thus, they “will never try to clean the soil by magic, to
erect a fence or yam support by a rite. . . . They also know that no work can be
skimped without danger to the crops, nor do they ever assume that by an
overdose of magic you can make good any deficiencies in work. . . . Moreover,
they are able to express this knowledge clearly and to formulate it in a number
of principles and causal relations.”Ñ

Malinowski includes two diagrams showing stages in the growth of one of
the local crops, drawn from information provided by the natives themselves.ÉÈ
It seems that the natives have greater knowledge about their crops than some

Î Bronislaw Malinowski, Coral Gardens and Their Magic, vol. 1 (New York: Dover,
1978), p. 75. Ï Ibid., p. 77. Ð Ibid., p. 76. Ñ Ibid.

ÉÈ Ibid., pp. 140–141.

software magic 47introduction

modern farmers have about theirs. They can describe in great detail the entire
development process, from the time the seed is placed in the ground until the
plant matures. There are more than twenty native terms in these diagrams – for
various parts of the seed, roots, branches, etc. – showing their keen interest in
the botanic aspects of their work.

At the same time, the natives have elaborate systems of magic, which they
apply scrupulously throughout the growth process. The magic varies from
specialized spells and charms addressing individual parts of the plant, to rituals
for their tools and for the whole garden. Most of this magic is performed by
professional magicians, who receive fees for their services. There are several
magic systems in use, and the natives discuss their relative merits with the
same seriousness as programmers discussing their application development
systems. Some magic systems are owned by individuals, families, or clans, and
in this case others must pay for their use – a practice not unlike our patents and
copyrights.

We discover a similar combination of rational and irrational acts in canoe
building and the associated fishing and trading activities.ÉÉ The natives build
sturdy and attractive craft, their size and design matching their intended use:
a simple type for coastal transport, a more elaborate type for fishing, and a
relatively large and complex type, carrying more than a dozen men, for long
sea voyages. Limited to primitive tools, the building of a dugout canoe is a
major construction project for them, demanding coordinated team work and
timely contribution from specialists. But they are capable of accurate planning
and efficient labour organization. Also, they are familiar with the principles of
buoyancy and stability, sailing and navigation. They understand, for example,
why the outrigger must have a certain, optimal span, measured as a fraction of
the canoe’s length: a larger span offers greater stability, but at the same time it
weakens the outrigger. And they can explain clearly why one canoe is faster
than another, or why, in a storm, they must follow one procedure rather than
another. “They have,” Malinowski points out, “a whole system of principles of
sailing, embodied in a complex and rich terminology, traditionally handed on
and obeyed as rationally and consistently as is modern science by modern
sailors.”ÉÊ

Despite these skills, however, every stage in the building of the canoe is
accompanied by a magic ritual, deemed necessary to ensure a fast and safe
craft. To pick just one example – which also demonstrates the importance of
details in magic – a ritual performed before painting the canoe involves
burning under its bottom a mixture of such substances as the wings of a bat,

ÉÉ Bronislaw Malinowski, Argonauts of the Western Pacific (New York: Dutton, 1961),
esp. chs. IV–VI. ÉÊ Malinowski, Magic, Science and Religion, p. 30.

48 anthropology and software introduction

the nest of a small bird, cotton fluff, and grass. “The smoke is supposed to
exercise a speed-giving and cleansing influence. . . . All the substances are
associated with flying and lightness. The wood used for kindling the fire is that
of the light-timbered mimosa tree. The twigs have to be obtained by throwing
at the tree a piece of wood (never a stone), and when the broken-off twig falls,
it must be caught by hand, and not allowed to touch the ground.”ÉË Malinowski
describes dozens of additional rites, spells, and ritual performances.

�

What are we to make of this? How is it possible for people to be so rational, and
yet so irrational, at the same time? To answer this, we must start by noting that
people appear irrational only when judged from outside their system of belief.
Judged from within that system, their conduct is logical and consistent. All it
takes is one unproven concept, one false assumption. An entire system can
then be built around it, and even if every theory and method in the system is
logically derived, that one assumption will render the system nonsensical.

In the case of magic, the false assumption is that certain objects, spells, and
ritual performances have the power to influence people’s lives, or the forces
of nature, or the course of events. In the case of programming, the false
assumption is that software applications are akin to the appliances we build in
a factory, so programming is akin to manufacturing; that, like appliances, we
can separate an application into independent modules, each module into
simpler ones, and so on, down to some small parts; that all we need to know is
how to program these small parts, because there exist methods and devices
which allow us to build applications from software parts just as we build
appliances from physical parts; and that, moreover, we can complete our
software manufacturing projects even faster if we start with prefabricated
subassemblies – large modules that already contain many parts.

In programming as in magic, many principles and methods have been
invented, and organized into logical systems. There isn’t much that can be
criticized when studying such a system from within itself; that is, when using
as criteria of validity only concepts that are part of the system. This is what
believers are doing, and why the system appears sound to them.

Thus, an individual who believes in magic will always use magic systems;
then, within a magic system, his conduct will always be logical. Similarly,
theorists and practitioners who assume that programming is similar to man-
ufacturing will always pursue mechanistic software ideas; then, within the
mechanistic ideology, their decisions and acts will always be logical.

ÉË Malinowski, Argonauts, p. 140.

software magic 49introduction

But the validity of each part of the system depends ultimately on the validity
of that one fundamental assumption, which may well be the only concept
linking the system to the real world. If that concept is wrong, the entire system,
no matter how logical, becomes worthless. Believers never question that
concept. The larger the system they build around it, the smaller and less
important the concept appears to be. Eventually, they forget altogether that the
concept was never anything but an assumption.

3

3
We are now in a position to explain the blending of rational and irrational
behaviour. Primitive societies are closed societies. Their members follow
elaborate traditions – rigid patterns of thought and conduct – in all their
activities. The traditions derive from ancient myths, which are the charter and
the foundation of their culture.

