
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 7: Software Engineering

This extract includes the book’s front matter
and chapter 7.

Copyright © 2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This chapter analyzes the mechanistic fallacies inherent in the idea
of software engineering, and exposes the pseudoscientific nature of
the mechanistic programming theories.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 7: Software Engineering

chapter 7

Software Engineering

Introduction Introduction
My task in this chapter is to show that the body of theories and activities
known as software engineering forms in reality a system of belief, a pseudo-
science. This discussion is in many ways a synthesis of everything we learned
in the previous chapters: the model of simple and complex structures, the
two mechanistic fallacies, the nature of software and programming, the
structures that make up software applications, the mechanistic conception of
mind and software, the similarity of software and language, the principles of
demarcation between science and pseudoscience, the incompetence of the
software practitioners, and the corruption of the software elite. There are brief
summaries here, but bear in mind that a good understanding of these topics is
a prerequisite for appreciating the present argument, and its significance.

In chapter 6 we examined the three stages in the spread of mechanistic
software concepts: the domain of programming, the world of business, and
our personal affairs (see pp. 472–477). And we saw that, while the first stage
is now complete, the others are still unfolding. Judged from this perspective,
the present chapter can also be seen as a study of the first stage. Since this
stage involves events that took place in the past, its study can be exact and

478

objective. We can perhaps still delude ourselves about the benefits of software
mechanism in our offices or in our homes, but we cannot in the domain of
programming; for, we can demonstrate the absurdity of the mechanistic
theories, and the resulting incompetence and corruption.

To perform a similar study for the other two stages, we would have to wait
a few decades, until they too were complete. But then, it would be too late: if
we want to prevent the spread of software mechanism in other domains, we
must act now, by applying the lessons of the first stage.

The similarities of the three stages are not accidental. It is, after all, the same
elite that is controlling them, and the same software concepts that are being
promoted. Common to all stages is the promise to replace human minds with
software: with the methods and systems supplied by an authority. And this plan
is futile, because mechanistic concepts can replace only the simple aspects
of human intelligence. The plan, thus, has little to do with enhancing our
capabilities. It is in reality a new form of domination, made possible by our
mechanistic delusions and our increasing dependence on computers.

As we read the present chapter, then, we must do more than just recognize
how the mechanistic ideology has destroyed the programming profession. We
must try to project this phenomenon onto other fields and occupations, and to
imagine what will happen when all of us are reduced, as programmers have
been, to mere bureaucrats.

The programming theories have not eliminated the need for programming
expertise. All they have accomplished is to prevent programmers from devel-
oping this expertise, thereby making software development more complicated,
more expensive, and dependent on the software elite instead of individual
minds. Similarly, the software concepts promoted now for our offices and for
our homes serve only to prevent us from developing knowledge and skills, and
to increase our dependence on the software elite. What we note is an attempt
to reduce all human activities to the simple acts required to operate software
devices. But this is an impossible quest. So, like the programmers, we will end
up with nothing – neither the promised expedients, nor the expertise to
perform those activities on our own.

At that point, society will collapse. A society dominated by a software elite
and a software bureaucracy can exist only because the rest of us are willing to
support them. It is impossible, however, for all of us to be as incompetent and
inefficient in our pursuits as the programmers are now in theirs. For, who
would support the entire society?

introduction 479chapter 7

The Fallacy of Software Engineering The Fallacy of
Software Engineering

1 1
The term software engineering was first used in the late 1960s. It expresses the
view that, in order to be as successful in our programming activities as we are
in our engineering activities, we must emulate the methods of the engineering
disciplines. This view was a response to what became known as the software
crisis: the realization that the available programming skills could not keep up
with the growing demand for software, that application development took too
long, and that most applications were never completed, or were inadequate, or
were impossible to keep up to date.

Clearly, the experts said, a new programming philosophy is needed. They
likened the programmers of that era to the old craftsmen, or artisans, whose
knowledge and skills were not grounded on scientific principles but were
the result of personal experience. Thus, concluded the experts, just as the
traditional fields have advanced since modern engineering principles replaced
the personal skills of craftsmen, the new field of software will advance if we
replace personal programming skills with the software equivalent of the
engineering principles.

So for more than forty years, the imminent transition from software art to
software engineering has been the excuse for every new theory, methodology,
development environment, and database system. Here are just a few out of the
thousands of statements proclaiming this transition: “Software is applying
for full membership in the engineering community. Software has grown in
application breath and technical complexity to the point where it requires more
than handcrafted practices.”É “Software development has often been viewed as
a highly individualistic art. . . . The evolution of software engineering in the
1970s and 1980s came from the realization that software development is better
viewed as an engineering task”Ê “Software engineering is not alone among
the engineering disciplines, but it is the youngster. We can learn a great deal by
studying the history of other engineering disciplines.”Ë “Software development
currently is a craft. . . . Software manufacturing involves transferring the twin

É Walter J. Utz Jr., Software Technology Transitions: Making the Transition to Software
Engineering (Englewood Cliffs, NJ: Prentice Hall, 1992), p. xvii.

Ê Ed Seidewitz and Mike Stark, Reliable Object-Oriented Software: Applying Analysis and
Design (New York: SIGS Books, 1995), p. 4.

Ë Gerald M. Weinberg, Quality Software Management, vol. 1, Systems Thinking (New
York: Dorset House, 1992), p. 295.

480 the fallacy of software engineering chapter 7

disciplines of standard parts and automated manufacture from industrial
manufacturing to software development.”Ì “We must move to an era when
developers design software in the way that electronic engineers design ma-
chines.”Í “Software engineering is modeled on the time-proven techniques,
methods, and controls associated with hardware development.”Î “Calling
programmers ‘software engineers’ emphasizes the parallel between developing
computer programs and developing mechanical or electronic systems. Many
practices that have long been associated with engineering . . . have increasingly
been adopted by data processing professionals.”Ï “We as practitioners must
change. We must change from highly skilled artisans to being software manu-
facturing engineers.”Ð “We now have tools and techniques that enable us to
do true software engineering. . . . With these tools we can build software
factories. . . . We have, working today, the basis for grand-scale engineering of
software.”Ñ

�

The first thing we note in the idea of software engineering is its circularity.
Before formulating programming theories based on engineering principles, we
ought to determine whether software can indeed be developed with the
methods we use to build cars and appliances. There are many human activities,
after all, for which these methods are known to be inadequate. In chapter 2
we saw that, from displaying ordinary behaviour to practising a difficult
profession, our acts are largely intuitive: we use unspecifiable knowledge and
skills, rather than exact methods. This is true because most phenomena we face
are complex; and for complex phenomena, our natural, non-mechanistic
mental capabilities exceed the exact principles of science and engineering.
Thus, whether this new human activity – programming – belongs to one
category or the other is what needs to be determined. When the software
theorists start their argument by claiming that programming must be practised

Ì Stephen G. Schur, The Database Factory: Active Database for Enterprise Computing
(New York: John Wiley and Sons, 1994), p. 9.

Í James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), p. 40.

Î Roger S. Pressman, Software Engineering: A Practitioner’s Approach (New York:
McGraw-Hill, 1982), p. 15.

Ï L. Wayne Horn and Gary M. Gleason, Advanced Structured COBOL: Batch and
Interactive (Boston: Boyd and Fraser, 1985), pp. 2–3.

Ð Sally Shlaer, “A Vision,” in Wisdom of the Gurus: A Vision for Object Technology, ed.
Charles F. Bowman (New York: SIGS Books, 1996), p. 222.

Ñ James Martin, An Information Systems Manifesto (Englewood Cliffs, NJ: Prentice Hall,
1984), p. 37.

the fallacy of software engineering 481chapter 7

as an engineering activity, they start by assuming the very fact which they are
supposed to prove.

While evident in each one of the foregoing quotations, the circularity is even
better illustrated by the following passage: “This book is written with the firm
belief that software development is a science, not an art, and should be
managed as any other engineering project. For our purposes we will define
‘software engineering’ as the practical application of engineering principles
and methods”ÉÈ The author, thus, starts by admitting that the idea of
software engineering is based on a belief. Then, he adds that software develop-
ment should be managed as “any other” engineering project; so he treats as
established fact the belief that it is a form of engineering. Finally, he defines
software engineering as a form of engineering, as if the preceding statements
had demonstrated this relationship.

Here is another example of this question-begging logic: “In this section we
delineate software engineering and the software engineer. . . . The first step in
the delineation is to establish a definition of software engineering – based upon
the premise that software engineering is engineering – that will serve as a
framework upon which we can describe the software engineer.”ÉÉ The authors,
thus, candidly admit that they are assuming that fact which they are supposed
to determine; namely, that software development is a form of engineering.
Then, after citing a number of prior definitions that claim the same thing (also
without proof), and after pointing out that there are actually some important
differences between programming and the work of the engineer, the authors
conclude: “Software engineering, in spite of the abstract nature and complexity
of the product, is obviously a major branch of engineering.”ÉÊ The word
“obviously” is conspicuously out of place, seeing that there is nothing in the
two pages between the first and second quotation to prove that software
development is a form of engineering.

This fallacy – defining a concept in terms of the concept itself – is known as
circular definition. Logically, the theorists ought to start by investigating the
nature of programming, and to adopt the term “software engineering” only
after determining that this activity is indeed a form of engineering. They start,
however, with the wish that programming be like engineering, and their
definition ends up reflecting this wish rather than reality. Invariably, the
theorists start by calling the activity “software engineering,” and then set out
searching for an explanation of this activity! With such question-begging
reasoning, their conclusion that software development is a form of engineering

ÉÈ Ray Turner, Software Engineering Methodology (Reston, VA: Reston, 1984), p. 2.
ÉÉ Randall W. Jensen and Charles C. Tonies, “Introduction,” in Software Engineering, eds.

Randall W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979), p. 9
(italics added). ÉÊ Ibid., p. 11 (italics added).

482 the fallacy of software engineering chapter 7

is not surprising. Nor is it surprising that the same experts who promote the
idea of software engineering also promote absurd theories like structured
programming or object-oriented programming: we can hardly expect individ-
uals who fall victim to an elementary logical fallacy to invent sensible theories.

�

The second thing we note in the idea of software engineering is a distortion of
facts. When the theorists liken the current programmers to the old craftsmen,
they misrepresent both the spirit and the tradition of craftsmanship. The
craftsmen were highly skilled individuals. They developed their knowledge
over many years – years of arduous training as apprentices, followed by years
of practice as journeymen, and further experience as masters. The craftsmen
were true experts, in that they knew everything that could be known in their
time in a particular field. Another way to describe their expertise is by saying
that they were expected to attain the highest level of proficiency that human
minds can attain in a given domain.

When likening programmers to craftsmen, the software theorists imply that
the knowledge and experience that programmers have in their domain is
similar to the knowledge and experience that craftsmen had in theirs; they
imply that programmers know everything that can be known in the domain of
software, that they have attained the utmost that human minds can attain in
the art of programming. But is this true?

Let us recall what kind of “craftsman” was the programmer of the 1960s and
1970s – the period when this comparison was first enunciated. The typical
worker employed by a company to develop software applications had no
knowledge whatever of computers, or electronics, or engineering, and only
high-school knowledge of such software-related subjects as science, logic, and
mathematics. Nor was he required to have any knowledge of accounting, or
manufacturing, or any other field related to business computing. Most of these
individuals drifted into programming, as a matter of fact, precisely because
they had no skills, so they could find no other job. Moreover, to become
programmers, all they had to do was attend an introductory course, measured
in weeks. (In contrast, the training of engineers, nurses, librarians, social
workers, etc., took years. So, compared with other occupations, programmers
knew nothing. Programming was treated, thus, not as a profession, but as
unskilled labour. This attitude never changed, as we will see throughout the
present chapter. Despite the engineering rhetoric, programmers are perceived
as the counterpart, not of engineers, but of assembly-line workers.)

Not only did programmers lack any real knowledge, but they were pre-
vented from gaining any real experience. Their work was restricted to trivial

the fallacy of software engineering 483chapter 7

programming tasks – to small and isolated pieces of an application – and no
one expected them to ever create and maintain whole business systems. After
a year or two of this type of work, they were considered too skilled to program,
so they were promoted to the position of systems analyst, or project manager,
or some other function that involved little or no programming. Because it was
deemed that their performance was the highest level attainable by an average
person, many such positions were invented in an attempt to turn the challenge
of software development from a reliance on programming skills to a reliance
on management skills; that is, an attempt to create and maintain software
applications through a large organization of incompetents, instead of a small
number of professionals.ÉË

From the beginning, then, the programming career was seen, not as a
lifelong plan – a progression from apprentice to master, from novice to expert
– but as a brief acquaintance with programming on the way to some other
career. Programmers were neither expected nor permitted to expand their
knowledge, or to perform increasingly demanding tasks. Since it was assumed
that dealing with small and isolated programming problems represents the
highest skill needed, and since almost anyone could acquire this skill in a few
months, being a programmer much longer was taken as a sign of failure:
that person, it was concluded, could not advance past the lowly position
of programmer. The programming career ended, in effect, before it even
started. Programming became one of those dubious occupations for which the
measure of success is how soon the practitioner ceases to practise it. Thus, for
a programmer, the measure was how soon he was promoted to a position that
did not involve programming.

The notion of craftsmanship entailed, of course, more than just knowledge
and experience. It was the craftsman’s devotion to his vocation, his professional
pride, and a profound sense of responsibility, that were just as important for
his success. By perceiving programming as a brief phase on their way to
some other occupation, it was impossible for programmers to develop the
same qualities. Thus, even more than the lack of adequate knowledge and
experience, it is the lack of these qualities that became the chief characteristic
of our programming culture.

ÉË While the whole world was mesmerized by the software propaganda, which was
portraying programmers as talented professionals, the few sociologists who conducted their
own research on this subject had no difficulty discovering the reality: the systematic
deskilling of programmers and the bureaucratization of this profession. The following two
works stand out (see also the related discussion and note 2 in “The Software Myth”
in the introductory chapter, pp. 34–35): Philip Kraft, Programmers and Managers: The
Routinization of Computer Programming in the United States (New York: Springer-Verlag,
1977); Joan M. Greenbaum, In the Name of Efficiency: Management Theory and Shopfloor
Practice in Data-Processing Work (Philadelphia: Temple University Press, 1979).

484 the fallacy of software engineering chapter 7

So the occupation of programming became a haven for mediocre individu-
als, and for individuals with a bureaucratic mind. Someone who previously
could do nothing useful could now hold a glamorous and well-paid position
after just a few weeks of training – a position, moreover, demanding only the
mechanical production of a few lines of software per day. Actually, it soon
became irrelevant whether these lines worked at all, since the inadequacy of
applications was accepted as a normal state of affairs. All that was required of
programmers, in reality, was to conform to the prescripts laid down by the
software elite. It is not too much to say that most business applications have
been created by individuals who are not programmers at all – individuals
who are not even apprentices, because they are not preparing to become
programmers, but, on the contrary, are looking forward to the day when they
will no longer have to program.

In conclusion, if we were to define the typical programmer, we could
describe him or her as the exact opposite of a craftsman. Since the notion of
craftsmanship is well understood, the software theorists must have been aware
of this contradiction when they formulated their idea of software engineering.
Everyone could see that programmers had no real knowledge or experience –
and, besides, were not expected to improve – while the craftsmen attained the
utmost knowledge and experience that an individual could attain. So why did
the theorists liken programmers to craftsmen? Why did they base the idea of
software engineering on a transition from craftsmanship to engineering, when
it was obvious that programmers were not at all like the old craftsmen?

The answer is that the theorists held the principles of software mechanism
as unquestionable truth. They noticed that the programming practices were
both non-mechanistic and unsatisfactory, and concluded that the only way to
improve them was by making them mechanistic. This question-begging
logic prevented them from noticing that they were making contradictory
observations; namely, that programmers were incompetent, and that they were
like the old craftsmen. Both observations seemed to suggest the idea of
software engineering as solution, when in fact the theorists had accepted that
idea implicitly to begin with. The alternative solution – a culture where
programmers can become true software craftsmen – was never considered.

Barry Boehm,ÉÌ in a paper considered a landmark in the history of software
engineering, manages to avoid the comparison of programmers to craftsmen
only by following an even more absurd line of logic. He notes the mediocrity
of programmers, and concludes that the purpose of software engineering must

ÉÌ Barry W. Boehm, “Software Engineering,” in Milestones in Software Evolution, eds. Paul
W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society Press, ©1990 IEEE)
– paper originally published in IEEE Transactions on Computers C-25, no. 12 (1976):
1226-1241.

the fallacy of software engineering 485chapter 7

be, not to create a body of skilled and responsible professionals, but on the
contrary, to develop techniques whereby even incompetent workers can create
useful software: “For example, a recent survey of 14 installations in one large
organization produced the following profile of its ‘average coder’: 2 years
college-level education, 2 years software experience, familiarity with 2 pro-
gramming languages and 2 applications, and generally introverted, sloppy,
inflexible, ‘in over his head,’ and undermanaged. Given the continuing increase
in demand for software personnel, one should not assume that this typical
profile will improve much. This has strong implications for effective software
engineering technology which, like effective software, must be well-matched
to the people who must use it.”ÉÍ

Boehm, evidently, doesn’t think that we ought to determine first whether
programming is, in fact, the kind of skill that can be replaced with hordes of
incompetents trained to follow some simple methods. Note also his idea of
what “effective” software generally must do: not help people to develop their
minds, but keep them at their current, mediocre level. This remark betrays the
paternalism characteristic of the software elite: human beings are seen strictly
as operators of software devices – devices which they, the experts, are going to
design. Thus, the “easy-to-use” software environments upon which our work
increasingly depends today, both as programmers and as users, are, clearly, the
realization of this totalitarian vision.

2

2
The absurdities we have just examined are the type of fallacies one should
indeed expect to find in a mechanistic culture like ours. But we cannot simply
dismiss them. For, if we are to understand how the pseudoscience of software
engineering grew out of the mechanistic ideology, we must start by studying
this distortion of the notions of programming and craftsmanship.

The theorists who promoted the idea of software engineering had, in fact,
very little programming experience. They were mostly academics, so their
knowledge was limited to textbook cases: small and isolated programming
problems, which can be depicted with neat diagrams and implemented by way
of rules and methods. Their knowledge was limited, in other words, to software
phenomena simple enough to represent with exact, mechanistic models. A few
of these theorists were mathematicians, so their preference for formal and
complete explanations is understandable.

And indeed, some valuable contributions were made by theorists in the

ÉÍ Ibid., p. 67 n. 3.

486 the fallacy of software engineering chapter 7

1950s and 1960s, when the field of software was new, and useful mechanistic
concepts were relatively easy to come by: various algorithms (methods to sort
tables and files, for instance) and the principles of programming languages and
compilers are examples of these contributions.

The importance of the mechanistic concepts is undeniable; they form, in
fact, the foundation of the discipline of programming. Mechanistic models,
however, can represent only simple, isolated phenomena. And consequently,
mechanistic software concepts form only a small part of programming knowl-
edge. The most important part is the complex knowledge, the capacity to deal
with many software phenomena simultaneously; and complex knowledge can
only develop in a mind, through personal experience. We need complex
programming knowledge because the phenomena we want to represent in
software – our personal, social, and business affairs – are themselves complex.
Restricted to mechanistic concepts, we can correctly represent in software only
phenomena that can be isolated from the others.