Among other things, tradition establishes for each activity what is within
the power of the individual and what is beyond his power. For the part
that is within his power, the individual is expected to act rationally and to
display expertise, initiative, and creativity. But what is he expected to do when
something is believed to lie beyond his power? Recall Malinowski’s critical
observation that magic is employed only when the outcome of an activity has
a great degree of uncertainty, when the primitives know that their skills alone
cannot ensure success. Because their social system does not permit them to
acquire skills beyond the boundaries determined by tradition, it must provide
them with other means to cope with the more difficult tasks. This is the
purpose of magic. Simply by accepting one unproven theory, they gain access
to a multitude of new possibilities.

If we divide the world of primitive people into fields they understand and
control, and fields that lie beyond their knowledge and capabilities, what magic
does is bring the latter into the same category as the former. Magic assures
them that the methods they use successfully in those fields they understand
can be used equally in fields where their knowledge is inadequate.

The primitives know perfectly well when it is skills that they rely on and
when it is magic. When sailing, for example, if the wind suddenly changes they
use a spell to persuade it to return to its original direction. We, with our
knowledge and computers, are content to try to predict the weather; through
magic, however, the primitives believe they can control it. But their behaviour
is quite logical: they make use of their sailing methods as long as they work,
and turn to magic precisely because they realize that adjusting their sails would
be ineffective, that it is the wind they must now adjust rather than the sails.

50 anthropology and software introduction

Instructing the wind to change direction appears silly only if we reject the
theory that the weather can be controlled. They accept this theory; so they
apply methods that involve the weather, in the same way they apply methods
that involve the sails. Both types of methods appear to them equally rational
and effective. Magic practice is an attempt to use our current capabilities to
accomplish tasks that require, in fact, greater capabilities.

It is important to remember that magic does not ask us to accept a different
mistaken theory every time. All magic practices are based on the same mis-
taken theory. Besides, this theory is plausible: all it asks us to believe is that
we can influence events by means of spells or objects. Magic, thus, makes
processes that are impossible appear like a logical extension of processes that
are familiar and effective. After all, we do influence the world around us with
spoken words, with our bodies, with objects and tools. This is why it is so easy
for us to believe in magic, and so difficult to distinguish between our magic
activities and our rational ones. We may think that we are performing the same
kind of acts, but these acts can have a real and verifiable effect one moment and
an illusory effect the next.

�

And the same is true of software magic. In chapter 7 we will see that the
mechanistic software theories do not promise any benefits that could not be
gained simply through good programming. What the software elites are
seeking, therefore, is a substitute for programming knowledge: by incorporat-
ing various principles into a methodology, or into a development environment,
they hope to get inexperienced programmers to accomplish tasks that require,
in fact, great expertise. Following rules and methods, or using built-in features
and operations, is easier than acquiring knowledge and skills, and is within the
capabilities of inexperienced programmers. Programming systems, thus, are
perceived as magic systems: they assure programmers that they can accomplish
a difficult task with their current knowledge alone.

Software development has become the most elaborate type of magic ever
created by man, but this escapes our notice if we watch only superficially the
activities of programmers. For, in their activities, as in those of primitive
people, the rational and the irrational blend and overlap continually. We
already saw that one can distinguish irrationality only by stepping outside the
system of belief that fosters it, so we must also do this for software.

Each software activity appears logical, urgently needed, and perfectly
justified – if studied in the context of other, similar activities. This is because
most software activities are engendered by some previous software activities.
We may even be impressed by the incessant changes and innovations, the

software magic 51introduction

endless theories, languages, methodologies, and development tools, the thou-
sands of courses, exhibitions, conventions, newspapers, magazines, books,
brochures, and newsletters, and the astronomic amounts of money spent by
corporations and governments. But if we study these activities, we notice
that they only make sense if we accept the unproven theory that software
development is akin to manufacturing. This absurd theory has been accepted
for so long that it is now routinely invoked as the ideological justification for
every software concept, when there is no evidence, much less a scientific
foundation, to support it. We saw that with magic, by accepting just one
unproven theory, the primitives gain the confidence to handle tasks that lie
beyond their capabilities. Similarly, by accepting just one unproven software
theory, inexperienced programmers can confidently engage in activities that
lie beyond their capabilities.

Like magic in primitive societies, software magic is quite plausible. After all,
we build physical structures by assembling standard parts and prefabricated
modules, and computer programs appear to have their own kind of parts
and modules. We improve our manufacturing methods and tools continually,
and programming also appears to involve methods and tools. Moreover,
programming methods based on the principles of manufacturing seem to work
in simple cases – in the examples found in textbooks, for instance. Thus,
extending these methods to the large and complex applications we need in the
real world appears to be a logical step, whose validity is guaranteed by the fact
that large manufacturing projects appear to use the same methods as the small
ones; they merely involve more parts and subassemblies.

Also like primitive magic, software magic does not ask us to have faith in a
different unproven theory for each new concept. All programming methods
and systems are based on the same theory – the similarity of software develop-
ment to manufacturing – and this makes its fallaciousness harder to detect.
These concepts have become a self-perpetuating belief system: a system that
uses its own growth as confirmation of validity. No one seems to remember
that the entire system, despite its enormous size and complexity, is based
ultimately on a theory that was never proved. (See pp. 497–498.)

�

Unlike other disciplines, where mechanical analogies may lurk behind a theory
but are seldom avowed, the software practitioners are quite outspoken about
their attempt to reduce software to mechanics. We must make programming
like manufacturing, they say. They proudly add mechanical metaphors to their
software jargon, and take this as a sign of expertise: we are finally turning
software into a professional activity, like engineering. But there is no evidence

52 anthropology and software introduction

that programming can be based on manufacturing methods. So, even if
programmers actually had the training and experience of engineers (rather
than merely calling themselves engineers, and using engineering metaphors),
these skills alone would be of little benefit.