So it was not so much the search for mechanistic theories that was wrong,
as the belief that all programming problems are mechanistic. The theorists had
no doubt that there would be future advances in programming concepts, and
that these advances would be of the same nature as those of the past. They
believed that the field of software would eventually be like mathematics:
nothing but neat and exact definitions, methods, and theories.

This conviction is clearly expressed by Richard Linger et al.,ÉÎ who refer to
it as a “rediscovery” of the value of mathematics in software development. They
note that the early interest in mathematical ideas faded as software applications
increased in complexity, that the pragmatic aspects of programming seem
more important than its mathematical roots. But they believe this decline in
formal programming methods to be just a temporary neglect, due to our
failure to appreciate their value: “Thus, although it may seem surprising, the
rediscovery of software as a form of mathematics in a deep and literal sense
is just beginning to penetrate university research and teaching, as well as
industry and government practices. . . . Of course, software is a special form of
mathematics”ÉÏ

The authors continue their argument by citing approvingly the following
statement made by E. W. Dijkstra (the best-known advocate of “structured
programming”): “As soon as programming emerges as a battle against unmas-
tered complexity, it is quite natural that one turns to that mental discipline
whose main purpose has been for centuries to apply effective structuring to

ÉÎ Richard C. Linger, Harlan D. Mills, and Bernard I. Witt, Structured Programming:
Theory and Practice (Reading, MA: Addison-Wesley, 1979), pp. vii–viii.

ÉÏ Ibid., p. viii (italics added).

the fallacy of software engineering 487chapter 7

otherwise unmastered complexity. That mental discipline is more or less
familiar to all of us, it is called Mathematics. If we take the existence of the
impressive body of Mathematics as the experimental evidence for the opinion
that for the human mind the mathematical method is indeed the most effective
way to come to grips with complexity, we have no choice any longer: we should
reshape our field of programming in such a way that, the mathematician’s
methods become equally applicable to our programming problems, for there are
no other means.”ÉÐ

The delusion of software mechanism is clearly seen in these claims. What
these theorists see as complexity is not at all the real complexity of software –
the complexity found in the phenomena I call complex structures, or systems
of interacting structures. They consider “complex,” systems that are in fact
simple structures, although perhaps very large structures. They praise the
ability of mathematics to master this “complexity”; and indeed, mechanistic
methods can handle simple structures, no matter how large. But it is not this
kind of complexity that is the real problem of programming. The theorists fail
to see that it is quite easy to deal with this kind of complexity, and it is easy
precisely because we have the formal, exact tools of mathematics to master it.
The reason why practitioners neglect the mathematics and continue to rely on
informal methods is that, unlike the professors with their neat textbook
examples, they must deal with the real complexity of the world if they are to
represent the world accurately in software. And to master that complexity, the
formal methods of mathematics are insufficient.

Note the last, emphasized sentence, in each of the two quotations above.
These confident assertions clearly illustrate the morbidity of the mechanistic
obsession. The theorists say that software is, “of course,” a form of mathematics,
but they don’t feel there is a need to prove this claim. Then, they assert just as
confidently that “we should reshape” programming to agree with this claim,
treating now an unproven notion as established fact. In other words, since
the mechanistic theories do not seem to reflect the reality of programming,
we must modify reality to conform to the theories: we must restrict our
software pursuits to what can be explained mechanistically. Instead of trying
to understand the true nature of software and programming, as real scientists
would, these theorists believe their task is simply to enforce the mechanistic
doctrine. The idea that software and programming can be represented mathe-
matically is their delusion; but they see it as their professional duty to make us
all program and use computers in this limited, mechanistic fashion.

Thus, although it was evident from the beginning that the mechanistic
concepts are useful only in isolated situations – only when we can extract a

ÉÐ E. W. Dijkstra, “On a Methodology of Design,” quoted ibid. (italics added).

488 the fallacy of software engineering chapter 7

particular software structure, or aspect, from the complex whole – the theorists
insisted that the difficulty of programming large and complex applications can
be reduced to the easier challenge of programming small pieces of software.
They believed that applications can be “built” as we build cars and appliances;
that is, as a combination of modules, each module made up of smaller ones,
and so on, down to some small bits of software that are easy to program. If each
module is kept independent of the others, if they are related strictly as a
hierarchical structure, the methods that work with small bits of software –
rules, diagrams, mathematics – must hold for modules of any size. The entire
application can then be built, one level at a time, with skills no greater than
those required to program the smallest parts. All that programmers need to
know, therefore, is how to handle isolated bits of software.

So the idea of software engineering is based, neither on personal experience,
nor on a sensible hypothesis, but merely on the mechanistic dogma: on the
belief that any phenomenon can be modeled through reductionism and
atomism.

�

By the mid-1960s, most software concepts that are mechanistic and also
practical had been discovered. But the theorists could not accept the fact that
the easy and dramatic advances were a thing of the past, that we could
not expect further improvements in programming productivity simply by
adopting a new method or principle. They were convinced that similar
advances would take place in the future, that there exist many other mechanis-
tic concepts, all waiting to be discovered. To pick just one example, they
noticed the increase in programming productivity achieved when moving
from low-level to high-level languages, and concluded that other languages
would soon be invented with even higher levels of abstraction, so the same
increase in productivity would be repeated again and again. (The notion
of “generations” of languages, still with us today, reflects this fantasy; see
pp. 452–453.)

To make matters worse, just when major improvements in programming
concepts ceased, advances in computer hardware made larger applications
possible. Moreover, continually decreasing hardware costs permitted more
companies to use computers, so we needed more applications. This situation
was called the software crisis. The theorists watched with envy the advances in
hardware, which continued year after year while programming productivity
stagnated, and interpreted this discrepancy as further evidence that program-
ming must be practised like engineering: if engineering concepts are successful
in improving the computers themselves, they must be useful for software too.

the fallacy of software engineering 489chapter 7

The so-called software crisis, thus, was in reality the crisis of software
mechanism: what happened when the mechanistic principles reached the limit
of their usefulness. The crisis was brought about by the software theorists,
when they declared that programming is a mechanistic activity. This led to the
belief that anyone can practise programming, simply by following certain
methods. So the theorists founded the culture of programming incompetence,
which eventually caused the crisis. They recognized the crisis, but not its roots
– the fallacy of software mechanism. They aggravated the crisis, thus, by
claiming that its solution was to treat programming as a form of engineering,
which made programming even more mechanistic. Software mechanism
became a dogma, and all that practitioners were permitted to know from then
on was mechanistic principles.

Deprived of the opportunity to develop complex knowledge, our skills
remain at a mechanistic level – the level of novices. Craftsmanship – the highest
level of knowledge and skills – is attained by using the mind’s capacity for
complex structures, while mechanistic thinking entails only simple structures.
So what the theorists are promoting through their ideas is not an intellectual
advance, but a reversal: from complex to mechanistic thinking, from expertise
to mediocrity, from a culture that creates skilled masters to one that keeps
programmers as permanent novices.

The software crisis was never resolved, of course, but we no longer notice it.
We no longer see as a crisis the inefficiency of programmers, or the astronomic
amounts of money spent on software, or the $100-million failures. We are no
longer surprised that applications are inadequate, or that they cannot be kept
up to date and must be perpetually replaced; we are regularly replacing now, in
fact, not just our applications but our entire computing environments. We
don’t question the need for society to support a large software bureaucracy.
And we don’t see that it is the incompetence of programmers, and the inade-
quacy of their applications, that increasingly force other members of society to
waste their time with spurious, software-related activities. What was once a
crisis in a small section of society has become a normal way of life for the entire
society.

The software crisis can also be described as the struggle to create useful
applications in a programming culture that permits only mechanistic thinking;
specifically, the struggle to represent with simple software structures the
complex phenomena that make up our affairs. It is not too much to say that
whatever useful software we have had was developed, not by means of, but in
spite of, the principles of software engineering; it was developed through
craftsmanship, and while fighting the restrictions imposed by our corrupt
programming culture. Had we followed the teachings of the software theorists,
we would have no useful applications today.

490 the fallacy of software engineering chapter 7

3

3
The software theorists, we saw, distorted both the notion of craftsmanship and
the notion of programming to fit their mechanistic fantasies. They decided
arbitrarily that programming is like engineering, because they had already
decided that future advances in programming principles were possible, and
that these advances would be, like those of the past, mechanistic. They likened
incompetent programmers to craftsmen because they saw the evolution
of practitioners from craftsmen to engineers as a necessary part of these
advances. The analogy – an absurdity – became then the central part of the idea
of software engineering. Mesmerized by the prospect of building software
applications as successfully as engineers build physical structures, no one
noticed the falsity of the comparison. Everyone accepted it as a logical con-
clusion reached from the idea of software engineering, even as software
engineering itself was only a wish, a fantasy.

The theorists claimed that programming, if practised as craftsmanship,
cannot improve beyond the level attained by an average programmer. But they
made this statement without knowing what real software craftsmanship is.
They saw programmers as craftsmen while programmers lacked the very
qualities that distinguished the old craftsmen. Programming, as a matter of
fact, is one of those vocations that can benefit greatly from the spirit of
craftsmanship – from personal skills and experience – because it requires
complex knowledge. If we are to liken programmers to the old craftsmen, we
should draw the correct conclusion; namely, that programmers too must have
the highest possible education, training, and experience. (And it is probably
even more difficult to attain the highest level of expertise in the field of
programming than it was in the old fields.)

Had we allowed programmers to develop their skills over many years,
to perform varied and increasingly demanding tasks, and to work in ways
that enhance their minds, rather than waste their time with worthless concepts
– in other words, had we created a programming culture in the spirit of
craftsmanship – we would have had today a true programming profession.
We would then realize that what programmers must accomplish has little
to do with engineering; that mechanistic knowledge (including subjects
like mathematics and engineering), crucial though it is, is the easy part of
programming expertise; that it is the unspecifiable kind of knowledge (what we
recognize as personal skills and experience) that is the most difficult and the
most important part.

The software theorists note the higher levels of knowledge attained by

the fallacy of software engineering 491chapter 7

certain individuals, but they cannot explain this performance mechanistically;
so they brand it as “art” and reject it as unreliable. We could always find
exceptional programmers; but instead of interpreting their superior perform-
ance as evidence that it is possible to attain higher levels of programming skills,
instead of admitting that the traditional process of skill acquisition is the best
preparation for programmers, the mechanists concluded the opposite: that we
must avoid these individuals, because they rely on personal knowledge rather
than exact theories.

�

Distorting the notions of craftsmanship and programming, however, was not
enough. In order to make software mechanism plausible, and to appropriate
the term “engineering” for their own activities, the software theorists had to
distort the notion of engineering itself. Thus, they praise the principles of
engineering, and claim that they are turning programming into a similar
activity, while their ideas are, in fact, childish imitations of the engineering
principles.

It is easy for the software theorists to delude themselves, since they know
even less about engineering than they know about programming. They praise
the power and precision of mathematics; and, indeed, the real engineering
disciplines are grounded upon exact and difficult mathematical concepts.
Their theories, on the other hand – when not plain stupid – are little more than
informal pieces of advice. Far from having a solid mathematical foundation,
the software theories resemble the arguments found in self-help books or in
cookbooks more than they do engineering principles. The few theories that are
indeed mathematical have no practical value, so they are ignored, or are made
useful by being downgraded to informal methods. The most common form of
deception, we will see, is to promote a formal theory by means of contrived,
oversimplified case studies, while employing in actual applications only the
downgraded, informal variant. Thus, whereas real engineering is a practical
pursuit, software engineering works only with trivial, artificial examples.

The software theorists also misrepresent engineering when they point
to the neat hierarchical structures – components, modules, prefabricated
subassemblies – as that ideal form of design and construction that program-
ming is to emulate. Because they know so little about engineering, all they see
in it is what they wish programming to become, what they believe to be
the answer to all programming problems, as if the concept of hierarchical
structures were all there is to engineering. They ignore the creativity, the skills,
the contribution of exceptional minds; that is, the non-mechanistic aspects of
engineering, which are just as important as the formal principles and methods.

492 the fallacy of software engineering chapter 7

Clearly, without the non-mechanistic aspects there would be no inventions or
innovations, and engineering would only produce neat structures of old things.

The software theorists refuse to acknowledge the informal aspects of
engineering because, if they did, they would have to admit that much of
programming too is informal, non-mechanistic, and dependent on personal
skills and experience. In programming, moreover, our non-mechanistic capa-
bilities are even more important, because, unlike our engineering problems,
nearly all the problems we are addressing through software – our social,
personal, and business affairs – form systems of interacting structures.

In conclusion, the idea of software engineering makes sense only if we agree
to degrade our conceptions of knowledge and skills, of craftsmanship and
engineering, of software and programming, to a level where they can all be
replaced with the mechanistic principles of reductionism and atomism.

�

The early software theorists were trained scientists, as we saw, and made a real
contribution – at least where mechanistic principles are useful. But it would be
wrong to think that all software theorists are true scientists. By upholding the
mechanistic software ideology, the early theorists established a software
culture where incompetents, crackpots, and charlatans could look like experts.

Thus, someone too ignorant to work in the exact sciences, or in the real
engineering disciplines, could now pursue a prestigious career in a software-
related field. Just as the mechanistic software culture had made it possible
for the most ignorant people to become programmers, the same culture
allowed now anyone with good communication skills to become a theorist, a
lecturer, a writer, or a consultant. Individuals with practically no knowledge of
programming, or computers, or science, or engineering became rich and
famous simply by talking and writing about software, as they could hypnotize
programmers and managers with the new jargon. Also, because defining things
as a hierarchical structure was believed to be the answer to all programming
problems, anyone who could draw a hierarchical diagram was inventing a new
theory or methodology based on this idea. Thousands of books, newsletters,
periodicals, shows, and conferences were created to promote these idiocies.

Finally, as the entire society is becoming dependent on software, and hence
on ignorant theorists and practitioners, we are all increasingly preoccupied
with worthless mechanistic ideas. Thus, the ultimate consequence of the
mechanistic software ideology is not just programming incompetence, but a
mass stupidity that the world has not seen since the superstitions of the Dark
Ages. (If you think this is an exaggeration, wait until we study the GOTO

superstition – the most famous tenet of programming science.)

the fallacy of software engineering 493chapter 7

Software Engineering as Pseudoscience Software Engineering
as Pseudoscience

1 1
Let us start with the definition of software engineering. Here are three defini-
tions frequently cited in the software literature: “Software engineering is that
form of engineering that applies the principles of computer science and
mathematics to achieving cost-effective solutions to software problems.”É “The
practical application of scientific knowledge in the design and construction of
computer programs and the associated documentation required to develop,
operate, and maintain them.”Ê “The establishment and use of sound engineer-
ing principles (methods) in order to obtain economically software that is
reliable and works on real machines.”Ë

At first sight, these statements look like a serious depiction of a profession,
or discipline. Their formal tone, however, is specious. They may well describe
a sphere of activities, but there is nothing in these definitions to indicate the
usefulness, or the success, of these activities. In other words, even if they
describe accurately what software practitioners are doing (or ought to be
doing), we cannot tell from the definitions themselves whether these activities
are essential to programming, or whether they are spurious. As we will see in
a moment, an individual can appear perfectly rational in the pursuit of an idea,
and can even display great expertise, while the idea itself is a delusion.

These definitions are correct insofar as they describe the programming
principles recommended by the software theorists. But we have no evidence
that it is possible to develop actual software applications by adhering to
these principles. We saw in the previous section that the very term “software
engineering” constitutes a circular definition, since it was adopted without
determining first whether programming is indeed a form of engineering; it
was adopted because the software theorists wished programming to be like
engineering (see pp. 481–483). And the same circularity is evident in the

É Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1218.

Ê Barry W. Boehm, “Software Engineering,” in Milestones in Software Evolution, eds. Paul
W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society Press, ©1990 IEEE),
p. 54 – paper originally published in IEEE Transactions on Computers C-25, no. 12 (1976):
1226–1241.

Ë F. L. Bauer, quoted in Randall W. Jensen and Charles C. Tonies, “Introduction,” in
Software Engineering, eds. Randall W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ:
Prentice Hall, 1979), p. 9.

494 software engineering as pseudoscience chapter 7

definitions just cited: software engineering is “that form of engineering,” is
“the practical application of scientific knowledge,” is “sound engineering
principles.” In all three cases, the definition merely expresses the unproven idea
that software engineering is a form of engineering.

The definition of software engineering, thus, is not the definition of a
profession or discipline, but the definition of a wish, of a fantasy. The fallacy
committed by the advocates of software engineering is to think that, if it is
possible to define a set of principles and methods so as to formally express a
wish, then we should also be able to practise them and fulfil that wish.Ì

Recall what a pseudoscience is: a system of belief masquerading as scientific
theory. Accordingly, the various principles, methods, and activities known as
software engineering, no matter how rational they may appear when observed
individually, form in reality a pseudoscience.

�

If it is so difficult to distinguish between sensible and fallacious definitions, or
between useful and spurious activities, in the domain of programming, it will
perhaps help to examine first some older and simpler delusions.

Consider superstitions – the idea that the number 13 brings misfortune, for
instance. Once we accept this idea, the behaviour of a person who avoids the
number 13 appears entirely rational and logical. Thus, to determine whether a
particular decision would involve the value 13, that person must perform
correctly some calculations or assessments; so he must do exactly what a
mathematician or engineer would do in that situation. When a person insists
on redesigning a device that happens to have thirteen parts, or kilograms, or
inches, his acts are indistinguishable from those of a person who redesigns that
device in order to improve its performance; in both cases, the changes entail
the application of strict engineering methods, and the acts constitute the
pursuit of a well-defined goal. When the designers of a high-rise building
decide to omit the thirteenth floor, they must adjust carefully their plans to take
into account the discrepancy between levels and floor numbers above the
twelfth floor. And lawyers drawing documents for the units on the high floors
must differentiate between their level, which provides the legal designation,
and the actual floor number. These builders and lawyers, then, perform the
same acts as when solving vital engineering or legal problems.

Ì In “Software Magic” (in the introductory chapter), we studied the similarity between
mechanistic software concepts and primitive magic systems; and we saw that magic systems,
too, entail the formal expression of wishes and the meticulous practice of the rituals believed
to fulfil those wishes.

software engineering as pseudoscience 495chapter 7

Note that the activities performed by believers, and by anyone else affected
by this superstition, are always purposeful, logical, and consistent. Watching
each one of these activities separately, a casual observer has no reason to
suspect that the ultimate objective is simply to avoid the number 13. In fact,
even when we are aware of this objective, we may have no way of recognizing
the uselessness of these activities. Thus, we could formally define these activities
as “the practical application of scientific and engineering knowledge to the
prevention of misfortune.” But, obviously, just because we can define them it
doesn’t mean that they are effective.

Consider also a system of belief like astrology. Astrologers must follow, of
course, the position of the heavenly bodies, and in this activity they behave
just like astronomers. The interpretation of these positions involves various
principles and methods, some of which have been in use for millennia; so in
this activity, too, astrologers must display professional knowledge and skills.
A person who cancels a trip because an astrological calculation deems travel
hazardous is clearly concerned with safety, and acts no differently from a
person who cancels a trip because of bad weather. Astrologers employ certain
principles and methods – tables that relate traits to birth dates, for example –
to assess the personality of people and to explain their behaviour; but psychol-
ogists also use various principles and methods to assess personality and to
explain behaviour.