Their claim to expertise through mechanical metaphors is especially amus-
ing, as the belief in software mechanics makes their activities look less and less
like expert programming and increasingly like primitive magic. Malinowski
called this verbal pattern “the creative metaphor of magic”:ÉÌ “It is the essence
of magic that, by the affirmation of a condition which is desired but not yet
fulfilled, this condition is brought about.”ÉÍ The verbal part of a magic formula
is typically an elaborate and picturesque series of statements describing the
desired state of affairs, which, of course, is very different from reality. The
person performing the ritual asks, as it were, the forces of nature, or certain
objects, to behave in a different manner, or to possess different qualities: “The
repetitive statement of certain words is believed to produce the reality stated. . . .
The essence of verbal magic, then, consists in a statement which is untrue,
which stands in direct opposition to the context of reality. But the belief
in magic inspires man with the conviction that his untrue statement must
become true.”ÉÎ

So when programmers call themselves “engineers,” when they talk about
“software engineering” and “building” programs from software “components,”
they are practising in effect software magic: they are making statements they
know to be untrue (or, at least, know to be unproven), hoping that, through
their repeated assertion, software phenomena may be persuaded to be like the
phenomena we see in manufacturing.

4

4
Let us return to the blending of the rational and the irrational in software
activities. Programmers act quite rationally when working on small and
isolated pieces of an application. They know, for example, the importance of
expressing correctly the conditions for an iterative statement, and they don’t
expect their development tools to do it for them. They never question the need
to specify certain operations in the proper sequence, or to assign correct values
to variables, or to access the right database records. And if the resulting
program does not work as expected, it is their own logic that they suspect, not
the computer.

ÉÌ Malinowski, Coral Gardens, vol. 2, pp. 70, 238. ÉÍ Ibid., p. 70.
ÉÎ Ibid., pp. 238–239.

software magic 53introduction

But this is where their rationality ends. We all know that the difficulties
encountered in large and complex applications are not simply the accumulation
of a large number of small problems. When a software project fails, or when an
application does not provide the solution everyone expected, it is not an
individual statement or condition that must be corrected, or the subtotals in a
report that are wrong, or a data entry field that is missing – nor even a hundred
such problems. Isolated deficiencies may well contribute to the failure of the
application, but even when we manage to identify and resolve them, the
application remains inadequate. The reason is that applications are systems of
interacting structures. And the most serious software deficiencies are those
caused by the interactions: we overlooked or misjudged some of the links
between structures.

Applications, then, are more than the simple hierarchical structures we wish
them to be, more than the neat modules and relations we see in diagrams.
All programming theories are based on the idea that we must reduce the
application to one structure, and thereby eliminate the interactions. This is
what we do in manufacturing, the theorists say, so this must also be the answer
to our programming difficulties. But it is precisely the interactions that make
software such a versatile concept: it is the very fact that we can implement
interacting structures through software that lets software adapt so well to our
needs. The reason we don’t seem to be able to eliminate the interactions, no
matter what theory we follow, is that we need these interactions if software is
to mirror our affairs accurately.

Only minds can process interacting structures, so the answer to our pro-
gramming difficulties is programming expertise: the skills attained by working
for many years on large and complex applications, and on diverse types of
software. In our culture, however, programmers are restricted to simple and
isolated tasks. Like the members of a primitive society, they are expected to
display knowledge and creativity in those activities deemed to be within
their power: programming small parts of an application. Hard work may be
required, but the success of these activities is assured. Tradition does not
permit them to acquire the higher skills needed to design, program, and
maintain whole applications. This is a difficult task, full of uncertainties, for
which tradition prescribes the use of magic: methodologies, development tools
and environments, database systems, and the like. These aids encourage
programmers to think of the application as a system of independent structures
and parts, thus reassuring them that their current knowledge suffices.

Like primitive magic, then, software magic creates the illusion that the
difficult and unpredictable tasks are of the same kind as the simple ones: the
methodology, the development tools, or the database system will somehow
turn those independent structures and parts into a useful application.

54 anthropology and software introduction

It takes an experienced person to recognize how little of what programmers
do is rational, and how much effort they waste on spurious activities. Neither
the programmers themselves nor a lay person watching them can see this,
because irrational programming activities are almost identical to rational ones.
Thus, a programmer may spend much time mastering the complexities of a
particular development system, and even more time later programming in that
system, convinced that this is the only way to enhance his capabilities. If asked
to demonstrate the benefits of the system, the only thing he can do is point to
its popularity, or describe a particular function that was easy to implement.
But he cannot prove the need for that system. In reality, the most important
factor is his skills. Whatever he managed to accomplish with that system he
would have accomplished with any other system, or with no system at all (that
is, with a traditional programming language, perhaps supplemented with
libraries of subroutines). Like the primitives, though, the programmer remains
convinced that his technical knowledge and the magic system are equally
important.ÉÏ

Since no one can prove the need for a particular development system, all
related activities are specious. But there is nothing to betray their irrationality.
Studying reference manuals, attending courses, discussing problems and
solutions – all these activities are important, all can be justified. They can be
justified, however, only in the context of that development system, only if we
do not question the need for it.

As a result, even when they get to know a development system well,
programmers are no better off than before. Their programming skills did not
improve. They wasted their time acquiring worthless knowledge about yet
another methodology, yet another language, yet another theory, instead of
improving their skills simply by programming. All they did was learn how to
use a new magic system.

It is easy to see that, no matter how many years of practice these program-
mers have behind them, their real programming experience stays at the level it
was after the first year or two. They may be familiar with many magic systems,
but they have no skills beyond what the software tradition permits them to
acquire. Just like the primitives, they do not confuse programming with magic.
They know perfectly well what they can accomplish with their own skills, and

ÉÏ The benefits of a system or method can be determined only by way of controlled
experiments; that is, experiments designed to isolate and measure a specific variable while
eliminating all others, including human factors. Such experiments are practically impossible,
and this is one reason why the only meaningful way to determine the value of a system or
method is by studying the failures, not the successes. (We will discuss this problem in
“Popper’s Principles of Demarcation” in chapter 3.) Thus, any attempt to defend or promote
a concept by pointing to individual successes turns it into a pseudoscience, a fraud.

software magic 55introduction

they turn to magic for the more difficult tasks precisely because they are aware
of their limited capabilities.