So, as in the case of superstitions, just by watching each activity separately,
an observer cannot suspect that astrology as a whole is a delusion. Within this
system of belief – once we accept the idea that human beings are affected by the
position of the heavenly bodies – all acts performed by practitioners and
believers appear purposeful, logical, and consistent. A formal definition like
“the practical application of astronomic and mathematical principles to the
prediction of future events” describes accurately these activities. But being
definable doesn’t make these activities sensible. As in the case of superstitions,
their definition is the definition of a wish.

And so it is for software engineering. Recall the definitions cited earlier:
“that form of engineering that applies the principles of computer science and
mathematics to achieving cost-effective solutions to software problems,” etc.
We wish programming to be a form of engineering; but, just because we can
express this wish in a formal definition, it doesn’t follow that the methods and
activities described by this definition form a practical pursuit like traditional
engineering. We note that millions of practitioners follow the mechanistic
theories of software engineering, and each one of these activities appears
purposeful, intelligent, and urgent. But no matter how logical these activities
are when observed separately, the body of activities as a whole can still
constitute a delusion. As we will see in the present chapter, the pseudoscientific

496 software engineering as pseudoscience chapter 7

nature of the mechanistic software theories is easily exposed when we assess
them with the principles of demarcation between science and pseudoscience
(see “Popper’s Principles of Demarcation” in chapter 3).

2

2
Pseudosciences are founded on hypotheses that are treated as unquestionable
truth. (In the theories we have just examined, the hypothesis is that certain
numbers, or the heavenly bodies, influence human affairs.) Scientific theories
also start with a hypothesis, but their authors never stop doubting the hypothe-
sis. Whereas pseudoscientists think their task is to defend their theory, serious
workers know that theories must be tested; and the only effective way to
test a theory is by attacking it: by searching, not for confirmations, but
for falsifications. In empirical science it is impossible to prove a theory, so
confirmations are worthless: no matter how many confirmations we find, we
can never be sure that we have encountered all possible, or even all relevant,
situations. At the same time, just one situation that falsifies the theory is
sufficient, logically, to refute it. The correct approach, therefore, is to accept a
theory not because it can be defended, but because it cannot be refuted; that is,
not because we can confirm it, but because we cannot falsify it.

It is easy to defend a fallacious theory: all we have to do is restrict our
studies to cases that confirm its claims, and ignore those cases that falsify
it. Thus, while a scientific theory is required to pass tests, pseudosciences
appear to work because they avoid tests. If we add to this the practice of
continually expanding the theory (by inventing new principles to cope with the
falsifications, one at a time), it should be obvious that almost any theory can
be made to look good.

A popular pseudoscientific theory becomes a self-perpetuating belief
system, and can reach a point where its validity is taken for granted no matter
how fallacious it is. This is because its very growth is seen by believers, in a
circular thought process, as proof of its validity. Whenever noticing a failure –
a claim that does not materialize, for instance – they calmly dismiss it as a
minor anomaly. They are convinced that an explanation will soon be found, or
that the failure is merely an exception, so they can deal with it by modifying
slightly the theory. They regard the system’s size, its many adherents, the large
number of methods and formulas, the length of time it has been accepted, as a
great logical mass that cannot be shaken by one failure. They forget that the
system’s great mass was reached precisely because they always took its validity
for granted, so they always dismissed its failures – one at a time, just as they are
now dismissing the new one.

software engineering as pseudoscience 497chapter 7

A theory can be seen as a body of provisional conjectures that must be
verified empirically. Any failure, therefore, must be treated as a falsification of
the theory and taken very seriously. If believers commit (out of enthusiasm, for
example) the mistake of regarding any success as confirmation of the theory
while dismissing the failures as unimportant, the system is guaranteed to grow,
no matter how erroneous those conjectures are. The system’s growth and
popularity are then interpreted as evidence of its validity, and each new failure
is dismissed on the strength of this imagined validity, when in fact it is these
very failures that ought to be used to judge its validity. This circularity makes
the theory unfalsifiable: apparently perfect, while in reality worthless.

�

Pseudosciences, thus, may suffer from only one mistaken hypothesis, only one
false assumption. Apart from this mistake, the believers may be completely
logical, so their activities may be indistinguishable from true scientific work.
But if that one assumption is wrong, the system as a whole is nonsensical.

It is this phenomenon – the performance of activities that are perfectly
logical individually even while the body of activities as a whole constitutes a
delusion – that makes pseudosciences so hard to detect, so strikingly like the
real sciences. And this is why the principles of demarcation between science
and pseudoscience are so important. Often, they are the only way to expose an
invalid theory.

Any hypothesis can form the basis of a delusion, and hence a pseudoscience.
So we should not be surprised that the popular mechanistic hypothesis has been
such a rich source of delusions and pseudosciences. Because of their similarity
to the traditional pseudosciences, I have called the delusions engendered by the
mechanistic hypothesis the new pseudosciences (see pp. 201–202). Unlike the
traditional ones, though, the new pseudosciences are pursued by respected
scientists, working in prestigious universities.

Let us recall how a mechanistic delusion turns into a pseudoscience (see
pp. 202–203, 231–233). The scientists start by committing the fallacy of reifi-
cation: they assume that a model based on one isolated structure can provide
a useful approximation of the complex phenomenon, so they extract that
structure from the system of structures that make up the actual phenomenon.
In complex phenomena, however, the links between structures are too strong
to be ignored, so their model does not represent the phenomenon closely
enough to be useful. What we note is that the theory fails to explain certain
events or situations. For example, if the phenomenon the scientists are studying
involves minds and societies, the model fails to explain certain behaviour
patterns, or certain intelligent acts, or certain aspects of culture.

498 software engineering as pseudoscience chapter 7

Their faith in mechanism, though, prevents the scientists from recognizing
these failures as a refutation of the theory. Because they take the possibility of
a mechanistic explanation not as hypothesis but as fact, they think that only a
few falsifying instances will be found, and that their task is to defend the theory:
they search for confirming instances and avoid the falsifying ones; and, when
a falsification cannot be dismissed, they expand the theory to make it explain
that instance too. What they are doing, thus, to save the theory, is turning
falsifications of the theory into new features of the theory. Poor mechanistic
approximations, however, give rise to an infinity of falsifying instances; so they
must expand the theory again and again. This activity is both dishonest and
futile, but they perceive it as research.

A theory can be said to work when it successfully explains and predicts; if it
must be expanded continually because it fails to explain and predict some
events, then, clearly, it does not work. Defending a mechanistic theory looks
like scientific research only if we regard the quest for mechanistic explanations
as an indisputable method of science. Thus, the mechanists end up doing
in the name of science exactly what pseudoscientists do when defending
their theories. When expanding the theory, when making it agree with an
increasingly broad range of situations, what they do in effect is annul, one by
one, its original claims; they make it less and less precise, and eventually render
it worthless (see pp. 223–224).

Since it is the essence of mechanism to break down complex problems
into simpler ones, the mechanistic hypothesis, perhaps more than any other
hypothesis, can make the pursuit of a delusion look like serious research. These
scientists try to solve a complex problem by dividing it into simpler ones, and
then dividing these into simpler ones yet, and so on, in order to reach isolated
problems; finally, they represent the isolated problems with simple structures.
And in both types of activities – dividing problems into simpler ones, and
working with isolated simple structures – their work is indistinguishable from
research in fields like physics, where mechanism is useful. But if the original
phenomenon is non-mechanistic, if it is the result of interacting phenomena,
a model based on isolated structures cannot provide a practical approximation.
So those activities, despite their resemblance to research work, are in fact
fraudulent.

Being worthless as theories, all mechanistic delusions must eventually
come to an end. The scientists, however, learn nothing from these failures.
They remain convinced that the principles of reductionism and atomism
can explain all phenomena, so their next theory is, invariably, another mecha-
nistic delusion. They may be making only one mistake: assuming that any
phenomenon can be separated into simpler ones. But if they accept this notion
unquestioningly, they are bound to turn their theories into pseudosciences.

software engineering as pseudoscience 499chapter 7

3

3
The purpose of this discussion is to show how easy it is for large numbers of
people, even an entire society, to engage in activities that appear intelligent
and logical, while pursuing in fact a delusion; in particular, to show that
the mechanistic software pursuits constitute this type of delusion. Our soft-
ware delusions have evolved from the same mechanistic culture that fosters
delusions in fields like psychology, sociology, and linguistics. But, while these
other delusions are limited to academic research, the software delusions are
affecting the entire society.

Recall how a mechanistic software theory turns into a pseudoscience.
Software applications are systems of interacting structures. The structures that
make up an application are the various aspects of the application. Thus, each
software or business practice, each file with the associated operations, each
subroutine with its calls, each memory variable with its uses, forms a simple
structure. And these structures interact, because they share their elements – the
various software entities that make up the application (see pp. 345–346).

The mechanistic software theories, though, claim that an application can be
programmed by treating these aspects as independent structures, and by
dealing with each structure separately. For example, the theory of structured
programming is founded on the idea that the flow-control operations form an
independent structure; and the database theories are founded on the idea that
the database operations form an independent structure.

Just like the other mechanistic theories, the software theories keep being
falsified. A theory is falsified whenever we see programmers having to override
it, whenever they cannot adhere strictly to its principles. And, just like the
other mechanists, the software mechanists deny that these falsifications
constitute a refutation of the theory: being based on mechanistic principles,
they say, the theory must be correct.

So instead of doubting the theory, instead of severely testing it, the software
mechanists end up defending it. First, they search for confirmations and avoid
the falsifications: they discuss with enthusiasm the few cases that make the
theory look good, while carefully avoiding the many cases where the theory
failed. Second, they never cease “enhancing” the theory: they keep expanding
it by contriving new principles to make it cope with the falsifying situations as
they occur, one at a time.

Ultimately, as we will see in the following sections, all software theories
suffer from the two mechanistic fallacies, reification and abstraction: they
claim that we can treat the various aspects of an application as independent

500 software engineering as pseudoscience chapter 7

structures, so we can develop the application by dealing with these structures
separately; and they claim that we can develop the same applications by
starting from high levels of abstraction as we can by starting from low levels.
The modifications needed later to make a theory practical are then simply a
reversal of these claims; specifically, restoring the capability to link structures
and to deal with low-level entities. In the end, the informal, traditional
programming concepts are reinstated – although in a more complicated way,
under new names, as part of the new theory. So, while relying in fact on these
informal concepts, everyone believes that it is the theory that helps them to
develop applications.

�

Our programming culture has been distinguished by delusions for more than
forty years. These delusions are expressed in thousands of books and papers,
and there is no question of studying them all here. What I want to show rather
is that, despite their variety and their changes over the years, all software
delusions have the same source: the mechanistic ideology. I will limit myself,
therefore, to a discussion of the most famous theories. The theories are
changing, and new ones will probably appear in the future, but this study will
help us to recognize the mechanistic nature of any theory.

In addition to discussing the mechanistic theories and their fallacies, this
study can be seen as a general introduction to the principles and problems that
make up the challenge of software development. So it is also an attempt to
explain in lay terms what is the true nature of software and programming.
Thus, if we understand why the mechanistic ideas are worthless, we can
better appreciate why personal skills and experience are, in the end, the most
important determinant in software development.

Structured Programming Structured Programming
Structured programming occupies a special place in the history of software
mechanism. Introduced in the 1970s, it was the first of the great software
theories, and the first one to be described as a revolution in programming
principles. It was also the first attempt to solve the so-called software crisis, and
it is significant that the solution was seen, even then, not in encouraging
programmers to improve their skills, but in finding a way to eliminate the need
for skills.

structured programming 501chapter 7

Thus, this was the first time that programming expertise was redefined to
mean expertise in the use of substitutes for expertise – methods, aids, or
devices supplied by a software elite. This interpretation of expertise was so
well received that it became the chief characteristic of all the theories that
followed.

Another common characteristic, already evident in structured program-
ming, is the enthusiasm accompanying each new theory – an enthusiasm that
betrays the naivety of both the academics and the practitioners. Well-known
concepts – the hierarchical structure, the principles of reductionism and
atomism – are rediscovered again and again, and hailed as great advances, as
the beginning of a science of programming. No one seems to notice that, not
only are these concepts the same as in the previous software delusions, but they
are the same as in every mechanistic delusion of the last three centuries.

Structured programming was the chief preoccupation of practitioners
and academics in the 1970s and 1980s. And, despite the occasional denial,
it continues to dominate our programming practices. The reason this is
not apparent is our preoccupation with more recent theories, more recent
revolutions. But, even though one theory or another is in vogue at a given time,
the principles of structured programming continue to be obeyed as faithfully
as they were in the 1970s. The GOTO superstition, for example, is as widespread
today as it was then.

Finally, it is important to study structured programming because it was
this theory that established the software bureaucracy, and the culture of
programming incompetence and irresponsibility. The period before its intro-
duction was the last opportunity our society had to found a true programming
profession. For, once the bureaucrats assumed control of corporate program-
ming, what ensued was inevitable. It was the same academics and gurus who
invented the following theories, and the same programmers and managers
who accepted them, again and again. The perpetual cycle of promises and
disappointments – the cycle repeated to this day with each new methodology,
programming aid, or development environment – started with structured
programming. Since the same individuals who are naive enough to accept one
theory are called upon, when the theory fails, to assess the merits of the next
one, it is not surprising that the programming profession has become a closed,
stagnating culture. Once we accepted the idea that it is not programming
expertise that matters but familiarity with the latest substitutes for expertise, it
was inevitable that precisely those individuals incapable of expertise become
the model of the software professional.

502 structured programming chapter 7

The Theory

The Theory
1 1
To appreciate the promise of structured programming, we must take a moment
to review the programming difficulties that prompted it. Recall, first, what is
the essence of software. The operations that make up a program are organized
in logical constructs – mostly conditions and iterations – which reflect the
relations between the processes and events we want to represent in software. A
typical software module, therefore, is not just a series of consecutive operations,
but a combination of blocks of operations that are executed or bypassed, or are
executed repeatedly, depending on various run-time conditions. Within
each block, we can have, in addition to the consecutive operations, further
conditions and iterations. In other words, these constructs can be nested: a
module can have several levels of conditions within conditions or iterations,
and iterations within conditions or iterations. Blocks can be as small as one
operation, or statement, but usually include several. And if we also remember
that certain operations serve to invoke other modules at run time, then, clearly,
applications of any size can be created in this manner.É

The conditional construct consists of a condition (which involves, usually,
values that change while the application is running) and two blocks; with this
construct, the programmer specifies that the first block be executed when the
condition is evaluated as True, and the second block when evaluated as False.
(In practice, one of the two blocks may be empty.) The iterative construct
consists of a condition (which involves usually values that change from one
iteration to the next) and the block that is to be executed repeatedly; with this
construct, the programmer specifies that the repetition continue only as long
as the condition is evaluated as True. (Iterative software constructs are known
as loops.) Conditions and iterations are flow-control operations, so called
because they control the program’s flow of execution; that is, the sequence in
which the other kinds of operations (calculations, assigning values to variables,
displaying data, accessing files, etc.) are executed by the computer.

Modifying the flow of execution entails “jumping” across blocks of opera-
tions: jumping forward, in order to prevent the execution of an unwanted

É Some definitions: Block denotes here any group of consecutive, related operations (not
just the formal units by this name in block-structured languages). Operation denotes the
simplest functional unit, which depends on the programming language (one operation in a
high-level language is usually equivalent to several, simpler operations in a low-level
language). Statement denotes the smallest executable unit in high-level languages. Since
structured programming and the other theories discussed here are concerned mainly with
high-level languages, “statement” and “operation” refer to the same software entities.

the theory 503chapter 7

block, or jumping backward, in order to return to the beginning of a block
that must be repeated. These jumps are necessary because the sequence of
operations that make up a program constitutes, essentially, a one-dimensional
medium. Physically (in the program’s listing, or when the program resides in
the computer’s memory), all possible operations must be included, and they
can appear in only one sequence. At run time, though, the operations must be
executed selectively, and in one sequence or another, depending on how the
various conditions are evaluated. In other words, the dynamic sequence may
be very different from the static one. The only way to execute the operations
differently from their static sequence is by instructing the computer at various
points to jump to a certain operation, forward or backward, instead of continu-
ing with the next one. For example, although the two blocks in a conditional
construct appear consecutively (both in the listing and in memory), only one
must be executed; thus, the first one must be bypassed when the second
one is to be executed, and the second one must be bypassed when the first one
is to be executed.

It is the programmer’s task to design the intricate network of jumps that,
when the application is running, will cause the various operations to be
executed, skipped, or repeated, as required. To help programmers (and the
designers of compilers) create efficient machine code, computers have a rich
set of low-level flow-control features: conditional and unconditional jump
instructions, loop instructions, repeat instructions, index registers, and so
forth. These features are directly available in low-level, assembly languages, and
their great diversity reflects the important role that flow-control operations
play in programming. In high-level languages, the low-level flow-control
features are usually available only as part of complex, built-in operations. For
example, a statement that compares two character strings in the high-level
language will use, when translated by the compiler into machine code, index
registers and loop instructions.

The jump operation itself is provided in high-level languages by the GOTO

statement (often spelled as one word, GOTO); for example, GOTO L2 tells
the computer to jump to the statement following the label L2, instead of
continuing with the next statement. While it is impossible to attain in high-
level languages the same versatility and efficiency as in assembly languages,
the GOTO statement, in conjunction with conditional statements and other
features, allows us to create all the flow-control constructs we need in those
applications normally developed in high-level languages.

Programmers, it was discovered from the very beginning, cannot easily
visualize the flow of execution; and, needless to say, without a complete
understanding of the flow of execution it is all but impossible to design an
application correctly. What we note is software defects, or “bugs”: certain

504 structured programming chapter 7

operations are not executed when they should be, or are executed when they
shouldn’t be.

Serious applications invariably give rise to intricate combinations of flow-
control constructs, simply because those affairs we want to represent in
software consist of complex combinations of processes and events. It is the
interaction of flow-control constructs – the need to keep track of combinations
of constructs – that poses the greatest challenge, rather than merely the large
number of constructs. Even beginners can deal successfully with separate
constructs; but nested, interacting constructs challenge the skills of even
the most experienced programmers. The problem, of course, is strictly a
human one: the limited capacity of our mind to deal with combinations of
relations, nestings, and alternatives. The computer, for its part, will execute
an involved program as effortlessly as it does a simple one. Like other skills,
though, it is possible to improve our ability to deal with structures of flow-
control constructs. But this can only be accomplished through practice: by
programming and maintaining increasingly complex applications over many
years.

The flow-control constructs, then, are one of the major sources of program-
ming errors. The very quality that makes software so useful – what allows us to
represent in our applications the diversity and complexity of our affairs – is
necessarily also a source of programming difficulties. For, we must anticipate
all possible combinations, and describe them accurately and unambiguously.
Experienced programmers, who have implemented many applications in
the past, know how to create flow-control constructs that are consistent,
economical, streamlined, and easy to understand. Inexperienced programmers,
on the other hand, create messy, unnecessarily complicated constructs, and
end up with software that is inefficient and hard to understand.

Business applications must be modified continuously to keep up with
the changing needs of their users. This work is known as maintenance,
and it is at this stage, rather than in the initial development, that the worst
consequences of bad programming emerge. For, even if otherwise successful,
badly written applications are almost impossible to keep up to date. This is true
because applications are usually maintained by different programmers over the
years, and, if badly written, it is extremely difficult for a programmer to
understand software developed and modified by others. (It was discovered, in
fact, that programmers have difficulty understanding even their own software
later, if badly written.)

Without a good understanding of the application, it is impossible to modify
it reliably. And, as in the initial development, the flow-control constructs
were found to be especially troublesome: the more nestings, jumps, and
alternatives there are, the harder it is for a programmer to visualize, from its

the theory 505chapter 7

listing, the variety of run-time situations that the application was meant to
handle. The deficiencies caused by incorrect modifications are similar to
those caused by incorrect programming in the initial development. For a
live application, however, the repercussions are far more serious. So, to
avoid jeopardizing their applications, businesses everywhere started to limit
maintenance to the most urgent requirements, and the practice of developing
new applications as a substitute for keeping the existing ones up to date
became widespread. The ultimate consequences of bad programming, thus,
are the perpetual inadequacy of applications and the cost of replacing them
over and over.

�

These, then, were the difficulties that motivated the search for better pro-
gramming practices. As we saw earlier, these difficulties were due to the
incompetence of the application programmers. But the software theorists were
convinced that the solution lay, not in encouraging programmers to improve
their skills, but in discovering methods whereby programmers could create
better applications while remaining incompetent. And, once this notion
was accepted, it was not hard to invent such a method. It was obvious that
inexperienced programmers were creating bad flow-control constructs, and
just as obvious that this was one of the reasons for programming inefficiency,
software defects, and maintenance problems. So it was decided to prevent
programmers from creating their own flow-control constructs. Bad program-
mers can create good applications, the theorists declared, simply by restricting
themselves to the existing flow-control constructs. This restriction is the
essence of structured programming.

Most high-level languages of that time already included statements for
the basic flow-control constructs, so all that was needed to implement the
principles of structured programming was a change in programming style.
Specifically, programmers were asked to use one particular statement for
conditions, and one for iterations. What these statements do is eliminate the
need for explicit jumps in the flow of execution, so the resulting constructs –
which became known as the standard constructs – are a little simpler than
those created by a programmer with GOTO statements. The jumps are still there,
but they are now implicit: for the conditional construct that selects one of two
blocks and bypasses the other, we only specify the condition and the two
blocks, and the compiler generates automatically the bypassing jumps; and for
a loop, the compiler generates automatically the jump back to the beginning of
the repeated block.

Since we must use jumps when we create our own flow-control constructs,

506 structured programming chapter 7

what this means is that, if we restrict ourselves to the standard constructs, we
will never again need explicit jumps. Or, expressing this in reverse, simply by
avoiding the GOTO statement we avoid the temptation to create our own flow-
control constructs, and hence inferior applications. GOTO, it was proclaimed, is
what causes bad programming, so it must be avoided.

Now, good programmers use the standard constructs when suitable, but do
not hesitate to modify them, or to create their own, when specialized con-
structs are more effective. These constructs improve the program, therefore, not
complicate it. Everyone could see that it is possible to use GOTO intelligently,
that only when used by incompetents does it lead to bad programming. The
assumption that programmers cannot improve remained unchanged, however.
So the idea of eliminating the need for expertise continued to be seen as an
important principle, as the only solution to the software crisis.

The main appeal of structured programming, thus, is that it appears to
eliminate those programming situations that demand skills and experience.
This, it was hoped, would reduce application development to a routine activity,
to the kind of work that can be performed by almost anyone.

�

Substitutes for expertise are always delusions, and structured programming
was no exception. First, it addressed only one aspect of application develop-
ment – the design of flow-control constructs. Bad programmers, though, do
everything badly, so even if structured programming could improve this one
aspect of their work, other difficulties would remain. Second, structured
programming does not really eliminate the need for expertise even in this
one area. It was very naive to believe that, if it is possible in principle to
program using only the standard constructs, it is also possible to develop real
applications in this fashion. This idea may look good with the small, artificial
examples presented in textbooks, but is impractical for serious business
applications.

So, since programmers still have to supplement the standard constructs
with specialized ones, they need the same knowledge and experience as before.
And if they do, instead, restrict themselves to the standard constructs, as the
theory demands, they end up complicating other aspects of the application.
The aspects of an application are the various structures that make it up, and the
difficulty of programming is due to the need to deal with many of these
structures at the same time. Structured programming succeeds perhaps in
simplifying the flow-control structure, but only by making the other structures
more involved. And, in any case, programmers still need the capacity to deal
with interacting structures. We will study these fallacies in detail later.

the theory 507chapter 7

2

2
So far we have examined the informal arguments – the praise of standard flow-
control constructs and the advice to avoid GOTO. These arguments must be
distinguished from the formal theory of structured programming, which
emerged about 1970. The reason we are discussing both types of arguments is
that the formal theory never managed to displace the informal one. In other
words, even though it was promoted by its advocates as an exact, mathematical
theory, structured programming was in reality just an assortment of methods
– some sensible and others silly – for improving programming practices. We
will separate its formal arguments from the informal ones in order to study it,
but we must not forget that the two always appeared together.

The informal tone of the early period is clearly seen in E. W. Dijkstra’s
notorious paper, “Go To Statement Considered Harmful.”Ê Generally acknowl-
edged as the official inauguration of the structured programming era, this
paper is regarded by many as the most famous piece of writing in the history
of programming. Yet this is just a brief essay. It is so brief and informal, in fact,
that it was published in the form of a letter to the editor, rather than a regular
article.

Dijkstra claims to have “discovered why the use of the GOTO statement has
such disastrous effects,”Ë but his explanation is nothing more than a reminder
of how useful it is to be able to keep track of the program’s dynamic behaviour.
When carelessly used, he observes, GOTO makes it hard to relate the flow of
execution to the nested conditions, iterations, and subroutine calls that make
up the program’s listing: “The unbridled use of the GOTO statement has an
immediate consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress.”Ì

This is true, of course, but Dijkstra doesn’t consider at all the alternative: a
disciplined, intelligent programming style, through which we could benefit
from the power of GOTO. Instead of studying the use of GOTO under this
alternative, he simply asserts that “the quality of programmers is a decreasing

Ê E. W. Dijkstra, “Go To Statement Considered Harmful,” in Milestones in Software
Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society
Press, ©1990 IEEE) – paper originally published in Communications of the ACM 11, no. 3
(1968): 147–148. An equally informal paper from this period is Harlan D. Mills, “The Case
Against GO TO Statements in PL/I,” in Harlan D. Mills, Software Productivity (New York:
Dorset House, 1988) – paper originally published in 1969.

Ë Dijkstra, “Go To Statement,” p. 9.
Ì Ibid. The term “unbridled” is used by Dijkstra to describe the free use of jumps (as

opposed to using jumps only as part of some standard constructs).

508 structured programming chapter 7

function of the density of GOTO statements in the programs they produce,”Í and
concludes that “the GOTO statement should be abolished from all ‘higher level’
programming languages.”Î His reasoning seems to be as follows: since using
GOTO carelessly is harmful, and since good programmers apparently use GOTO

less frequently than do bad programmers, then simply by prohibiting everyone
from using GOTO we will attain the same results as we would if we turned the
bad programmers into good ones.

The logical answer to the careless use of GOTO by bad programmers is not
to abolish GOTO, but to encourage those programmers to improve their skills.
Yet this possibility is not even mentioned. In the end, in the absence of any real
demonstration as to why GOTO is harmful, we must be satisfied with the
statement that “it is too much an invitation to make a mess of one’s program.”Ï

What is noteworthy in this paper, therefore, is not just the informal tone, but
also the senseless arguments against GOTO.

These were the claims in the late 1960s. Then, the tone changed, and the
claims became more ambitious. The software theorists discovered a little
paper,Ð written several years earlier and concerned with the logical transforma-
tion of flow diagrams, and chose to interpret it as the mathematical proof of
their ideas. (We will examine this “proof ” later.) Adapted for programming,
the ideas presented in this paper became known as the structure theorem.

Convinced now that structured programming had a solid mathematical
foundation, the theorists started to promote it as the beginning of a new
science – the science of programming. Structured programming was no longer
seen merely as a body of suggestions for improving programming practices; it
was the only correct way to program. And practitioners who did not obey
its principles were branded as old-fashioned artisans. After all, rejecting
structured programming was now tantamount to rejecting science.

It is this theory – the formal theory of structured programming – that
is important, for it is this theory that was promoted as a programming
revolution, was refuted in practice, and was then rescued by being turned into
a pseudoscience. We could perhaps ignore the informal claims, but it is only by
studying the formal theory that we can appreciate why the idea of structured
programming was a fraud. For, it was its alleged mathematical foundation that
made it respectable. It was thanks to its mathematical promises that it was so
widely accepted – precisely those promises that had to be abandoned in order
to make it practical.

Thus, a striking characteristic of structured programming is that, even after

Í Ibid. Î Ibid. Ï Ibid.
Ð Corrado Böhm and Giuseppe Jacopini, “Flow Diagrams, Turing Machines and

Languages with Only Two Formation Rules,” in Milestones, eds. Oman and Lewis – paper
originally published in Communications of the ACM 9, no. 5 (1966): 366–371.

the theory 509chapter 7

becoming an exact, mechanistic theory, it continued to be defended with
informal arguments. Its mathematical aspects imparted to it a scientific
image, but could not, in fact, support it. So, while advertised as a scientific
theory, structured programming was usually presented in the form of a
programming methodology, and its benefits could be demonstrated only
for simple, carefully selected examples. Moreover, its principles – the GOTO

prohibition, in particular – became the subject of endless debates and changes,
even among the academics who had invented them.Ñ

When a mechanistic theory works, all we need in order to promote it is a
mathematical proof. All we need, in other words, is a formal argument; we
don’t have to resort to persuasion, debates, justifications, case studies, or
testimonials. It is only when a theory fails, and its defenders refuse to accept its
failure, that we see both formal and informal arguments used side by side (see
the discussion in chapter 1, pp. 76–77).

It is impossible to discuss structured programming without stressing this
distinction between the formal and the informal concepts. For, by pointing to
the informal concepts, its advocates can claim to this day that structured
programming was successful. And, in a sense, this is true. It is in the nature of
informal concepts to be vague and subject to interpretation. Thus, since some
of the informal principles are sensible and others silly, one can always praise the
former and describe them as “structured programming.” The useful principles,
as a matter of fact, were known and appreciated by experienced programmers
even before being discovered by the academics; and they continue to be
appreciated, despite the failure of structured programming. But we must not
confuse the small subset of useful principles with the real, mathematical theory
of structured programming – the theory that was promoted by the scientists as
a revolution.

It is because of their mathematical claims that we accepted structured
programming, and the other software theories. Deprived of their formal
foundation, these theories are merely collections of programming tips. So the
effort to cover up their failure amounts to a fraud: we are being persuaded to
depend on the software elites when in reality, since the formal theories are
worthless, the elites have nothing to offer us.

Ñ Here are two sources for the formal theory: Harlan D. Mills, “Mathematical Founda-
tions for Structured Programming,” in Harlan D. Mills, Software Productivity (New York:
Dorset House, 1988) – paper originally published in 1972; Suad Alagić and Michael A. Arbib,
The Design of Well-Structured and Correct Programs (New York: Springer-Verlag, 1978). And
here are two sources for the informal theory: Harlan D. Mills, “How to Write Correct
Programs and Know It,” in Mills, Software Productivity – paper originally published in 1975;
Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975).

510 structured programming chapter 7

3

3
The formal theory of structured programming prescribes that software appli-
cations, when viewed from the perspective of their flow of execution, be treated
as simple hierarchical structures. Applications are to be implemented using
only three flow-control constructs: sequential operations, conditions, and
iterations. And it is not just the basic elements that must be restricted to these
constructs, but the elements at all levels of abstraction. This is accomplished by
nesting constructs: the complete constructs of one level serve as elements in the
constructs of the next higher level, and so on. Thus, although the elements keep
growing as we move to higher levels, the constructs remain unchanged.

The sequential construct is shown in figure 7-1 (the arrowheads in flow
diagrams indicate the flow of execution). It consists of one operation, S1. At the
lowest level, the operation is a single statement: assigning a value to a variable,
performing a calculation, reading a record from a file, and so on.

The conditional construct, IF, is shown in figure 7-2. This construct consists
of a condition, C1, and two operations, S1 and S2: if the condition is evaluated
as True, S1 is executed; if evaluated as False, S2 is executed. In most high-level
languages, the IF statement implements this construct: IF C1 is True, THEN

perform S1, ELSE perform S2. Either S1 or S2 may be empty (these variants are
also shown in figure 7-2). In a program, when S2 is empty the entire ELSE part
is usually omitted.

Figure 7-1

S1

Figure 7-2

C1

True

False

S1

S2

C1

True

False

S1

C1

True

False

S2

the theory 511chapter 7

The iterative construct, WHILE, is shown in figure 7-3. This construct consists
of a condition, C1, and one operation, S1: if the condition is evaluated as True,
S1 is executed and the process is repeated; if evaluated as False, the iterations
end. In many high-level languages, the WHILE statement implements this
construct: WHILE C1 is True, perform S1.

To build larger pieces of software, any number of constructs can be con-
nected consecutively: sequential, conditional, and iterative constructs can be
combined in any order by connecting the exit of one construct to the entry of
the next one. This method of combining constructs is trivial, however. It is only
through nesting that we can create the countless combinations of operations,
conditions, and iterations required in a serious application.

All three constructs share an important feature: they have one entry and one
exit. When viewed from outside, therefore, and disregarding their internal
details, the three constructs are identical. It is this feature that makes nesting
possible. To nest constructs, we start with one of the three constructs and
replace the operation, S1 or S2 (or both), with a conditional or iterative
construct, or with two consecutive sequential constructs; we then similarly
replace S1 or S2 in the new constructs, and so on. Thus, the original construct
forms the top level of the structure, and each replacement creates an additional,
lower level.

This nesting method is known as top-down design, and is an important
principle in structured programming. To design a new application, we start by
depicting the entire project as one sequential construct; going down to the next
level of detail, we may note that the application consists in the repetition of a
certain operation, so we replace the original operation with an iterative
construct; at the next level, we may note that what is repeated is one of two
different operations, so we replace the operation in the iterative construct with
a conditional construct; then we may note that the operations in this construct
are themselves conditions or iterations, so we replace them with further
constructs; and so on. (At each step, if the operation cannot be replaced directly
with a construct, we replace it first with two simpler, consecutive operations;

Figure 7-3

C1

True

False

S1

512 structured programming chapter 7

then, if necessary, we repeat this for those two operations, and so on.) We
continue this process until we reach some low-level constructs, where the
operations are so simple that we can replace them directly with the statements
of a programming language. If we follow this method, the theorists say, we are
bound to end up with a perfect application.

The flow diagram in figure 7-4 illustrates this concept. This diagram
includes four conditional, three iterative, and two sequential constructs, nested
in various ways. Although the format of these constructs is identical to the
simple format shown in the previous diagrams, this is obscured by the fact that
some of the operations are themselves constructs, rather than simple boxes like
S1. The dashed boxes depict these constructs, and serve at the same time
to indicate pictorially the levels of nesting. (The innermost boxes represent
the lowest level, and it is only in these boxes that the constructs’ format is
immediately recognizable.) Note also the additional arrowheads, drawn to
indicate the entry and exit of each dashed box. The arrowheads emphasize

Figure 7-4

C1

T

F

C2

T

F

C3

T

F

S1

S2

S3

C4

T

F

C5

T

F

S5

S4 C6

T

F

C7

T

F

S6

the theory 513chapter 7

that, regardless of their nesting level, the constructs continue to have only
one entry and one exit.

Each dashed box encloses a complete construct – a construct that acts as a
single operation in the higher-level construct to which it belongs. When
viewed as part of the higher-level construct, then, a dashed box acts just like
the box depicting a sequential construct. In other words, the internal details of
a given construct, including the lower levels of nesting that make it up, are
irrelevant when we study only the constructs at higher levels. (So we could
ignore, as it were, the diagram shown inside the dashed box, and replace the
entire box with one sequential construct.) An important benefit of this nesting
concept is that any construct can be replaced with a functionally equivalent
construct, both during development and during maintenance, without affect-
ing the rest of the application. A programmer, thus, can develop or modify a
particular construct while knowing nothing about the constructs at higher and
lower levels. All he needs to know is the entry and exit characteristics of the
constructs at the next lower level.

�

This is all that practitioners need to learn about the theory of structured
programming. Programs developed strictly as nested constructs, and their
flow diagrams, are structured programs and diagrams. And, the theorists
assure us, it has been proved through mathematical logic that any software
application can be built in this fashion.

Structured programs can be as large as we want, and can have any number
of levels of nesting. It is recommended, nevertheless, for practical reasons,
to divide large programs into modules of no more than about a hundred
lines, and to have no more than about five levels of nesting in a module. In
complicated programs, we can always reduce the number of nesting levels by
creating a separate module for the constructs below a given level, and then
replacing that whole portion with a statement that invokes the module.
Logically, there is no difference between the two alternatives, and smaller
modules are easier to understand and to maintain. (From the perspective of the
flow of execution, descending the nesting levels formed by the local constructs
is the same as invoking a module and then descending the levels of constructs
in that module.) Invoking a module is a single operation, so it can be part
of any construct; constructs in the invoked module can then invoke other
modules in their turn, and so on. Large applications, thus, are generally built
by adding levels of modules rather levels of constructs. A module may be
invoked from several constructs, of course, if the same operations are required
in several places; the module then also functions as subroutine.

514 structured programming chapter 7

Regarding the GOTO issue, it is obvious now why GOTO statements are
unnecessary: quite simply, structured programs require no explicit jumps
(since all the necessary jumps are implicit, within the standard constructs). The
purpose of structured programming is to create structures of nested constructs,
so the absence of GOTO is merely a consequence. This is an important point,
and in sharp contrast to the original, informal claim – the claim that GOTO must
be avoided because it tempts us to create messy programs. Now we have the
proof that GOTO is unnecessary in high-level languages (in fact, in any language
that provides the three standard constructs). We have the proof, therefore, that
any application can be created without using GOTO statements. GOTO is not bad
in itself, but because it indicates that the program is unstructured. Structured
programs do not need GOTOs.

To conclude, structured programming is concerned with the flow of exe-
cution, and claims that the solution to our programming difficulties lies in
designing applications as structures of nested modules, and the modules
as structures of nested flow-control constructs. We recognize this as the
mechanistic claim that any phenomenon can be represented as a structure of
things within things. Structured programming, thus, claims that the flow of
execution can be extracted from the rest of the application; that it can be
reduced to a simple hierarchical structure, the flow-control structure; and that,
for all practical purposes, this one structure is the application. The logic of
nesting and standard constructs is continuous, from the simplest statements to
the largest modules. It is this neatness that makes the notion of structured
programming so enticing. All we need to know, it seems, is how to create
structures of things within things. We are promised, in effect, that by applying
a simple method over and over, level after level, we will be able to create perfect
applications of any size and complexity.