I have described the rational and irrational activities of programmers, but,
increasingly, a similar blend can be seen in the activities of software users. They
too believe that the only way to improve their performance, or to solve difficult
problems, is by relying on software devices. Like the programmers, though,
whatever they manage to accomplish is due almost exclusively to their skills,
not to those devices. To advance, therefore, they must avoid the devices, and
practise their profession instead, in order to further improve their skills.

How, then, can we detect irrational activities in our software pursuits? We
must beware of those activities that can only be justified if judged from within
the software culture. We must not be impressed by how important or urgent
these activities seem to be, or how expertly the individual performs them.
Instead, we must search for evidence. Any attempt to prove the validity of an
irrational act will lead to that unproven theory – the theory that forms the
foundation of our software culture. The theory is that there exist systems which
help us to break down software-related tasks into smaller and smaller parts, so
all we need to know is how to use these systems and how to solve simple
problems. This is what we do in manufacturing, and software is no different.

�

Software propaganda has succeeded in shifting our definition of programming
expertise from its traditional, commonsensical meaning – the skills needed to
solve a difficult problem, or to complete an important task – to its modern
meaning: familiarity with the latest theories and methodologies, avoiding
programming and using instead ready-made pieces of software, etc. We are
expected to measure the expertise of software practitioners, not by assessing
their real contribution, but by how many development tools they have tried,
how many courses they have attended, how many computer magazines they
are reading, and how acquainted they are with the latest “solutions” and
“technologies” – the latest ideas, products, announcements, and rumours.

Companies need programmers, but one wouldn’t think so just by reading
job offer advertisements. For, the required qualifications we see in these
advertisements are not what one would think is expected of programmers;
namely, proven expertise in solving a company’s business problems with
software. Depending on the current fad, the requirements are for experience
with object-oriented systems, or 4GL systems, or client-server systems, or
relational database systems, or CASE tools, or a particular language or develop-
ment aid or environment; that is, knowledge of one magic system or another.
Companies are looking for magicians, not programmers.

56 anthropology and software introduction

Software Power

Software Power
1 1
The term mana, which comes from Melanesian, was introduced in anthropol-
ogy at the end of the nineteenth century by R. H. Codrington. This term,
usually translated as power, denotes a supernatural force, a mythical essence,
“an atmosphere of potency that permeates everything.”É Since then, it has been
found that archaic peoples throughout the world believe in its existence.
Although we now refer to this concept as mana, it has equivalent terms in
many languages: for some peoples of India it is sakti or barkat, for the African
Pygmies megbe, for the Iroquois orenda, for the Hurons oki, for the Dakota
wakan, for the Sioux wakanda, for the Algonquins manito.Ê It is believed that
this force exists everywhere in the universe, and that any person can use it to
accomplish tasks he would otherwise find impossible. The force is said to
derive from a number of sources, such as ghosts, spirits, and gods.

Mana can reveal itself in almost anything: a tree, a stone, an animal, and
even in such things as a gesture, a sign, a colour, and a season of the year.Ë A
typical use of mana may be as follows:Ì An individual would go alone to some
isolated spot, where, after fasting, prayer, and exposure to the elements, a spirit
might come and point to him a plant. That plant would then become a source
of good luck, and the individual would employ this power to ensure success in
his endeavours. He might carry with him at all times something symbolizing
the plant, and perhaps also offer it to others.

Mana is different from magic. Mana is a universal force available to anyone,
at any time, and to be used in any way the individual desires. Magic, on the
other hand, requires formal practice: its power is in the spell and ritual, and
magic formulas have an exact significance. Mana exists in nature and can
manifest itself in objects, acts, or ideas; magic power resides in man, and magic
formulas can only be transmitted from one person to another.Í Thus, while
primitive man may use both magic and mana, most anthropologists agree that,
despite their similarity – the belief in supernatural powers that can enhance a
person’s limited capabilities – they form two different concepts. Sometimes,

É Ernst Cassirer, Language and Myth (New York: Dover, 1953), p. 63.
Ê Mircea Eliade, Myths, Dreams, and Mysteries: The Encounter between Contemporary

Faiths and Archaic Realities (New York: Harper and Row, 1975), ch. VI passim.
Ë Ibid., p. 132.
Ì Guy E. Swanson, The Birth of the Gods: The Origin of Primitive Beliefs (Ann Arbor:

University of Michigan Press, 1964), p. 7.
Í Bronislaw Malinowski, Magic, Science and Religion, and Other Essays (Garden City, NY:

Doubleday Anchor, 1954), p. 77.

software power 57introduction

mana is taken as the general concept, and magic as one particular application
of it. As we will see in this subsection, software practitioners and users, too,
consider mana a more general concept than their formal magic systems.

�

The words “power,” “powerful,” “empower,” etc., are so common in computer-
related discourse that it is almost impossible to describe a new product without
the use of them. We have come to expect them, and we doubt the efficacy of
the product if these words are missing. After all, we already have thousands of
software and hardware products, so the only justification for a new one is that
it is more “powerful.” An analysis of these words, however, reveals that the
power of a product is usually perceived, not as certain qualities, but in the sense
of mana – as supernatural power.

From the many meanings the dictionary offers for the word “power,” it is
obvious that the one current in computer matters is the capability to effect
something. We can immediately divide this function into two kinds. First,
“power” can simply stand for a list of qualities. For example, if one computer is
faster than another, or if one text editor has better editing features than another,
we may say that they are more powerful. When used in this sense, “power” is
an abbreviation: an abstract term we can employ without fear of confusion,
since we all know what it stands for. If asked, we could readily describe the
superior features we subsumed under “power.”

Even a casual examination of books, articles, advertising, or conversations
makes it clear, however, that “power” is hardly ever used in this precise sense.
In its more common sense, “power” is still used as an abstract term, but without
being defined. Abstract terms are so common in everyday discourse that
we seldom stop to think whether we know what they stand for. So, when
encountering an undefined abstract term, we tend to assume that it stands
for the list of things we expected, or wished, to see at that point. When
encountering “power” without an explanation, then, we assume that it means
what it would mean if used legitimately, although now it is just a slogan.