The Promise

The Promise

No discussion of the structured programming theory is complete without a
review of its promotion and its reception. For, the enthusiasm it generated is as
interesting as are its technical aspects.

Harlan Mills, one of the best-known software theorists, compares program-
ming to playing a simple game like tic-tac-toe. The two are similar in that we
can account, at each step, for all possible alternatives, and hence discover exact
theories. The only difference is that programming gives rise to a greater
number of alternatives. Thus, just as a good game theory allows us to play
perfect tic-tac-toe, a good programming theory will allow us to write perfect

the promise 515chapter 7

programs: “Computer programming is a combinatorial activity, like tic-tac-
toe. . . . It does not require perfect resolution in measurement and control; it
only requires correct choices out of finite sets of possibilities at every step. The
difference between tic-tac-toe and computer programming is complexity. The
purpose of structured programming is to control complexity through theory
and discipline. And with complexity under better control it now appears that
people can write substantial computer programs correctly. . . . Children, in
learning to play tic-tac-toe, soon develop a little theory. . . . In programming,
theory and discipline are critical as well at an adult’s level of intellectual activity.
Structured programming is such a theory, providing a systematic way of coping
with complexity in program design and development. It makes possible a
discipline for program design and construction on a level of precision not
previously possible.”É

Structured programming is a fantasy, of course – a mechanistic delusion. As
we know, it is impossible to reduce software applications, which are complex
phenomena, to simple hierarchical structures; so it is impossible to represent
them with exact, mathematical models. Everyone could see that even ordinary
requirements cannot be reduced to a neat structure of standard constructs,
but it was believed that all we have to do for those requirements is apply
certain transformations. No one tried to understand the significance of these
transformations, or why we need them at all. And when in many situations
the transformations turned out to be totally impractical, still no one suspected
the theory. These situations were blatant falsifications of the theory; but
instead of studying them, the experts chose to interpret the difficulty of
creating structured applications as the difficulty of adjusting to the new,
disciplined style of programming. No one wondered why, if it has been proved
mathematically that any application can be written in a structured fashion, and
if everyone is trying to implement this idea, we cannot find a single application
that follows strictly the principles of structured programming.

Thus, even though it never worked with serious applications, structured
programming was both promoted and received – for twenty years – with the
enthusiasm it would have deserved had it been entirely successful.

�

É Harlan D. Mills, “Mathematical Foundations for Structured Programming,” in Harlan
D. Mills, Software Productivity (New York: Dorset House, 1988), pp. 117–118 – paper originally
published in 1972. As I have already pointed out (see p. 488), what the software theorists call
complexity (i.e., the large number of alternatives) is not the real complexity of software (i.e.,
what makes software applications complex structures, systems of interacting structures). It
is impossible to develop applications simply by accounting for the various alternatives, as
Mills proposes, because we cannot identify all the alternatives.

516 structured programming chapter 7

To appreciate the reaction to the idea of structured programming, we must
ignore all we know about complex structures, and imagine ourselves as
part of the mechanistic world of programming. Let us think of software
applications, thus, as mechanistic phenomena; that is, as phenomena which
can be represented with simple hierarchical structures. The idea of structured
programming is then indeed the answer to our programming difficulties,
in the same way that designing physical systems as hierarchical structures of
subassemblies is the answer to our manufacturing and construction difficulties.

One promise, we saw, is to reduce programming, from an activity demand-
ing expertise, to the performance of relatively easy and predictable acts: “It is
possible for professional programmers, with sufficient care and concentration,
to consistently write correct programs by applying the mathematical principles
of structured programming.”Ê The theorists, thus, are degrading the notion of
professionalism and expertise to mean the skills needed to apply a prescribed
method. (I will return to this point in a moment.)

So, to program an application we need to know now only one thing: how
to reduce a given problem, expressed as a single operation, to two or three
simpler problems; specifically, to two consecutive operations, or a conditional
construct (two operations and a condition), or an iterative construct (one
operation and a condition). What we do at each level, then, is replace a
particular software element with two or three simpler ones. Developing an
application consists in repeating this reduction over and over, thereby creating
simpler and simpler elements, on lower and lower levels of abstraction. And
the skill of programming consists in knowing how to perform the reduction
while being certain that, at each level, the new elements are logically equivalent
to the original one. But this skill is much easier to acquire than the traditional
programming skill, because it is the same types of constructs and reductions
that we employ at all levels; besides, each reduction is a small logical step.

Eventually, we reach elements that are simple enough to translate directly
into the statements of a programming language. So we must also know how to
perform the translation; but this skill is even easier than the reductions – so
easy, in fact, that it can be acquired by almost anyone in a few weeks. (This
work is often called coding, to distinguish it from programming.)

The key to creating correct applications, then, is the restriction to the
standard constructs and the assurance that, at each level, the new elements are
logically equivalent to the original one. These conditions are related, since, if
we restrict ourselves to these constructs, we can actually prove the equivalence
mathematically. Ultimately, structured programming is a matter of discipline:

Ê Richard C. Linger, Harlan D. Mills, and Bernard I. Witt, Structured Programming:
Theory and Practice (Reading, MA: Addison-Wesley, 1979), p. 3.

the promise 517chapter 7

we must follow this method rigorously, even in situations where a different
method is simpler or more efficient. Only if we observe this principle can we
be certain that, when the application is finally translated into a programming
language, it will be logically equivalent to the original specifications.

This is an important point, as it was discovered that experienced program-
mers have difficulty adjusting to the discipline of structured programming.
Thus, they tend to ignore the aforementioned principle, and enhance their
applications with constructs of their own design. They see the restriction to the
standard constructs as a handicap, as a dogmatic principle that prevents them
from applying their hard-earned talents.

What these programmers fail to see, the theorists explain, is that it is
precisely this restriction that allows us to represent software elements mathe-
matically, and hence prove their equivalence from one level to the next. It is
precisely because we have so little freedom in our reductions that we can be
certain of their correctness. (In fact, the standard constructs are so simple
that the correctness of the reductions can usually be confirmed through
careful inspection; only in critical situations do we need to resort to a formal,
mathematical proof.)

So what appears as a drawback to those accustomed to the old-fashioned,
personal style of programming is actually the strength of structured pro-
gramming. Even experienced programmers could benefit from the new
programming discipline, if only they learned to resist their creative impulse.
But, more importantly, inexperienced programmers will now be able to create
good applications, simply by applying the principles of top-down design and
standard constructs: “Now the new reality is that ordinary programmers, with
ordinary care, can learn to write programs which are error free from their
inception. . . . The basis for this new precision in programming is neither
human infallibility, nor being more careful, nor trying harder. The basis is
understanding programs as mathematical objects that are subject to logic and
reason, and rules for orderly combination.”Ë

I stated previously that the software theorists are degrading the notions of
expertise and professionalism, from their traditional meaning – the utmost
that human beings can accomplish – to the trivial knowledge needed to follow
methods. This attitude is betrayed by the claim that structured programming
will benefit all programmers, regardless of skill level. Note the first sentence in
the passage just quoted, and compare it with the following sentence: “Now the
new reality is that professional programmers, with professional care, can learn
to consistently write programs that are error-free from their inception.”Ì

Ë Ibid., p. 2.
Ì Harlan D. Mills, “How to Write Correct Programs and Know It,” in Mills, Software

Productivity, p. 194 – paper originally published in 1975.

518 structured programming chapter 7

The two sentences (evidently written by the same author during the same
period) are practically identical, but the former says “ordinary” and the latter
“professional.” For this theorist, then, the ideas of professional programmer,
ordinary programmer, and perhaps even novice programmer, are interchange-
able. And indeed, there is no difference between an expert and a novice if we
reduce programming to the act of following some simple methods.

This attitude is an inevitable consequence of the mechanistic dogma. On
the one hand, the software mechanists praise qualities like expertise and
professionalism; on the other hand, they promote mechanistic principles and
methods. Their mechanistic beliefs prevent them from recognizing that the
two views contradict each other. If the benefits of structured programming
derive from reducing programming to methods requiring little experience –
methods that can be followed by “ordinary” programmers – it is precisely
because these methods require only mechanistic knowledge. Expertise, on the
contrary, is understood as the highest level that human minds can attain. It
entails complex knowledge, the kind of knowledge we reach after many
years of learning and practice. Following the methods of structured program-
ming, therefore, cannot possibly mean expertise and professionalism in their
traditional sense. It is in order to apply these terms to mechanistic knowledge
– in order to resolve the contradiction – that the theorists are degrading their
meaning.

�

If the first promise of structured programming is to eliminate the need for
programming expertise, the second one is to simplify the development of large
applications by breaking them down into small parts. Each reduction from a
given element to simpler ones is in effect a separate task, since it can be
performed independently of the other reductions. Then, for a particular
reduction, we can treat the lower-level reductions as either the same task or as
separate, smaller tasks. In this fashion, we can break down the original task –
that is, the application – into tasks that are as small as we want. Although the
smallest task can be as small as one construct, we rarely need to go that far. For
most applications, the smallest tasks are the individual modules; and it is
recommended that modules be no larger than one printed page, so that we can
conveniently study them.

When each module is a separate task, different programmers can work on
different modules of the same application without having to communicate
with one another. This has several benefits: if a large application must be
finished faster, we can simply employ more programmers; we can replace a
programmer at any time without affecting the rest of the project; and later,

the promise 519chapter 7

during maintenance, a new programmer only needs to understand the logic of
individual modules.

With the old style of programming, the complexity of applications, and
hence the difficulty of developing and maintaining them, seems to grow
exponentially with their size. The time and cost required to develop a new
application, or to modify an existing one, can be unpredictable; adding pro-
grammers to a project rarely helps; large projects often become unmanageable
and must be abandoned. With structured programming, on the other hand,
the complexity and the difficulty do not grow with the application’s size. No
matter how large, an application is no more difficult to develop than is its
largest module. The only difference we should see between large and small
applications is that large ones take longer, or involve more programmers; but
the time and cost are now predictable. What structured programming does, in
the final analysis, is replace the challenge of developing a large system of
interrelated entities, with the easier challenge of developing many small,
separate entities.

�

The greatest promise of structured programming, however, and the most
fantastic, is the promise of error-free applications; specifically, the claim that
structured programming obviates almost entirely the need to test software,
since applications will usually run perfectly the first time: “By practicing
principles of structured programming and its mathematics you should be able
to write correct programs and convince yourself and others that they are
correct. Your programs should ordinarily compile and execute properly the
first time you try them, and from then on.”Í

Top-down programming, we saw, entails the repeated reduction of elements
to simpler ones that are logically equivalent. So, if we perform each reduction
correctly, then no matter how many reductions are required, we can be
certain that the resulting application will be logically equivalent to the original
specifications. (The application may still be faulty, of course, if the specifica-
tions are faulty; structured programming guarantees only that the application
will behave exactly as defined in the specifications.)

Fantastic though it is, this claim is logical – if we assume that applications
are simple hierarchical structures. Here is how the claim is defended: Since
the equivalence of elements in the flow-control structure can be proved
mathematically at each level in the top-down process, and since the statements
in the resulting application correspond on a one-to-one basis to the lowest-

Í Ibid.

520 structured programming chapter 7

level elements, the application must be correct. In other words, what we create
in the end by means of a programming language is in effect the same structure
that we created earlier by means of a diagram, and which we could prove to be
correct.

We should still test our applications, because we are not infallible; but
testing will be a simple, routine task. The only type of errors we should expect
to find are those caused by programming slips. And, thanks to the discipline
we will observe during development, these errors are bound to be minor bugs,
as opposed to the major deficiencies we discover now in our applications
(faulty logic, problems necessitating redesign or reprogramming, mysterious
bugs for which no one can find the source, defects that give rise to other defects
when corrected, and so on). Thus, not only will the errors be few, but they will
be trivial: easy to find and easy to correct. This is how Mills puts it: “As
technical foundations are developed for programming, its character will
undergo radical changes. . . . We contend here that such a radical change is
possible now, that in structured programming the techniques and tools are at
hand to permit an entirely new level of precision in programming.”Î

The inevitable conclusion is that, if we adhere to the principles of structured
programming, we will write program after program without a single error. This
conclusion prompts Mills to make one of those ludicrous predictions that
mechanists are notorious for; namely, that programming can become such a
precise activity that we will commit just a handful of errors in a lifetime: “The
professional programmer of tomorrow will remember, more or less vividly,
every error in his career.”Ï

It is important to note that these were serious claims, confidently made
by the world’s greatest software theorists. And, since the theorists never
recognized the fallacy of structured programming, since to this day they fail
to understand why its mathematical aspects are irrelevant, they are still
claiming in effect that it permits us to create directly error-free applications.
By implication, then, they are claiming that all software deficiencies and
failures since the 1970s, and all the testing we have done, could have been
avoided: they were due to our reluctance to observe the principles of structured
programming.

�

The final promise of structured programming is to eliminate programming
altogether; that is, to automate the creation of software applications. This was
not one of the original ideas, but emerged a few years later with the notion of

Î Mills, “Mathematical Foundations,” p. 117. Ï Mills, “Correct Programs,” p. 194.

the promise 521chapter 7

CASE – software devices that replace the work of programmers. (This promise
is perfectly captured in the title of a book written by two well-known experts:
Structured Techniques: The Basis for CASE.Ð)

As with the other claims, if we accept the idea that applications are simple
hierarchical structures, the claim of automatic software generation is perfectly
logical. Structured programming breaks down the development process into
small and simple tasks, most of which can be performed mechanically; and if
they can be performed mechanically, they can be replaced with software
devices. For example, the translation of the final, low-level constructs into
the statements of a programming language can easily be automated. Most
reductions, too, are individually simple enough to be automated. The software
entities in CASE systems will likely be different from the traditional ones, but
the basic principle – depicting an application as a hierarchical structure of
constructs within constructs – will be the same.

Application development, thus, will soon require no programmers. An
analyst or manager will specify the requirements by interacting with a sophisti-
cated development system, and the computer will do the rest: “There is a major
revolution happening in software and system design. . . . The revolution is
the replacement of manual design and coding with automated design and
coding.”Ñ So, while everyone was waiting for the benefits promised by the
structured programming revolution, the software theorists were already hailing
the next revolution – which suffered from the same fallacies.

�

This, then, is how structured programming was promoted by the software
elites. And it is not hard to see how, in a mechanistic culture like ours, such a
theory can become fashionable. The enthusiasm of the academics was shared
by most managers, who, knowing little about programming, saw in this idea a
solution to the lack of competent programmers; and it was also shared by most
programmers, who could now, simply by avoiding GOTO, call themselves
software engineers. Only the few programmers who were already developing
and maintaining applications successfully could recognize the absurdity of
structured programming; but their expertise was ridiculed and interpreted as
old-fashioned craftsmanship.

The media too joined in the general hysteria, and helped to propagate the
structured programming fallacies by repeating uncritically the claims and

Ð James Martin and Carma McClure, Structured Techniques: The Basis for CASE, rev. ed.
(Englewood Cliffs, NJ: Prentice Hall, 1988). CASE stands for Computer-Aided Software
Engineering. Ñ Ibid., p. 757.

522 structured programming chapter 7

promises. Datamation, for instance, a respected data-processing journal of
that period, devoted its December 1973 issue to structured programming,
proclaiming it a revolution. The introductory article starts with these words:
“Structured programming is a major intellectual invention, one that will
come to be ranked with the subroutine concept or even the stored program
concept.”ÉÈ

The Contradictions

The Contradictions
1 1
Now that we have seen the enthusiasm generated by the idea of structured
programming, let us study the contradictions – contradictions which, although
well known at the time, did nothing to temper the enthusiasm.

Structured programs, we saw, are pieces of software whose flow of execution
can be represented as a structure of standard flow-control constructs. Because
these constructs have only one entry and exit, a structured piece of software
is a structure of hierarchically nested constructs. The structure can be a
part of a module, an entire module, and even the entire application. The
flow diagram in figure 7-4 (p. 513) was an example of a structured piece of
software.

Our affairs, however, can rarely be represented as neat structures of nested
entities, because they consist of interacting processes and events. So, if our
software applications are to mirror our affairs accurately, they must form
systems of interacting structures. What this means is that, when designing an
application, we will encounter situations that cannot be represented with
structured flow diagrams.

The theory of structured programming acknowledges this problem, but tells
us that the answer is to change the way we view our affairs. The discipline
that is the hallmark of structured programming must start with the way we
formulate our requirements, and if we cannot depict these requirements with
structured diagrams, the reason may be that we are not disciplined in the way
we run our affairs. The design of a software application, then, is also a good
opportunity to improve the logic of our activities. Much of this improvement
will be achieved, in fact, simply by following the top-down method, since this
method encourages us to view our activities as levels of abstraction, and hence
as nested entities.

ÉÈ Daniel D. McCracken, “Revolution in Programming: An Overview,” Datamation 19,
no. 12 (1973): 50–52.

the contradictions 523chapter 7

So far, there is not much to criticize. The benefits of depicting the flow of
execution with a simple hierarchical structure are so great that it is indeed a
good idea, whenever possible, to design our applications in this manner. But
the advocates of structured programming do not stop here. They insist that
every situation be reduced to a structured diagram, no matter how difficult the
changes or how unnatural the results. In other words, even if the use of
standard constructs is more complicated than the way we normally perform a
certain activity, we must resist the temptation to implement the simpler logic
of that activity.

And this is not all. The theorists also recognize that, no matter how strictly
we follow the top-down design method, some situations will remain that
cannot be represented as structured diagrams. (It is possible to prove, in fact,
that whole classes of diagrams, including some very common and very simple
cases, cannot be reduced to the three standard constructs.) Still, the theorists
say, even these situations must be turned into structured software, by applying
certain transformations. The transformations complicate the application, it is
agreed, but complicated software is preferable to unstructured software.

The ultimate purpose of these transformations is to create new relations
between software elements as a replacement for the relations formed by explicit
jumps, which are prohibited under structured programming. (We will study
this idea in greater detail later.) And there are two ways to create the new
relations: by sharing operations and by sharing data. I will illustrate the two
types of transformations with two examples.

Figure 7-5 shows the flow diagram of a requirement that, although very
simple, cannot be reduced to standard flow-control constructs. This is a
variation of the standard conditional construct: the condition C1 and the
operations S1 and S2 form the standard part, but there is an additional
operation, S3. This operation is always executed after S1, but is executed after
S2 only if C2 is evaluated as True. The requirement, in other words, is that an

Figure 7-5

C1

True

False

S1

S2 C2

True

False

S3

524 structured programming chapter 7

operation which is part of one branch of a conditional construct be also
executed, sometimes, as part of the other branch. And if we study the diagram,
we can easily verify that it is unstructured: it is not a structure of nested
standard constructs. Standard constructs have only one entry and exit, and
here we cannot draw a dashed box with one entry and exit (as we did in
figure 7-4) around any part of the diagram larger than a sequential construct.

Note that this is not only a simple requirement, but also a very common one.
The theory of structured programming is contradicted, therefore, not by an
unusual or complicated situation, but by a trivial requirement. There are
probably thousands of situations in our affairs where such requirements must
become part of an application.

The problem, thus, is not implementing the requirement, but implementing
it under the restrictions of structured programming. The requirement is
readily understood by anyone, and is easily implemented in any programming
language by specifying directly the particular combination of operations,
conditions, and jumps depicted in the diagram; in other words, by creating our
own, non-standard flow-control construct. To implement this requirement,
then, we must employ explicit jumps – GOTO statements. We need the explicit
jumps in order to create our own construct, and we need our own construct
because the requirement cannot be expressed as a nested structure of standard
constructs.

But explicit jumps are forbidden under structured programming. So, instead
of creating our own construct, we must modify the flow diagram as shown in
figure 7-6. If you compare this diagram with the original one, you can see that
the transformation consists in duplicating the operation S3. As a result, instead
of being related through an explicit jump, some elements are related now

Figure 7-6

C1

True

False

S1

S2 C2

True

False

S3

S3

the contradictions 525chapter 7

through a shared operation. The two diagrams are functionally equivalent, but
the new one is properly structured (note the dashed boxes depicting the
standard constructs and the nesting levels). In practice, when S3 is just one or
two statements it is usually duplicated in its entirety; when larger, it is turned
into a subroutine (i.e., a separate module) and what is duplicated is only the
call to the subroutine.

Figure 7-7 is the flow diagram of another requirement that cannot be
reduced to standard constructs. This is a variation of the standard iterative
construct: the condition C1 and the operation S1 form the standard part, but
the loop is also controlled by a second condition, C2. The requirement is to
terminate the loop when either C1 or C2 is evaluated as False; in other words,
to test for termination both before and after each iteration. But the diagram
that represents this requirement is unstructured: it is not a structure of nested
standard constructs. As was the case with the diagram in figure 7-5, we can find
no portion (larger than the sequential construct) around which we could draw
a dashed box with only one entry and exit.

This is another one of those requirements that are common, simple, and
easily implemented by creating our own flow-control construct. One way is
to start with the standard iterative construct and modify it by adding the
condition C2 and a GOTO statement (to jump out of the loop); another way is
to design the whole loop with explicit jumps.

To implement the requirement under structured programming, however,
we must modify the diagram as shown in figure 7-8. This modification
illustrates the second type of transformation: creating new relations between
elements by sharing data, rather than sharing operations. Although function-
ally equivalent to the original one, the new diagram is a structure of nested
standard constructs. Instead of controlling directly the loop, C2 controls
now the value of x (a small piece of storage, even one bit), which serves as
switch, or indicator: x is cleared before entering the loop, and is set when C2

Figure 7-7

C1

True

False

S1 C2

True

False

526 structured programming chapter 7

yields False. The loop’s main condition is now a combination of the original
condition and the current value of x: the iterations are continued only as long
as both conditions, C1 and x=0, are evaluated as True.É

É The symbol ← inside the blocks denotes the assignment operation. When using
variables as switches, only two values (such as 0 and 1) are needed.

It must be noted that only the transformation based on shared data is, in
fact, necessary. Structured programming permits any transformations, but the
one based on shared operations is not strictly needed; it is merely the simpler
alternative in the case of diagrams like that shown in figure 7-5. In principle,
we can resort to memory variables to reduce any diagram to a structured
format.

These examples demonstrate some basic situations, but we can think of any
number of other, similar requirements (to say nothing of more complicated
ones) that are easier to implement directly, with non-standard flow-control
constructs, than through transformations: a loop nested in a conditional
construct and the need to jump from inside the loop to outside the conditional
construct; two or more levels of nested conditions and an operation common
to more than two elements in this construct; two or more levels of nested
iterations and the need to terminate the outermost loop from inside the
innermost one; and so on.

Note that the issue is not whether constructs based on transformations are
or are not better than constructs based on explicit jumps. Duplicating pieces of
software, or using variables as switches, may well be the best alternative in one
situation, while creating specialized flow-control constructs may be preferable
in another. Ultimately, it is the programmer’s task to implement the most
effective flow-control structure for a given requirement. The real issue, thus, is

Figure 7-8

x ← 0 C1 and x=0

True

False

S1 C2

True

False

x ← 1

the contradictions 527chapter 7

the validity of the claim that a restriction to standard constructs simplifies
development, guarantees error-free applications, and so forth. This claim, we
will see, is a delusion.

2

2
Let us review the concept of software structures and attributes (see “Software
Structures” in chapter 4). Software applications are complex structures, systems
of interacting structures. The elements of these structures are the various
entities that make up the application: statements, blocks of statements, larger
blocks, modules. The attributes of software entities are those characteristics
that can be possessed by more than one entity: accessing a particular file, using
a particular memory variable, calling a particular subroutine, being affected
by a particular business rule, and so forth. Attributes, therefore, relate the
application’s elements logically: each attribute creates a different set of relations
between the application’s elements, thereby giving rise to a different structure.
There is a structure for each attribute present in the application – a structure
reflecting the manner in which the elements are affected by that attribute. We
can also describe these structures as the various aspects of the application.

Although an application may have thousands of attributes, any one element
has only a few, so each structure involves only some of the application’s
elements. We saw, though, that it is useful to treat all the application’s elements
as elements of every structure; specifically, to consider for each element all
the attributes, those that affect it as well as those that do not, because not
possessing an attribute can be as significant as possessing it. This is clearly
revealed when depicting each attribute with a separate, classification-style
diagram: first, we divide the application’s elements into those affected and
those unaffected by the attribute; then, we divide the former according to
the ways they are affected, and the latter according to the reasons they are
unaffected.

But even when restricting our structures to those elements that actually
possess the attribute, we find that, because they possess several attributes, most
elements belong in several structures at the same time. And this sharing of
elements causes the structures to interact. Thus, a software element can be part
of business practices, use memory variables, access files, and call subroutines.
Software elements must have several attributes because their function is to
represent real entities. Since our affairs comprise entities that are shared by
various processes and events, the multiplicity of attributes, and the consequent
interaction of structures, is not surprising: it is precisely this interaction that
allows software to mirror our affairs. So it is quite silly to attempt to reduce

528 structured programming chapter 7

applications to independent structures, as do structured programming and the
other mechanistic theories, and at the same time to hope that these applications
will represent our affairs accurately.

Although there is no limit to the number of attributes in an application,
there are only a few types of attributes (or what I called software principles).
Thus, we may need a large number of attributes to implement all the rules and
methods reflected in the application, but all these attributes can be combined
under the type business practices. Similarly, the use of subroutines in general,
as well as the repetition of individual operations, can be combined under the
type shared operations. And accessing files, as well as using memory variables,
can be combined under the type shared data.

An important type are the flow-control attributes – those attributes that
establish the sequence in which the computer executes the application’s
elements. An element’s flow-control attributes determine when that element is
to be executed, relative to the other elements. Each flow-control attribute, thus,
groups several elements logically, and relates the group as a whole to the rest
of the application. The totality of flow-control attributes determines the
performance of the application under all possible run-time conditions.

The flow-control attributes are necessary because computers, being sequen-
tial machines, normally execute operations in the sequence in which they
appear in memory. But, while the operations that make up the application are
stored in memory in one particular order (the static sequence), they must be
executed in a different order (the dynamic sequence), and also in a different
order on different occasions. In a loop, for instance, the repeated block appears
only once, but the computer must be instructed to return to its beginning over
and over; similarly, in a conditional construct we specify two blocks, and
the computer must be instructed to execute one and bypass the other. Any
element in the application, in fact, may have to instruct the computer to jump
to another operation, forward or backward, instead of executing the one
immediately following it. Thus, since it is the elements themselves that control
the flow of execution, the flow-control features are attributes of these elements.

The flow-control attributes can also be described as the various means
through which programming languages allow us to implement the jumps
required in the flow of execution; that is, the exceptions to the sequential
execution. The most versatile operation is the explicit jump – the GOTO

statement, in most languages. Each GOTO gives rise to a flow-control attribute,
which relates logically several elements: the one from which, and the one to
which, the jump occurs, plus any others affected by the jump (those bypassed,
for instance).

Most jumps in high-level languages, however, are implicit. The construct
known as block (a series of consecutive operations, all executed or all bypassed)

the contradictions 529chapter 7

defines in effect a jump. Other implicit jumps include exception handling
(jumping automatically to a predefined location when a certain run-time
error occurs), the conditional construct (jumping over a statement or block),
and the iterative construct (jumping back to the beginning of the loop).
Additional types of jumps are often provided by language-specific statements
and constructs. All jumps, though, whether explicit or implicit, serve in
the end the same purpose: they create unique flow-control attributes. With
each jump, two or more elements are related logically – as viewed from the
perspective of the flow of execution – and this relationship is what we note as
a particular flow-control attribute.

As is the case with the other types of attributes, an element can have more
than one flow-control attribute. For example, the execution of a certain
element may need to be followed by the execution of different elements on
different occasions, depending on run-time conditions. Also like the other
types of attributes, each flow-control attribute gives rise to a structure – a flow-
control structure in this case. Although a flow-control structure usually affects
a small number of elements, here too it is useful to treat all the application’s
elements as elements of each structure. For, it may be just as important for the
application’s execution that an element is not affected by that particular flow-
control attribute, as it is that the element is affected. Take, for instance, the case
of design faults: the sequence of execution is just as wrong if two elements are
not connected by a jump when they should be, as it is if two elements are
connected by a jump when they shouldn’t be.

3

3
Having established the nature of software applications, and of software struc-
tures and attributes, we are in a position to understand the delusions of
structured programming. I will start with a brief discussion; then, in the
following subsections, we will study these delusions in detail.

To begin with, the theorists are only concerned with the flow-control
structures of the application. These structures are believed to provide a
complete representation of the running application, so their correctness is
believed to guarantee the correctness of the application. The theorists fail to see
that, no matter how important are the flow-control structures, the other
structures too influence the application’s performance. Once they commit this
fallacy, the next step follows logically: they insist that the application be
designed in such a way that all flow-control structures are combined into one;
and this we can accomplish by restricting each element to one flow-control
attribute.

530 structured programming chapter 7

Clearly, if each element is related to the rest of the application – from the
perspective of the flow of execution – in only one way, the entire application
can be designed as one hierarchical structure. This, ultimately, a mechanistic
representation of the entire application, is the goal of structured programming.
For, once we reduce applications to a mechanistic model, we can design and
validate them with the tools of mathematics.

We recognize in this idea the mechanistic fallacy of reification: the theorists
assume that one simple structure can provide an accurate representation of the
complex phenomenon that is a software application. They extract first one type
of structures – the flow-control structures; then, they go even further and
attempt to reduce all structures of this type to one structure.

The structure we are left with – the structure believed to represent the
application – is the nesting scheme. The neat nesting of constructs and
modules we see in the flow diagram constitutes a simple hierarchical structure.
Remember that both the nesting and the hierarchy are expected to represent
the execution of the application’s elements, not their static arrangement. The
sequence of execution defined through the nesting scheme is as follows:
the computer will execute the elements found at a given level of nesting in the
order in which they appear; but if one of these elements has others nested
within it, they will be executed before continuing at the current level; this rule
is applied then to each of the nested elements, and so on. If the nesting scheme
is seen as a hierarchical structure, it should be obvious that, by repeating this
process recursively, every element in the structure is bound to be executed,
executed only once, and executed at a particular time relative to the others.

So the nesting concept is simply a convention: a way to define a precise,
unambiguous sequence of execution. By means of a nesting scheme, the
programmer specifies the sequence in which he wants the computer to execute
the application’s elements at run time. The nesting convention is, in effect, an
implicit flow-control attribute – an attribute possessed by every element in the
application. And when this attribute is the only flow-control attribute, the
nesting scheme is the only flow-control structure.

Recall the condition that each element have only one entry and exit. This,
clearly, is the same as demanding that each element be connected to the rest
of the application in only one way, or that each element possess only one
flow-control attribute. The hierarchical structure is the answer, since in a
hierarchical nesting scheme each element is necessarily connected to the
others in only one way. Thus, the principle of nesting, and the restrictions to
one entry and exit, one flow-control attribute, and one hierarchical structure,
are all related.

It is easy to see that the software nesting scheme is the counterpart of the
physical hierarchical structure: the mechanistic concept of things within things

the contradictions 531chapter 7

that is so useful in manufacturing and construction, and which the software
theorists are trying to emulate. The aim of structured programming is to make
the flow of execution a perfect structure, a structure of software things within
things. Just as the nesting scheme of a physical structure determines the
position of each part and subassembly relative to the others, so the nesting
scheme of a software application determines when each element is executed
relative to the others. While one structure describes space relationships, the
other describes time relationships; but both are strict hierarchies.

We can also express this analogy as follows. Physical systems can be studied
with the tools of mathematics because their dynamic structure usually mirrors
the static one. The sequence of operations of a machine, for instance, closely
corresponds to the hierarchical diagram of parts and subassemblies that
defines the machine. In software systems, on the other hand, the dynamic
structure is very different from the static one: the flow of execution of an
application does not correspond closely enough to the flow diagram (the static
nesting of constructs and modules).

By forcing the flow of execution to follow the nesting scheme, the advocates
of structured programming hope to make the dynamic structure of the
application mirror the static one, just as it does in physical systems. It is the
discrepancy between the dynamic structure and the static one that makes
programming more difficult and less successful than engineering. We know
that hierarchical systems can be represented mathematically. Thus, if we
ensure that the flow diagram is a hierarchical nesting scheme, the flow of
execution will mirror a hierarchical system, and the mathematical model that
represents the diagram will represent at the same time the running application.

This idea – the dream of structured programming from the beginning – is
clearly stated in Dijkstra’s notorious paper: “Our powers to visualize processes
evolving in time are relatively poorly developed. For that reason we should
do . . . our utmost to shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between the program
(spread out in text space) and the process (spread out in time) as trivial as
possible.”Ê

And here is the same idea expressed by other academics twenty years later:
“Programs are essentially dynamic beings that exhibit a flow of control, while
the program listing is a static piece of text. To ease understanding, the problem
is to bring the two into harmony – to have the static text closely reflect the

Ê E. W. Dijkstra, “Go To Statement Considered Harmful,” in Milestones in Software
Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society
Press, ©1990 IEEE), p. 9 – paper originally published in Communications of the ACM 11,
no. 3 (1968): 147–148.

532 structured programming chapter 7

dynamic execution.”Ë “The goal of structured programming is to write a
program such that its dynamic structure is the same as its static structure. In
other words, the program should be written in a manner such that during
execution its control flow is linearized and follows the linear organization of
the program text.”Ì

This wish betrays the naivety of the software theorists: they actually believed
that the enormously complex structure that is the flow of execution of an
application can mirror the simple diagram that is its static representation.
And the persistence of this belief demonstrates the corruptive effect of the
mechanistic dogma. There were thousands of opportunities, during those
twenty years, for the theorists to observe the complexity of software. Their
mechanistic obsession, however, prevented them from recognizing these
situations as falsifications of the idea of structured programming.

�

Now, a running application could, in principle, be a strict nesting scheme – a
system of elements whose sequence of execution reflects their position in
a hierarchical structure. This is what structured programming appears to
promote, but it should be obvious that no serious application can be created in
this manner. For, in such an application there would be no way to modify the
flow of execution: every element would consist of nothing but one operation
or several consecutive operations, would always have to be executed, always
executed once, and always in the sequence established by the nesting scheme.
The application, in other words, would always do the same thing. This is what
we should expect, of course, if we want the execution of a software application
– that is, its representation in time – to resemble the nesting scheme of a
physical structure. After all, a physical structure like an appliance is always the
same thing: its parts and subassemblies always exist, and are always arranged
in the same way.

The theorists recognize that software is more versatile than mechanical
devices, and that we need more than a nesting scheme if we want to create
serious applications. So, while praising the benefits of a single flow-control
structure, they give us the means to relate the application’s elements in
additional ways: the conditional and iterative constructs. The purpose of these
constructs is to override the nesting scheme: they endow the application’s

Ë Doug Bell, Ian Morrey, and John Pugh, Software Engineering: A Programming Approach
(Hemel Hempstead, UK: Prentice Hall, 1987), p. 17.

Ì Pankaj Jalote, An Integrated Approach to Software Engineering (New York: Springer-
Verlag, 1991), p. 236.

the contradictions 533chapter 7

elements with additional flow-control attributes, thereby creating flow-control
structures that are additional to the nesting scheme. Consequently, the appli-
cation is no longer a strict nesting scheme of sequential constructs. It is a
nesting scheme plus other structures – a system of flow-control structures.
The two constructs, thus, serve to restore the multiplicity of structures and the
complexity that had been eliminated when the theorists tried to reduce the
application to one structure.

Because the application is still a nesting scheme of constructs with only one
entry and exit, the theorists believe that the nesting scheme alone continues
to represent the running application. The additional flow-control structures
are not reflected in the nesting scheme, so it is easy to ignore them. But,
even though they are not as obvious as the nesting scheme, these structures
contribute to the complexity of the application – as do the structures created
by shared data or operations, and by business or software practices, also
ignored by the theorists because they are not obvious.

Finally, the hierarchical nesting scheme with its sequential constructs, and
the enhancement provided by the two additional constructs, appear to form a
basic set of software operations – basic in that they are the only operations
needed, in principle, to implement any application. As a result, the theorists
confuse these three types of constructs with the set of operations that forms the
definition of a hierarchical structure (the operations that combine the elements
of one level to create the next one). This leads to the belief that, by restricting
ourselves to these constructs, we will realize the original dream: a flow of
execution that mirrors the static nesting scheme, and is therefore a simple
structure. This also explains why we are asked to convert those flow-control
structures that cannot be implemented with these constructs, into other types
of structures. But if the true purpose of the conditional and iterative constructs
is to create additional flow-control structures, this conversion is futile, because
the flow of execution is no longer a simple structure in any case.

�

There are so many fallacies in the theory of structured programming that we
must separate it into several stages if we are to study it properly, and to learn
from its delusions. These are not chronological stages, though, since they all
occurred at about the same time. They are best described as stages in a process
of degradation. We can identify four stages, and I will refer to them simply as
the first, second, third, and fourth delusions. Bear in mind, however, that these
delusions are interrelated, so the distinction may not always be clear-cut.

The first delusion is the belief that one structure alone – a flow-control
structure – can accurately represent the performance of the application.

534 structured programming chapter 7

The second delusion is the belief that the standard constructs constitute a
basic set of operations, whereas their true role is to restore the multiplicity of
flow-control structures lost in the first delusion.

The third delusion is the belief that, if it is possible in principle to restrict
applications to the standard flow-control constructs, we can develop actual
applications in this manner. We are to modify our requirements by applying
certain transformations, and this effort is believed to be worthwhile because
the restriction to standard constructs should reduce the application to one
structure. What the transformations do, though, is convert the relations due to
flow-control attributes into relations due to other types of attributes, thereby
adding to the other types of structures.

The fourth delusion is the notion of inconvenience: if we find the transfor-
mations inconvenient, or impractical, we don’t have to actually implement
them; the application will have a single flow-control structure merely because
the transformations can be implemented in principle. The transformations are
important, but only when convenient. This belief led to the reinstatement of
many non-standard flow-control constructs, while the theorists continued to
claim that the flow of execution was being reduced to a simple structure.

Common to all four delusions, thus, is the continuing belief in a mathemati-
cal representation of software applications, error-free programming, and the
rest, when in fact these qualities had been lost from the start. Even before the
detailed analysis, therefore, we can make this observation: When the software
experts were promoting structured programming in the 1970s, when they
were presenting it as a new science and a revolution in programming, all
four delusions had already occurred. Thus, there never existed a useful,
serious, scientific theory of structured programming – not even for a day.
The movement known as structured programming, propagandized by the
software elites and embraced by the software bureaucrats, was a fraud from the
very beginning.