Here are some typical uses of “power” and its derivatives in computer-
related discourse: “Powerful software solutions for midsize companies.”Î

“Discover the power of Primus Internet services.”Ï “Empowering the Internet
generation.”Ð “Empowered with these capabilities, your company can charge
ahead intelligently and efficiently”Ñ “Power tools for power applications.”ÉÈ

“Powering comprehensive unified communications solutions.”ÉÉ “Wireless

Î http://whitepapers.techrepublic.com.com/. Ï Primus Canada, adv. pamphlet.
Ð Cisco Systems, adv. Ñ http://www.jda.com/.

ÉÈ Microsoft Visual Basic 2.0, adv. pamphlet. ÉÉ http://www.myt3.com/.

58 anthropology and software introduction

inventory systems give you the power to have accurate information in real
time”ÉÊ “Open source empowers the user more than proprietary software
can.”ÉË “Empowering Software Development Environments by Automatic
Software Measurement.”ÉÌ “Business innovation powered by technology.”ÉÍ

When it does not describe precise and verifiable capabilities, “power” is
intended to convey something mysterious, supernatural – mana. For the
primitives, the belief in mana, like the belief in magic, is a substitute for
personal knowledge: “Mana is a substance or essence which gives one the
ability to perform tasks or achieve ends otherwise impossible.”ÉÎ Similarly,
modern individuals believe that a given product or concept has the power to
enhance their capabilities, but they don’t feel they have to understand how this
power acts.

Now, products of all kinds promise us power – weight-loss gadgets, money-
making schemes, self-help instructions, and so forth. But in no other field is
the promise of power as widespread as in software-related matters. We can see
this not only in the frequent use of “power,” “powerful,” “empower,” etc., but
also in the long list of software products whose name includes “power” (this
use of “power,” needless to say, is always in an undefined sense): PowerEncoder,
Power Keeper, PowerCrypt, PowerPoint, PowerGraphs Toolkit, NXPowerLite,
PowerShadow, PowerOLAP, Power Booleans, IT PowerPAC, Power Edit,
PDF Power Brand, PowerShop ERP, PowerGREP, RoutePower 32, Animation
Power, PowerCinema, PowerPassword, PowerPulse, Bill Power, PowerBackup,
HTML PowerSpell, PowerExchange, PowerPressed, Power Office, PowerKey
Pro, PowerConvert, HedgePower, PowerBuilder, PowerDesk Pro, PowerDraw,
Power Translators, PowerDirector, PowerProducer, Power Solids, Power Print,
EMail Developer’s Power Suite, PowerUpdate, PowerERP, Power Accounting,
OptionPower, Power LogOn, Powerpak, PowerPack, PowerGEM, PowerTerm,
PowerChain, PowerBSORT, PowerTCP Emulation, PowerSuite, PowerRecon,
ELX Power Desktop, PowerTicker, PowerAnalyzer, Power Broker, Jobpower,
PowerBASIC, Powershell, PowerWebBuilder, PowerWEB, PowerPlan, ES
Power PDF Creator, PowerToys, PowerMerge, PowerCOBOL, PowerCenter,
DQpowersuite, PowerPath, PowerVideoMaker, SQL Power Architect, Power
Sound Editor, PowerBoot, PowerISO, etc.

We can account for the abundance of “power” names in software products
only if we remember the ignorance that software practitioners and users suffer
from, the limited skills that our software culture permits them to acquire.
Faced with the difficult problem of developing, using, and maintaining serious

ÉÊ http://findmysoftware.com/. ÉË http://www.netc.org/.
ÉÌ Book title, 11th IEEE International Software Metrics Symposium.
ÉÍ Front cover banner, Information Week (1999–2007).
ÉÎ Swanson, Birth of the Gods, p. 6.

software power 59introduction

applications, modern people, like the primitives, end up seeking aid from the
only source they believe to be available – supernatural forces.

Few people, of course, would admit that they are using a software product
because its name includes “power.” But the software vendors know better. The
ability of a product’s name to influence a buying decision, and the associa-
tions created in a person’s mind between the product and the idea conveyed
by its name, are well understood in advertising. The software vendors are
simply exploiting the belief in the supernatural, which has been retained, in a
repressed form, even by modern man. This belief surfaces in moments of
insecurity, or anxiety, or fear, when, like our ancestors, we feel impotent against
some great perils. Since ignorance is a major source of insecurity, the large
number of products with “power” names merely reflects the large number of
difficult situations that ignorant programmers and users are facing.

Similarly, the phrase “power tools” is often used by software vendors to
name sets of software devices: LG Power Tools, Engineering Power Tools, SQL
Power Tools, HTML PowerTools, Windows Powertools, PowerTools PRO for
AOL, TBox Power Tools, jv16 Power Tools, Rizone’s Power Tools, Creative
Element Power Tools, Nemx Power Tools, Power Tools for ArcGIS, Rix2k
Extreme Power Tools, CodeSite Power Tools, etc.

The phrase is also popular in book titles: Java Power Tools, Unix Power
Tools, Linux Power Tools, Mac OS X Power Tools, DOS Power Tools, Scripting
VMware Power Tools, Windows Developer Power Tools, LEGO Software
Power Tools, AutoCad Power Tools, Windows XP Power Tools, Netcat Power
Tools, Wordperfect 6 Power Tools, Foxpro 2.0 Power Tools, Visual Basic .NET
Power Tools, Novell Netware Power Tools, etc.

The vendors, clearly, want us to associate a software utility, or the informa-
tion found in a book, with the efficacy of electricity; that is, with the kind of
energy used by real power tools like drills and saws. But, without an actual
explanation, the meaning of this “power” remains vague, just like the “power”
in a name. So, in the end, we perceive it the same way – as mana.

2

2
Much has been learned about the way the primitives interpret mana, from
linguistic and ethnological analyses of the archaic languages. The conclusion
has been that “mana” is not simply a word, like “power.” We must use a
multitude of concepts to convey in a modern language its full meaning:
“sacred, strange, important, marvellous, extraordinary”;ÉÏ also “remarkable,

ÉÏ Paul Radin, quoted in Eliade, Myths, Dreams, and Mysteries, p. 129.