The analysis of these delusions also reveals the pseudoscientific nature of
structured programming. The theory is falsified again and again, and the
experts respond by expanding it. They restore, under different names and in
complicated ways, the traditional programming concepts; so they restore
precisely those concepts which they had previously rejected, and which
must indeed be rejected, because they contradict the principles of structured
programming.

The four delusions are, in the end, various stages in the struggle to rescue
the theory from refutation by making it cope with those situations that falsify
it. Structured programming could be promoted as a practical idea only after
most of the original principles had been abandoned, and the complexity of
applications again accepted; in other words, at the precise moment when it had

the contradictions 535chapter 7

lost the very qualities it was being promoted for. What was left – and what was
called structured programming – was not a scientific theory, nor even a
methodology, but merely an informal, and largely worthless, collection of
programming tips.

The First Delusion

The First Delusion

The first delusion is the delusion of the main structure: the belief that one
structure alone can represent the application, since the other structures
are unimportant, or can be studied separately. In the case of structured
programming, the main structure is the nesting scheme: the hierarchical
structure of constructs and modules. The static nesting scheme is believed
to define completely and precisely the flow of execution, and hence the
application’s dynamic performance (see pp. 530–532).

If the goal of structured programming is to represent applications mathe-
matically, the theorists are right when attempting to reduce them to a simple
structure. As we know, mechanistic systems, as well as mathematical models,
are logically equivalent to simple structures. Thus, it is true that only an
application that was reduced to a simple structure can have a mathematical
model. The fallacy, rather, is in the belief that applications can be reduced to a
simple structure.

Like all mechanists, the software theorists do not take this possibility as
hypothesis but as fact. Naturally, then, they perceive the flow-control structure
(the sequence in which the computer executes the application’s elements) as
the structure that determines the application’s performance. So, they conclude,
we must make this structure a strict hierarchy of software entities. And this we
can do by making the nesting scheme (which is simply the implementation of
the flow-control structure by means of a programming language) a strict
hierarchy.

But the flow-control structure is not an independent structure. Its elements
are the software entities that make up the application, so they also function as
elements in other structures: in the various processes implemented in the
application. Every business practice that affects more than one element,
every subroutine used by more than one element, every memory variable
or database field accessed in more than one element, connects these elements
logically, creating relations that are different from the relations defined by the
flow of execution. This, obviously, is their purpose. It is precisely because
one structure is insufficient that we must relate the application’s elements
in additional ways. Just like the flow-control structure, each one of these

536 structured programming chapter 7

structures could be designed, if we wanted, as a perfect hierarchy. But, while
the individual structures can be represented mathematically, the application as
a whole cannot. Because they share their elements, the structures interact, and
this makes the application a non-mechanistic phenomenon (see p. 528).

No matter how important is the flow-control structure, the other structures
too affect the application’s performance. Thus, even with a correct flow-control
structure, the application will malfunction if a subroutine or variable is
misused, or if a business practice is wrongly implemented; in other words, if
one of the other structures does not match the requirements.

So, if the other structures affect the application’s performance as strongly
as does the flow-control structure, if we must ensure that every structure
is perfect, how can the theorists claim that a mathematical representation
of the flow of execution will guarantee the application’s correctness? They
are undoubtedly aware that the other structures create additional relations
between the same elements, but their mechanistic obsession prevents them
from appreciating the significance of these simultaneous relationships.

The theory of structured programming, thus, is refuted by the existence of
the other structures. Even if we managed to represent mathematically the flow-
control structure of an entire application, this achievement would be worthless,
because the application’s elements are related at the same time in additional
ways. Like all attempts to reduce a complex phenomenon to a simple structure,
a mathematical model of the flow-control structure would provide a poor
approximation of the running application. What we would note in practice is
that the model could not account for all the alternatives that the application is
displaying. (Here we are discussing only the complexity created by the other
types of structures. As we will see under the second delusion, the flow-control
structure itself consists of interacting structures.)

All we can say in defence of software mechanism is that each aspect of
the application – the flow of execution as well as the various processes – is
indeed more easily designed and programmed if we view it as a hierarchical
structure. But this well-known quality of the hierarchical concept can hardly
form the basis of a formal theory of programming. Only rarely are strict
hierarchies the most effective implementation of a requirement, and this is why
programming languages permit us to override, when necessary, the neat
hierarchical relations. Besides, only rarely is a mathematical representation of
even one of these structures, and even a portion of a structure, practical, or
useful. And a mathematical representation of the entire application is a fantasy.

Note how similar this delusion is to the linguistic delusions we studied in
previous chapters – the attempts to reduce linguistic communication to a
mechanistic model. In language, it is usually the syntax or the logic of a
sentence that is believed to be the main structure. And the mechanistic theories

the first delusion 537chapter 7

of language are failing for the same reason the mechanistic software theories
are failing: the existence of other structures.

It would have been too much, perhaps, to expect the software theorists to
recognize the similarity of software and language, and to learn from the
failure of the linguistic theories. But even without this wisdom, it should
have been obvious that software entities are related in many ways at the
same time; that the flow-control structure is not independent; and that, as a
result, applications cannot be represented mathematically. Thus, the theory of
structured programming was refuted at this point, and should have been
abandoned. Instead, its advocates decided to “improve” it – which they did
by reinstating the old concepts, as this is the only way to cope with the
complexity of applications. And so they turned structured programming into
a pseudoscience.

The Second Delusion

The Second Delusion
1 1
The second delusion emerged when the theorists attempted to restore some of
the complexity lost through the first delusion. An application implemented as
a strict nesting scheme would be trivial, its performance no more complex
than what could be represented with a hierarchical structure of sequential
constructs. We could perhaps describe mathematically its flow of execution,
but it would have no practical value. There are two reasons for this: first,
without jumps in the flow of execution – jumps controlled by run-time
conditions – the application would always do the same thing; second, without
a way to link the flow-control structure to the structures that depict files,
subroutines, business practices, and so forth, these processes would remain
isolated and would have no bearing on the application’s performance.

Real-world applications are complex phenomena, systems of interacting
structures. So, to make structured programming practical, the theorists had to
abandon the idea of a single structure. In the second delusion, they make the
flow-control structure (supposed to be just the nesting scheme) a complex
structure again, by permitting multiple flow-control structures. In the third
delusion, we will see later, they make the whole application a complex structure
again, by restoring the interactions between the flow-control structures and
some of the other types of structures. And in the fourth delusion they abandon
the last restrictions and permit any flow-control structures that are useful.
The pseudoscientific nature of this project is revealed, as I already pointed out,
by the reinstatement of concepts that were previously excluded (because they

538 structured programming chapter 7

contradict the principles of structured programming), and by the delusion
that the theory can continue to function as originally claimed, despite these
reversals.

�

The second delusion involves the standard conditional and iterative constructs.
Under structured programming, you recall, these two constructs, along with
the sequential construct, are the only flow-control constructs permitted.
Because it is possible – in principle, at least – to implement any application
using only these constructs and the nesting scheme, the three constructs are
seen as a basic set of software operations.

The theorists look at the application’s flow diagram, note that the flow-
control constructs create levels of nesting, and conclude that their purpose
is to combine software elements into higher-level elements – just as the
operations that define a simple hierarchical structure create the elements of
each level from those of the lower one. But this conclusion is mistaken: the
theorists confuse the hierarchical nesting scheme and the three constructs,
with the concept of a hierarchy and its operations.

Now, in the flow diagram the constructs do appear to combine elements on
higher and higher levels; but in the running application their role is far
more complex. The theorists believe that the restriction to a nesting scheme
and standard constructs ensures that the flow-control structure is a simple
structure, when the real purpose of these constructs is the exact opposite: to
make the flow-control structure a complex structure.

This is easy to understand if we remember why we need these constructs in
the first place. The conditional and iterative constructs provide (implicit)
jumps in the flow of execution; and the function of jumps is to override the
nesting scheme, by relating software elements in ways additional to the way
they are related through the nesting scheme. We need the two constructs, thus,
when certain requirements cannot be implemented with only one flow-control
structure. As we saw earlier, the ability of an element to alter the flow of
execution, implicitly or explicitly, is in effect a flow-control attribute (see
pp. 529–530). Jumps override the nesting scheme by creating additional flow-
control attributes, and hence additional flow-control structures. (We will
examine these structures shortly.)

So the whole idea of standard flow-control constructs springs from a
misunderstanding: the theorists mistakenly interpret the sequential, condi-
tional, and iterative constructs as the operations of a hierarchical structure.
To understand this mistake, let us start by recalling what is a hierarchical
structure.

the second delusion 539chapter 7

In a hierarchical structure, we combine a number of relatively simple
elements (the starting elements) into more and more complex ones, until we
reach the top element. The set of starting elements can be described as the basic
building blocks of the hierarchy. At each level, the new elements are created by
performing certain operations with the elements of the lower level. Thus, the
elements become more and more complex as we move to higher levels,
while the operations themselves may remain quite simple. The definition of a
hierarchy includes the starting elements, the operations, and some rules
describing their permissible uses.

The fallacy committed by the advocates of structured programming is in
perceiving the three standard constructs as operations in the hierarchical
structure that is the nesting scheme. The function of these constructs, in other
words, is thought to be simply to combine software elements (the statements
of a programming language) into larger and larger elements, one nesting level
at a time. In reality, only the sequential construct combines elements into
higher-level ones; the function of the conditional and iterative constructs is not
to combine elements, but to generate multiple flow-control structures.

To appreciate why the conditional and iterative constructs are different, let
us look at other kinds of structures and operations. In a physical structure, the
starting elements are the basic components, and the operations are the means
whereby the components are combined to form the levels of subassemblies.
When the physical structure is a device like a machine, its performance too can
be represented with a structure; and the operations in this structure are the
ways in which the working of a subassembly is determined by the working of
those at the lower level. In electronic systems, the starting elements are
simple parts like resistors, capacitors, and transistors, and the operations are
the connections that combine these parts into circuits, circuit boards, and
devices. Here, too, in addition to the physical structure there is a structure that
represents the performance of the system, and the operations in the latter are
the ways in which the electronic functions at one level give rise to the functions
we observe at the next higher level.

Turning now to software systems, consider a hypothetical application
consisting of only one structure – the flow-control structure, just as structured
programming says. The starting elements in this hierarchy are the statements
permitted by a particular programming language, and the operations are the
various ways in which statements are combined into blocks of statements, and
blocks into larger blocks, modules, and so on. (Remember that the operations
we are discussing here are the operations that define the hierarchical flow-
control structure, which exists in time – not the operations we see as statements
in a programming language; those operations function as the starting elements
of the flow-control structure.) Clearly, if the flow of execution is to reflect

540 structured programming chapter 7

the flow-control structure, the operations must be determined solely by
the nesting scheme. Or, to put it differently, the only operations required
in a software structure are the relations that create a nesting scheme of
software elements. In particular, we need operations to delimit blocks of
statements, and to invoke modules or subroutines. Ultimately, the operations
in a software hierarchy must fulfil the same function as those in other types of
hierarchies: combining the elements of one level to create the elements of the
next higher level.

Note what is common to all these hierarchical systems: they are based on a
set of starting elements and a set of operations, which constitute the definition
of the hierarchy; and these sets can then generate any number of actual
structures – different objects, or devices, or circuits, or software applications.
Each actual structure is one particular implementation of a certain hierarchical
system – a physical system, an electronic system, or a software system; that is,
one combination of elements out of the many possible in that system. Note also
that the actual structures are fixed: when we create a particular combination of
elements, we end up with a specific device, circuit, or software application. The
same structure – the same combination of elements – cannot represent two
devices, circuits, or applications.

Given these common features, the second delusion ought to be obvious:
the three standard constructs are not the set of operations that make up
the definition of hierarchical software systems, as the theorists believe; and
consequently, the resulting structures are not simple hierarchical software
structures. That set of operations is found in the concept of sequential con-
structs, and in the concepts of blocks, modules, and subroutines. These are the
only operations we need in order to generate hierarchical structures of software
elements; that is, to generate any nesting scheme. With these operations,
we create a higher level by combining several elements into a larger one:
consecutive elements when using sequential constructs, and separate, distant
elements when invoking modules and subroutines. (Subroutines, of course,
also serve to create other types of structures, as we saw under the first delusion.
But we must discuss one delusion at a time, so here we assume, with the
theorists, that the flow-control structure is an independent structure.)

Of the three standard constructs, then, only the sequential construct
performs the kind of operation that defines a hierarchical structure. We do not
need conditional or iterative constructs to create software structures, so these
two constructs do not perform ordinary operations, and are not part of the
definition of a software hierarchy. Hierarchical systems, we just saw, generate
actual structures that are fixed; and the structures formed with these two
constructs are variable. While ordinary operations consist in combining
elements, the operation performed by the conditional and iterative constructs

the second delusion 541chapter 7

consists in selecting elements. Specifically, instead of combining several ele-
ments into a higher-level element, the conditional and iterative constructs
select one of two elements: in the conditional construct there is one selection,
and one of the two elements may be empty; in the iterative construct the
selection is performed in each iteration, and one of the two elements (the one
selected when exiting the loop) is always empty.

So these two constructs do not treat software elements in the way a physical
system treats the parts of a subassembly, or an electronic system treats the
components of a circuit. In the other hierarchies, all the lower-level elements
become part of the higher level, whereas in software hierarchies only one of the
two elements that make up these constructs is actually executed. The real
function of these constructs, therefore, is not to create higher-level elements
within one nesting scheme, but to create multiple nesting schemes. Their
function, in other words, is to turn the flow of execution from one structure
into a system of structures.

2

2
If you still can’t see how different they are from ordinary operations, note that
both the conditional and the iterative constructs employ a condition. This is an
important clue, and we can now analyze the second delusion with the method
of simple and complex structures. Simple structures have no conditions in
their operations. Hence, software structures that incorporate these constructs
are complex, not simple. The condition, evaluated at run time and variously
yielding True or False, is what generates the multiple structures.

Remember, again, that the structure we are discussing is the application’s
flow of execution (a structure that exists in time), not its flow diagram (a
structure that exists in space). In flow diagrams these constructs do perhaps
combine elements in a simple hierarchical way; but their run-time operation
performs a selection, not a combination. And, since the running application
includes all possible selections, it embodies all resulting structures.

Let us try, in our imagination, to identify and separate the structures that
make up the complex flow-control structure – the one depicting the true
manner in which the computer executes the application’s elements. Let us start
with the static structure (the flow diagram) and replace all the conditional and
iterative constructs with the elements that are actually executed at run time.
For simplicity, imagine an application that uses only one such construct
(see figure 7-9).

Thus, in the case of the conditional construct, instead of a condition and two
elements, what we will see in the run-time structure is a sequential construct

542 structured programming chapter 7

with one element – the element actually executed. And in the case of the
iterative construct, instead of a condition and an element in a loop, what we
will see is a sequential construct made up of several consecutive sequential
constructs, their number being the number of times the element is executed at
run time. More precisely, each iteration adds a sequential construct containing
that element to the previous sequential construct, thereby generating a new,
higher-level sequential construct.

In the flow of execution, then, there is only a sequential construct. So,
from the perspective of the flow of execution, the original structure can be
represented as two or more overlapping structures, which differ only in the
sequential construct that replaces the original conditional or iterative one. It is
quite easy to visualize the two resulting structures in the case of the conditional
construct, where the sequential construct contains one or the other of the two
elements that can be selected. In the case of the iterative construct, though,
there are many structures, as many as the possible number of iterations: the
final construct can include none, one, two, three, etc., merged sequential
constructs, depending on the condition. Each number gives rise to a slightly
different final construct, and hence a different structure. Clearly, since the
running application can perform a different number of iterations at different
times, it embodies all these structures.

We can also explain the additional flow-control structures by counting the

Figure 7-9

STATIC DYNAMIC

…

C1

True

False

S1

S2

S1

S2

C1

True

False

S1

S1

S1 S1

S1 S1 S1

the second delusion 543chapter 7

number of jumps implicit in a construct. Each jump in execution creates,
as we know, a flow-control attribute, and hence a flow-control structure.
The number of possible jumps reflects, therefore, the number of different
sequences of execution that the application can display – the number of
different paths that the execution can follow. In the conditional construct there
are two possible paths, but only one needs a jump; the other is, in effect, the
flow diagram itself. Let us decide, arbitrarily, that the path selected when the
condition is False represents the flow diagram; then, the one selected when
the condition is True represents the jump, and hence the additional structure.

In the iterative construct there are many possible paths, because the condi-
tion is evaluated in each iteration. For example, if in a particular situation the
condition permits five iterations, this means that it is True five times, so there
are five (backward) jumps. In another situation, the number of iterations, and
hence the number of jumps generated by the construct, will be different. The
number of possible structures is the largest number of iterations permitted
by the condition, which is the same as the number of different paths. It is
convenient to interpret these structures as those that are additional to the flow
diagram; then, the flow diagram itself is represented by the path followed when
ending the loop, when the condition is False.

�

To summarize, ordinary operations – the kind we see in other types of
hierarchical systems – give rise to fixed structures, whereas the conditional
and iterative software constructs give rise to variable structures. A variable
structure is logically equivalent to a family of structures that are almost
identical, sharing all their elements except for one sequential construct. And,
since these structures exist together in the running application, a variable
structure is the same as a complex structure.

We can also describe the flow-control constructs as means of turning a
simple static structure (the flow diagram, which reflects the nesting scheme)
into a complex dynamic one (the flow-control structure of the running
application). Through its condition, each construct creates from one nesting
scheme several flow-control structures, and hence several sequences of exe-
cution. (We saw earlier how a hierarchical structure defines, through the
nesting convention, a specific sequence of execution; see p. 531.) The construct
does this by endowing elements with several flow-control attributes, thereby
relating them, from the perspective of the flow of execution, in several ways.
We can call the individual flow-control structures dynamic nesting schemes,
since each one is a slightly different version, in the running application, of the
static nesting scheme. The complex flow-control structure that reflects the

544 structured programming chapter 7

performance of the application as a whole is then the totality of dynamic
nesting schemes.

Complex structures cannot be reduced to simple ones, of course. We
can perhaps study the individual structures when we assume one or two
conditional or iterative constructs. But in real applications there are thousands
of constructs, used at all levels, with elements and modules nested within one
another. The links between structures are then too involved to analyze, and
even to imagine.