60 anthropology and software introduction

very strong, very great, very old, strong in magic, wise in magic, supernatural,
divine – or in a substantive sense . . . power, magic, sorcery, fortune, success,
godhead, delight.”ÉÐ

Cassirer notes that “the idea of mana and the various conceptions related to
it are not bound to a particular realm of objects (animate or inanimate, physical
or spiritual), but that they should rather be said to indicate a certain ‘character,’
which may be attributed to the most diverse objects and events, if only these
evoke mythic ‘wonder’ and stand forth from the ordinary background of
familiar, mundane existence. . . . It is not a matter of ‘what,’ but of ‘how’;
not the object of attention, but the sort of attention directed to it, is the
crucial factor here. Mana and its several equivalents do not denote a single,
definite predicate; but in all of them we find a peculiar and consistent form
of predication. This predication may indeed be designated as the primeval
mythico-religious predication, since it expresses the spiritual ‘crisis’ whereby
the holy is divided from the profane.”ÉÑ

The idea of the sacred, especially in its sense as the opposite of the profane,
expresses even better, therefore, how the primitives perceive mana. This is
significant, if we want to understand the belief in software power. Like mana,
software power is a potency that can manifest itself in diverse concepts and
entities, so it does not describe their type but their character. By asserting that
a thing has power, the believer says, in effect, that he perceives it as belonging
in the domain of the sacred rather than the ordinary.

So the belief in software power, like the primitive beliefs, is a belief in the
existence of miraculous capabilities – capabilities which cannot and need not
be explained. In the following passage, Eliade describes the concept of mana,
but this can just as easily describe the concept of software power: “Among the
‘primitives’ as among the moderns, the sacred is manifested in a multitude of
forms and variants, but . . . all these hierophanies are charged with power. The
sacred is strong, powerful, because it is real; it is efficacious and durable. The
opposition between sacred and profane is often expressed as an opposition
between the real and the unreal or pseudo-real. Power means reality and, at the
same time, lastingness and efficiency.”ÊÈ

�

Software power, then, is the modern counterpart of mana. We can confirm this
by noting the many similarities between the two beliefs. First, and most

ÉÐ Nathan Söderblom, quoted in Cassirer, Language and Myth, p. 66.
ÉÑ Cassirer, Language and Myth, pp. 65–66.
ÊÈ Eliade, Myths, Dreams, and Mysteries, p. 130. (The term hierophany was coined by

Eliade to denote any manifestation of the sacred.)

software power 61introduction

significantly, everyone realizes that supernatural power acts like a tool, or like
an appliance: we can benefit from it directly, without having to gain new
knowledge. Thus, the primitives understand that “mana is an object, not a body
of skills and abilities which are obtained through learning. Access to it is
acquired, in the sense that a house or a wife or a spear is acquired, that is as a
gift, as a purchase, or through the performance of appropriate acts.”ÊÉ Similarly,
the believers in software power do not expect to acquire any skills by using
software devices. They understand that this power is a substitute for knowledge
and experience. Vendors, in fact, make this point the main attraction of
software devices: simply by purchasing one, you gain access to a power that will
allow you to accomplish your tasks immediately.

Second, supernatural power is perceived by everyone as a truly general
potency. For the primitives, mana “is not so much the idea of . . . particular
embodiments, as the notion of a ‘power’ in general, able to appear now in this
form, now in that, to enter into one object and then into another.”ÊÊ Similarly,
the great variety of means by which we can acquire software power shows that
believers do not associate it with specific things – a company, a product, a
function – but with a universal potency that can materialize in any software-
related concept. It can appear in development environments as well as in
applications, in database systems as well as in utilities, in user interface as well
as in computations.

And, although we are discussing software power, we must note that this
universal potency can materialize in anything else associated with computers.
Thus, it can appear in whole computers (Power Mac, PowerBook, PowerEdge,
AcerPower, Power Spec, Prime Power), and also in the parts of a computer, and
in related devices: in a monitor (“empower your business with advanced display
technology,”ÊË “. . . these stylish, powerful and efficient monitors improve the
atmosphere of any desktop”ÊÌ), a graphics card (“Radeon 7500 is a powerful
and versatile graphic solution,”ÊÍ “GeForce GTX 480 powers interactive
raytracing”ÊÎ), a hard drive (“fast performance and huge capacity to power
today’s storage-hungry applications”ÊÏ), a motherboard (“empowered by
integrated graphics and Intel Hyper-Threading Technology . . .,”ÊÐ “it delivers
awesome power . . .”ÊÑ), a scanner (“empower your information management
with digital technology”ËÈ), a network device (PowerConnect switch), a mouse

ÊÉ Swanson, Birth of the Gods, p. 6. ÊÊ Cassirer, Language and Myth, p. 63.
ÊË NEC Corp., adv. ÊÌ http://www.samsung.com/.
ÊÍ http://ati.amd.com/. ÊÎ http://www.nvidia.com/.
ÊÏ Seagate ST3160316AS Barracuda 7200.12, http://www.tigerdirect.ca/.
ÊÐ Asus P4V8X-MX motherboard, http://ca.asus.com/.
ÊÑ Gigabyte GA-X58A-UD3R motherboard, http://www.acousticpc.com/.
ËÈ Ricoh Aficio scanners, The Ricoh Report (Nov. 2000).

62 anthropology and software introduction

(Power Wheelmouse, PowerScroll), a storage system (PowerVault), a CD
device (PowerCD, PowerDisc), a processor (PowerPC), a camera (PowerShot),
or a microphone (PowerMic). And it can appear even in such concepts as
a newsletter (IBM PowerTalk, APC PowerNews), a business relationship
(Samsung Power Partner program), a panel discussion (Power PanelsËÉ),
a trade show (“over 700 high-powered exhibits”ËÊ), or a course (“a powerful
3-day course”ËË).

Lastly, the term “power,” like “mana,” is employed in a variety of grammati-
cal roles. Analyzing the ways in which the Sioux use “wakanda,” McGee notes
that “the term was applied to all sorts of entities and ideas, and was used
(with or without inflectional variations) indiscriminately as substantive and
adjective, and with slight modification as verb and adverb.”ËÌ Similarly, through
its derivatives, “power” is used indiscriminately as noun, adjective, verb, and
adverb. Let us see some examples.

As noun: “Discover the power of MetaFrame and WinFrame software.”ËÍ

“Relational database power made easy.”ËÎ “The power to build a better business
Internet.”ËÏ “This empowerment is most visible in backend solutions like
servers and networks.”ËÐ “Experience the power of software instrumenta-
tion.”ËÑ “SaaS Business Empowerment programs are designed to help Progress’
SaaS partners focus on the early-stage fundamentals”ÌÈ “Accrisoft Freedom
web empowerment software provides all the tools you need”ÌÉ “. . . AutoPlay
Media Studio gives you the power to quickly create just about any software
application you can dream up.”ÌÊ “IT empowerment with ITSM education from
Hewlett-Packard.”ÌË “Enjoy visual power.”ÌÌ

As adjective: “Powerful network storage software with built-in intelligence
and automation”ÌÍ “Discover hundreds of new uses for this empowering
tool.”ÌÎ “Visual Two-Way-Tools for power programming.”ÌÏ “Powerful soft-
ware for solving LP, NLP, MLP and CGE models.”ÌÐ “Control your duplicate
files with this powerful utility.”ÌÑ “This powerful feature allows affiliates to

ËÉ Comdex Canada Exhibition (1995), adv. pamphlet.
ËÊ Database and Client/Server World Exposition (1994), adv.
ËË Global Knowledge, adv. pamphlet.
ËÌ William McGee, quoted in Cassirer, Language and Myth, p. 68.
ËÍ Citrix Systems, Inc., adv. pamphlet.
ËÎ Borland Paradox for Windows, adv. pamphlet.
ËÏ Oracle Corp. iDevelop 2000 event, adv. pamphlet.
ËÐ http://www.netc.org/. ËÑ http://www.ocsystems.com/.
ÌÈ http://web.progress.com/. ÌÉ http://accrisoft.org/.
ÌÊ http://www.indigorose.com/. ÌË Hewlett-Packard Company, adv.
ÌÌ Microsoft Visual Basic 2.0, adv. pamphlet. ÌÍ http://www.compellent.com/.
ÌÎ http://www.indigorose.com/. ÌÏ Borland Delphi, adv. pamphlet.
ÌÐ http://web.uvic.ca/. ÌÑ http://www.kewlit.com/.

software power 63introduction

create advertising channels.”ÍÈ “Simple, useful and powerful software tools.”ÍÉ

“Powerful database design made simple.”ÍÊ “A powerful software tool to tweak,
optimize, maintain and tune up your Windows XP”ÍË “Develop powerful
Internet applications.”ÍÌ “Create powerful, dynamic Windows programs.”ÍÍ

“A powerful, easy-to-use process improvement tool.”ÍÎ

As verb: “Oracle software powers the Internet.”ÍÏ “We can power you, too.”ÍÐ

“Empowered by innovation.”ÍÑ “MV Software has been powering business
solutions for over two decades.”ÎÈ “Empower employees to collaborate and
innovate.”ÎÉ “Windows Principles: . . . empowering choice, opportunity, and
interoperability.”ÎÊ “XML: powering next-generation business applications.”ÎË

“Learning powered by technology.”ÎÌ “Utoolbox.com . . . is powered by a
dedicated team of professionals.”ÎÍ “Empowering software engineers in human-
centered design.”ÎÎ “Empowering software debugging through architectural
support for program rollback.”ÎÏ “Powering the lean, consumer-driven supply
chain for manufacturers worldwide.”ÎÐ “We can empower your organization
through adoption of IT Service Management”ÎÑ “Data Query empowers
the end user to create reports”ÏÈ “Empowering software maintainers
with semantic web technologies.”ÏÉ “Powering on demand applications.”ÏÊ

“Powering the digital age.”ÏË

As adverb: “Accurate Shutdown is a powerfully automatic software that
turns off your computer at the user-specified time.”ÏÌ “RSConnect Suite
corporate management software: . . . powerfully simple, powerfully quick.”ÏÍ

“QSR software . . . provides a sophisticated workspace that enables you to work
through your information efficiently and powerfully.”ÏÎ “XP Picture Manager
can correct your photos powerfully and quickly.”ÏÏ “The building blocks of

ÍÈ http://www.qualityunit.com/. ÍÉ http://www.utoolbox.com/.
ÍÊ SDP Technologies S-Designor, adv. pamphlet.
ÍË http://www.freedownloadscenter.com/.
ÍÌ Microsoft Visual Studio 6.0, adv. pamphlet.
ÍÍ Borland Turbo Pascal for Windows 1.5, adv. pamphlet.
ÍÎ IEEE Computer Society Press, LearnerFirst Process Management, adv. pamphlet.
ÍÏ Oracle Corp., adv. ÍÐ Dell Computers, adv.
ÍÑ http://www.nec.com/. ÎÈ http://www.mvsoftware.com/.
ÎÉ Cisco Systems, adv. ÎÊ http://www.microsoft.com/.
ÎË http://www.dbmag.intelligententerprise.com/.
ÎÌ Brochure subtitle, U.S. Dept. of Education, Transforming American Education (2010).
ÎÍ http://www.utoolbox.com/. ÎÎ http://portal.acm.org/.
ÎÏ http://iacoma.cs.uiuc.edu/. ÎÐ http://www.jda.com/.
ÎÑ Global Knowledge, IT and Management Training catalogue (Dec. 2006), p. 12.
ÏÈ Oracle Discoverer/2000, adv. pamphlet. ÏÉ http://www.rene-witte.net/.
ÏÊ https://www-304.ibm.com/. ÏË http://www.swiftdisc.com/.
ÏÌ http://www.accuratesolution.net/. ÏÍ http://www.necpos.com/.
ÏÎ http://www.qsrinternational.com/. ÏÏ http://www.softtester.com/.

64 anthropology and software introduction

virtual instrumentation include powerfully productive software”ÏÐ “HP
StorageWorks Command View EVA software provides you with a powerfully
simple storage management experience”ÏÑ “The intelligent technology
in our electrical calculation software powerfully calculates and performs
your electrical calculations and designs”ÐÈ “Powerfully advanced mailing
software.”ÐÉ

In addition, the phrase “powered by” is commonly used in promotional
slogans to mention a given product, in place of a phrase like “made by,” “works
with,” or “employs.” Some examples of this practice: “powered by Google,”
“powered by IBM,” “powered by Sun,” “powered by AOL Mail,” “powered by
Microsoft Access,” “powered by XMB,” “powered by Cognos,” “powered by
FIS,” “powered by Mozilla,” “powered by HitsLink,” “powered by PayPal,”
“powered by WebsiteBaker,” “powered by Trac,” “powered by ATI,” “powered
by Merril Lynch,” “powered by Geeklog,” “powered by vBulletin,” “powered by
eBay Turbo Lister,” “powered by GetSimple,” “powered by TAXWIZ,” “powered
by nexImage,” “powered by MindTouch,” “powered by Joomla,” “powered by
ShopFactory,” “powered by Network Solutions,” “powered by Sothink.”

3

3
As programmers and as users, we wish to benefit from the power of software,
but without taking the time to develop software expertise. Consequently, we
have come to regard this power as the kind of power that we can acquire. And it
is through the devices supplied by software companies that we hope to acquire
it. So, when describing their devices as powerful, the software companies are
simply exploiting this belief.

Like all beliefs we carry from our primitive past, the belief that certain
devices possess a mysterious power can only be dispelled through learning. As
in other domains, once we possess the necessary skills in software-related
matters, we can easily recognize which devices are helpful and which ones are
fraudulent. In a rational society, this education would be the responsibility of
the software elites – the universities, in particular. In our society, however, the
opposite is taking place: since the elites can profit far more by exploiting society
than by educating it, ignorance and primitive beliefs serve their interests. Thus,
only if we remain ignorant will we believe that their devices, which are based
on mechanistic concepts, can solve our complex problems. So the elites are
doing all they can to prevent us from developing software knowledge.

ÏÐ http://www.scientific-computing.com/. ÏÑ https://ads.jiwire.com/.
ÐÈ http://solutionselectricalsoftware.com/. ÐÉ http://www.satorisoftware.co.uk/.

software power 65introduction

Software devices can replace expertise only in solving mechanistic problems;
that is, problems which can be broken down into simpler and simpler ones, and
hence modeled with isolated hierarchical structures. Most problems we want
to solve with software, however, are non-mechanistic. They can only be
represented as systems of interacting structures, so they require a human mind,
and expertise. The problems associated with programming, particularly, are of
this kind. In the end, less than 1 percent of the software devices we are offered
are genuine, beneficial tools; the rest are fraudulent. What distinguishes the
latter is their claim to solve complex, non-mechanistic problems; in other
words, to act as substitutes for minds. They address naive programmers and
users, promising them the power to accomplish tasks that require, in fact,
much knowledge and experience.

So the software elites are not responsible organizations, but charlatans. They
present their devices as the software counterpart of the traditional tools and
instruments, but at the same time they invoke the notions of magic and
supernatural power. They tell us that we need these devices in the same way
that engineers and doctors need theirs. But the tools and instruments we use
in engineering and in medicine are promoted on the basis of real qualities,
and provide real benefits. Their vendors do not exploit our ignorance and
irrationality when persuading us to use them. Clearly, then, if software devices
must be promoted in this fashion, it is because they are generally useless,
because the possession of an imaginary power is their only quality. To put it
differently, if software devices were promoted by demonstrating their real
benefits, we would use only the few that are truly useful.

The harm caused by this charlatanism extends, however, beyond the waste
of time and resources. For, when restricted to the mechanistic knowledge
required to operate devices, we forgo all opportunities to develop complex,
non-mechanistic knowledge. Without this knowledge we cannot solve our
complex problems. But if we believe that it is only through devices that we can
solve them, we continue to depend on devices, and hence to restrict ourselves
to mechanistic knowledge, in a process that feeds on itself. The only way to
escape from this vicious circle is by expanding our knowledge, so as to exceed
the mechanistic capabilities of devices. And we cannot do this as long as we
agree to depend on them. Thus, by enticing us with software devices, the elites
ensure our perpetual ignorance. They prevent us from gaining knowledge and
also from solving our problems.

The propaganda depicts the software elites as enligthened leaders who
are creating a new world for us – a world with higher and higher levels of
efficiency. But now we see that the reality is very different: they are fostering
ignorance and irrational beliefs, so they are creating a less efficient world.
When presenting their devices as magic systems or as sources of supernatural

66 anthropology and software introduction

power, they are encouraging us to behave like the primitives. This degradation
started with the software practitioners, in their programming activities. Now,
as our dependence on computers is spreading, it is increasingly affecting
everyone, in every activity.

Bear in mind, though, that it is not software or programming that causes
this degradation, but mechanistic software and programming, the kind pro-
moted by the software elites. Mechanistic software-related activities restrict us
to mechanistic thinking, thereby preventing us from using our natural, non-
mechanistic capabilities. Left alone, without software elites and the mechanistic
dogma, human beings would learn to develop and use software as effectively
as their minds permit them. Complex software phenomena, and complex
software knowledge, would then join the many other complex structures that
make up human existence. Our software-related activities would then enhance
our minds, as do other complex phenomena (the use of language, for instance).

software power 67introduction

	Software and Mind
	Disclaimer
	Contents
	Preface
	Introduction: Belief and Software
	Modern Myths
	The Mechanistic Myth
	1
	2
	3
	4
	5
	6

	The Software Myth
	1
	2
	3
	4
	5

	Anthropology and Software
	Software Magic
	1
	2
	3
	4

	Software Power
	1
	2
	3