So it is the static flow-control structure, not the dynamic one, that is the
software equivalent of a physical structure. It is the dynamic structure that the
theorists attempt to represent mathematically, though. Were their interest
limited to flow diagrams, then strictly hierarchical methods like those used to
build physical structures would indeed work. They work with the other types
of systems because in those systems the dynamic structure usually mirrors the
static one.É

�

We saw how each flow-control construct generates, through its condition, a
system of flow-control structures. But in addition to the interactions between
these structures, the flow-control constructs cause other interactions yet, with
other types of structures. Here is how: The conditions employed by these
constructs perform calculations and comparisons, so they necessarily involve
memory variables, database fields, subroutines, or practices. They involve,
thus, software processes; and, as we know, each process gives rise to a structure
– the structure reflecting how the application’s elements are affected by a
particular variable, field, subroutine, or practice. Through their conditions,
therefore, the flow-control constructs link the complex flow-control structure
to some of the other structures that make up the application – structures that
were supposedly isolated from the flow-control structure in the first delusion.
The links to those structures are officially reinstated by the theorists in the

É Man-made physical systems that change over time (complicated mechanical or
electronic systems) may well have a dynamic flow-control structure that is different from
their static flow diagram and is, at the same time, complex – just like software systems. Even
then, however, they remain relatively simple, so their dynamic behaviour can be usefully
approximated with mechanistic means. They are equivalent, thus, to trivial software
systems. We refrain from creating physical systems that we cannot fully understand and
control, while being more ambitious with our software systems. But then, if we create
software systems that are far more involved than our physical ones, we should be prepared
to deal with the resulting complexity. It is absurd to attempt to represent them as we do the
physical ones, mechanistically. Note that it is quite common for natural physical systems to
display non-mechanistic behaviour (the three-body system, for instance, see pp. 107–108).

the second delusion 545chapter 7

third delusion, but they must be mentioned here too, just to demonstrate the
great complexity created by the conditional and iterative constructs, even as
they are believed to be nothing but ordinary operations.

The complexity created by the conditional and iterative constructs is, in fact,
even greater. For, in addition to the links to other types of structures, each
construct creates links to other flow-control structures: to the families of
structures generated by other constructs. The nesting process is what causes
these links. Because these constructs are used at all levels, the links between
the structures generated by a particular construct, at a particular level, also
affect the structures generated by the constructs nested within it. So the
links at the lower levels are additional to the links created by the lower-level
constructs themselves.

3

3
The second delusion, we saw, consists in confusing the standard flow-control
constructs with the set of operations that defines a simple hierarchical struc-
ture. The theorists are fascinated by the fact that three constructs are all we
need, in principle, in order to create software applications; so they conclude,
wrongly, that these constructs constitute a minimal set of software operations.

Now, a real minimal set of operations would indeed be an important
discovery. If a set like this existed, then by restricting ourselves to these
operations we could perhaps develop our applications mathematically. Even a
minimal set defining just the flow-control structure (which is all we can hope
for after the first delusion) would still be interesting. But if these constructs
are not ordinary operations, the fact that they are a minimal set is irrelevant.
If the flow-control structure is not a simple hierarchical structure, we cannot
develop applications mathematically no matter what starting elements and
operations we use.

The three constructs may well form a minimal set, but all we can say about
it is that it is the minimal set of constructs that can generate enough flow-
control structures to implement any software requirement. Here is why: The
nesting scheme, as we know, endows all the elements in the application with
one flow-control attribute; but each flow-control construct endows certain
elements with additional flow-control attributes; finally, each one of these
attributes gives rise to a flow-control structure, and this system of flow-control
structures constitutes the application’s flow of execution. To create serious
applications, elements must be related through many different attributes, but
only some of these attributes need to be of the flow-control type. What has been
proved, thus, is that the three standard constructs – in conjunction with

546 structured programming chapter 7

the nesting scheme – provide, in principle, the minimal set of flow-control
attributes required to create any application. In principle, then, we can replace
the extra flow-control attributes present in a given application with other types
of attributes. It is possible, therefore, to reduce all flow-control structures to
structures based on the three standard constructs – if we agree to add other
types of structures. (This is the essence of the transformations prescribed in the
third delusion.)

So the idea of a minimal set of flow-control constructs may be an interesting
subject of research in computer science, and this is how it was perceived
by the scientists who first studied it.Ê But it is meaningless as a method
of programming. For, if the flow-control structure (to say nothing of the
application as a whole) ceases to be a simple hierarchical structure as soon as
we add any conditional or iterative constructs to the nesting scheme, the dream
of mathematical programming is lost, so it doesn’t matter whether the minimal
set has three constructs or thirty, or whether we restrict ourselves to a minimal
set or create our own constructs.

�

When misinterpreting the function of the flow-control constructs, the software
mechanists are committing the same fallacy as all the mechanists before
them: attempting to represent a complex phenomenon by means of a simple
structure. These constructs are seen as mere operations within the traditional
nesting concept, when in reality they constitute a new concept – a concept
powerful enough to turn simple static structures into complex dynamic ones.
The mechanists, though, continue to believe that the flow of execution can be
represented with one structure. So the real function of these constructs is to
restore some of the complexity that was lost in the first delusion, when the
mechanists reduced applications to one structure. (The rest of that complexity
is restored in the third and fourth delusions.)

The fallacy, thus, is in the belief that we can discover a simple structure
that has the potency of a complex one. The software mechanists note that
the hierarchical concept allows us to generate large structures with just a
few operations and starting elements, and that this is useful in fields like
manufacturing and construction; and they want to have the same qualities in
software. They want software systems to be simple hierarchical structures, but

Ê See, for example, Corrado Böhm and Giuseppe Jacopini, “Flow Diagrams, Turing
Machines and Languages with Only Two Formation Rules,” in Milestones in Software
Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society
Press, ©1990 IEEE) – paper originally published in Communications of the ACM 9, no. 5
(1966): 366–371. We will return to this paper later.

the second delusion 547chapter 7

to retain their power and versatility; that is, their ability to perform tasks which
cannot be performed by mechanical or electronic systems. They fail to see that
this ability derives precisely from the fact that software allows us to create a
kind of structures which the other systems do not – complex structures.

Nothing stops us from restricting software applications to simple hierarchi-
cal structures, just like those we create with the other systems. We would be
able to develop, however, only trivial applications – only those that could be
represented as a nesting scheme of sequential constructs. To create a greater
variety of applications, we must enhance the nesting concept with the concept
of conditional and iterative constructs; but then the applications are no
longer simple structures. In the end, it is only through self-deception that the
mechanists manage to have a simple structure with the potency of a complex
one: they are creating complex software structures while continuing to believe
that they are working with simple ones.

The Third Delusion

The Third Delusion
1 1
The first delusion, we recall, was the belief that the flow-control structure can
be isolated from the other structures that make up the application, and that it
can be reduced to a simple structure. With the second delusion, the flow-
control structure became a system of interacting flow-control structures;
moreover, it was linked, through the conditions used in the flow-control
constructs, to other types of structures. Thus, if after the first delusion the
expectation of a mechanistic representation of the flow-control structure was
still valid, this expectation was illogical after the second delusion, when it
became a complex structure.

The third delusion is the belief that it is important to reduce the application
– through a series of transformations – to the flow-control structure defined in
the second delusion. It is important, the theorists insist, because that structure
can be represented mechanistically. Through this reduction, therefore, we will
represent the entire application mechanistically. Just as they succumbed to the
second delusion when attempting to suppress the evidence of complexity after
the first one, the theorists succumbed to the third delusion because they
ignored the evidence of complexity after the second one.

I defined the four delusions as stages in a process of degradation, as
distinct opportunities for the theorists and the practitioners to recognize
the fallaciousness of structured programming. On this definition, the third
delusion is a new development. The idea of structured programming could

548 structured programming chapter 7

have ended with the second delusion, when the conditional and iterative
constructs were introduced, since the very need for these constructs proves
that the flow-control structure of a serious application is more than a simple
hierarchical structure. Having missed the second opportunity to recognize
their mistake, the theorists promoted now the idea of transformations: we
must modify the application’s requirements so as to limit the application to
flow-control structures based on the three standard constructs; all other flow-
control structures must be replaced with structures based on shared data or
shared operations (see pp. 524–527).

Everyone could see that these transformations are artificial, that they
complicate the application, that in most situations they are totally impractical,
and that even when we manage to implement them we still cannot prove our
applications mathematically. Yet no one wondered why, if the principle of
hierarchical structures works so well in other fields, if we understand it so
readily and implement it so easily with other systems, it is impractical for
software systems. No one saw this as one more piece of evidence that software
applications are not simple hierarchical structures. Thus, the theorists and the
practitioners missed the third opportunity to recognize the fallaciousness of
structured programming.

2

2
Let us review the motivation for the transformations. To perform a given task,
the application’s elements must be related; and, usually, they must be related in
more than one way. It is by sharing attributes that software elements are related.
Each attribute gives rise to a set of relations; namely, the structure representing
how the application’s elements are affected by that attribute.

There are several types of attributes and relations. A relation is formed, for
example, when elements use the same memory variable or database field, when
they perform the same operation or call the same subroutine, or when they are
part of the same business practice. Elements can also be related through the
flow of execution: the relative sequence in which they are executed constitutes
a logical relation, so it acts as a shared attribute. And it is only this type of
attributes and relations – the flow-control type – that structured programming
recognizes.

A software element can possess more than one attribute. Thus, an element
can use several variables, call several subroutines, and be part of several
practices. Each attribute gives rise to a different set of relations between the
application’s elements, so each element can be related to the others in several
ways at the same time. Since these sets of relations are the structures that

the third delusion 549chapter 7

make up the application, we can also express this by saying that each element
is part of several structures at the same time. The multiplicity of software
relations is necessary because this is how the real entities – the processes and
events that make up our affairs, and which we want to represent in software –
are related.

As is the case with the other types of attributes, elements can possess more
than one flow-control attribute. Elements, therefore, can also be related to one
another in more than one way through the flow of execution. Multiple flow-
control relations are necessary when the relative position of an element in the
flow of execution must change while the application is running.

The nesting scheme (the static arrangement we see in the application’s flow
diagram) provides one of these attributes. The nesting scheme defines a formal,
precise set of relations, which constitutes in effect a default flow-control
attribute – one shared by all the elements in the application. And if this were
the only flow-control attribute, the application would have only one flow-
control structure – a structure mirroring, in the actual flow of execution, the
hierarchical structure that is the static nesting scheme.

In serious applications, though, elements must be related through more
than one flow-control attribute, so the simple flow of execution established by
the nesting scheme is insufficient. The additional flow-control attributes
are implemented by performing jumps in the flow of execution; that is, by
overriding the sequence dictated by the nesting scheme. The elements from
which and to which a jump occurs, and the elements bypassed by the jump, are
then related – when viewed from the perspective of the flow of execution – in
two ways: through the nesting scheme, and through the connection created by
the jump. Jumps provide an alternative to the sequence established by the
nesting scheme: whether the flow of execution follows one jump or another, or
the nesting scheme, depends on run-time conditions. So the execution of each
element in the application reflects, in the end, both the nesting scheme and the
various jumps that affect it.

Jumps can be explicit or implicit. Explicit jumps (typically implemented
with GOTO statements) permit us to create any flow-control relations we want.
Programming languages, though, also provide a number of built-in flow-
control constructs. These constructs are basic syntactic units designed to
create automatically, by means of implicit jumps, some of the more common
flow-control relations. The best-known built-in constructs, and the only ones
permitted by structured programming, are the elementary conditional and
iterative constructs (also known as the standard constructs).

By eliminating the explicit jumps, these constructs simplify programming.
But they are not versatile enough to satisfy all likely requirements; in fact, as we
saw earlier, even some very simple requirements cannot be implemented with

550 structured programming chapter 7

these constructs alone. The impossibility of implementing a given requirement
means that some elements must have more flow-control attributes than what
the nesting scheme and the standard constructs provide. Some elements, in
other words, must be related to others – when viewed from the perspective of
the flow of execution – in more ways than the number of jumps implicit in
these constructs. (For the conditional construct, we recall, there is one possible
jump, one way to override the nesting scheme; and for the iterative construct,
the number of jumps equals the number of possible iterations. The sequential
construct is not mentioned in this discussion, since it does not provide a jump
that can override the nesting scheme; sequential constructs, in fact, are the
entities that form the original nesting scheme, before adding conditional and
iterative constructs.)

We shouldn’t be surprised that software elements need more flow-control
attributes for a difficult requirement than they do for a simple one; after all, we
are not surprised that elements need more of the other types of attributes for a
difficult requirement (they need to use more variables or database fields, for
instance, or to call more subroutines).

Now, we could implement the additional flow-control relations by enhanc-
ing the standard conditional and iterative constructs, or by creating our own,
specialized constructs. In either case, though, we would have to add flow-
control attributes in the form of explicit jumps, and this is prohibited under
structured programming. The reason it is prohibited, we saw under the second
delusion, is the belief that applications restricted to the standard constructs
have only one flow-control structure (the nesting scheme). And this, in turn,
allows us to represent, develop, and prove them mathematically. Thus, the
theorists say, since it is possible, in principle, to transform any requirements
into a format programmable with the standard constructs alone, and since the
benefits of this concept are so great, any effort invested in realizing it is
worthwhile. This is the motivation for the transformations.

�

The transformations convert those flow-control relations that we need but
cannot implement with the standard constructs, into relations based on shared
data or shared operations. They convert, thus, some of the flow-control
structures into other types of structures (so they create more structures of the
types that have been ignored since the first delusion). When shared by several
elements, data and operations can serve as attributes, since they relate the
elements logically. (This, obviously, is why they can be used as substitutes for
the flow-control attributes.)

Consider a simple example. If we want to override the nesting scheme by

the third delusion 551chapter 7

jumping across several elements and levels without resorting to GOTO, we can
use a memory variable, like this: In the first element, instead of performing a
jump, we assign the value 1 to a variable that is normally 0. Then, we enclose
each element that would have been bypassed by the jump, inside a conditional
construct where the condition is the value of this variable: if 1, the element is
bypassed. So the flow of execution can follow the nesting scheme, as before, but
those elements controlled by the condition will be bypassed rather than
executed. In this way, one flow-control relation based on an explicit jump is
replaced with several flow-control relations based on the standard conditional
construct, plus one relation based on shared data.

The paper written by Corrado Böhm and Giuseppe Jacopini,É regarded by
everyone as the mathematical foundation of structured programming, proved
that we can always use pieces of storage (in ways similar to the foregoing
example) to reduce an arbitrary flow diagram to a diagram based on the
sequential, conditional, and iterative constructs. The paper proved, in other
words, that any flow-control structure can be transformed into a functionally
equivalent structure where the elements possess no more than three types of
flow-control attributes: one provided by the nesting concept and by merging
consecutive sequential constructs, and the others by the conditional and
iterative constructs.Ê

Another way to put this is by stating that any flow of execution can be
implemented by using no more than three types of flow-control relations. A
simple nesting scheme, made up of sequential constructs alone, is insufficient.
We need more than one type of relations between elements if we want the
ability to implement any conceivable requirement. But we don’t need more
than a certain minimal set of relations. The minimal set includes the relations
created by the nesting scheme, and those created by the standard conditional
and iterative constructs. Any other flow-control relations can be replaced with
relations based on other types of attributes; specifically, relations based on
shared data or shared operations.

It is important to note that the paper only proved these facts in principle; that
is, from a theoretical perspective. It did not prove that practical applications
can actually be programmed in this fashion. This is an important point,
because the effort of performing the transformations – the essence of the

É Corrado Böhm and Giuseppe Jacopini, “Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules,” in Milestones in Software Evolution, eds. Paul
W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE Computer Society Press, ©1990 IEEE)
– paper originally published in Communications of the ACM 9, no. 5 (1966): 366–371.

Ê The paper proved, in fact, that conditional constructs can be further transformed into
iterative constructs; so, in the end, only sequential and iterative constructs are necessary.
I will return to this point later.

552 structured programming chapter 7

third delusion – is justified by citing this paper, when in reality the paper is
only a study in mathematical logic, unconcerned with the practicality of the
transformations. (We will analyze this misrepresentation shortly.)

But regardless of their impracticality, the transformations would only make
sense if the resulting flow-control structure were indeed a simple structure.
The fallacies of the second delusion, thus, beget the fallacies of the third one:
because they believe that a flow-control structure restricted to the standard
constructs is a simple structure, the advocates of structured programming
believe that the effort of performing the transformations is worthwhile.

�

The difficulty of programming – what demands skills and experience – is
largely the need to deal with multiple structures, and hence with simultaneous
relations. The theorists acknowledge this when they stress the importance of
reducing the application to one flow-control structure: if every element in the
application is restricted to one flow-control attribute, every element will be
related to the others in only one way, and the application – viewed from the
perspective of the flow of execution – will have only one structure. We will then
be able to represent the application with a mechanistic model, and hence
develop and prove it with the tools of mathematics. To put this differently, by
eliminating the need to deal with simultaneous relations in our mind we will
turn programming into a routine activity, and thereby eliminate the need for
personal skills and experience.

This is the idea behind structured programming, but then the theorists
contradict themselves and permit several flow-control relations per element,
not one: the nesting scheme plus the relations generated by the standard
conditional and iterative constructs. The flow-control structure, as a result, is
a system of interacting structures. It was a simple hierarchical structure only
when it was a nesting scheme of elements that were all sequential constructs.
The implicit jumps that are part of the standard constructs create additional
flow-control relations between the application’s elements in exactly the same
way that explicit jumps would. It is quite silly to think that, just because there
are no explicit jumps – no GOTO statements – we have only one flow-control
structure. After all, the very reason we added the conditional and iterative
constructs is that the nesting scheme alone (a simple structure) could not
provide all the flow-control relations we needed.

The theorists believe that transformations keep the flow-control structure
simple because they eliminate the non-standard constructs. But if the standard
constructs already make the flow-control structure complex, the use of non-
standard ones is irrelevant, since we can no longer represent the flow-control

the third delusion 553chapter 7

structure mechanistically anyway. So, whether easy or difficult to implement,
the transformations are futile if their purpose is to turn programming into a
routine activity. Both with and without transformations, the flow-control
structure is a system of interacting structures, so the most difficult aspect
of programming – the need to process multiple structures in the mind –
remains unchanged. Thus, because structured programming fails to reduce
applications to a simple structure, it also fails to simplify programming.

And we must not forget that the transformations work by replacing flow-
control structures with structures of other types, so in the end they add to the
complexity of other systems of structures. Therefore, in those situations where
an explicit jump provides the most effective relation between elements, the
transformation will replace one structure with several, making the application
as a whole more involved. (The impracticality of the transformations is finally
acknowledged by the theorists in the fourth delusion.)

It is up to the programmer to select the most effective system of structures
for a given requirement, and this system may well include some flow-control
structures generated by means of explicit jumps. Discovering the best system
and coping with the unavoidable interactions – this, ultimately, is the skill of
programming. Since our affairs, and the software that mirrors them, consist
of interacting structures, we must develop the capacity to deal with these
interactions if we want to have useful applications. The aim of structured
programming is to obviate the need for this expertise; specifically, to turn
programming from an activity demanding skills and experience into one
demanding only mechanistic knowledge. But now we see that, in their desire
to simplify programming, the theorists add to the complexity of software, and
end up making programming more difficult.

3

3
Let us examine next the mechanistic belief that it is possible to actually
implement an idea that was only shown to be valid in principle. We saw that
even when we manage to reduce the application to standard constructs, the
flow of execution, and the application as a whole, remain complex structures;
so the transformations are always futile. Let us ignore this fallacy, though,
and assume with the theorists that by applying the transformations we will be
able to represent the application mathematically, so the effort is worthwhile.
But Böhm and Jacopini’s paper only shows that applications can be reduced
to the standard constructs in principle. The theorists, thus, are confidently
promoting the idea of transformations when there is nothing – apart from
a blind faith in mechanism – to guarantee that this idea can work with

554 structured programming chapter 7

practical applications.
It is common for mathematical concepts to be valid in principle but not

in practice, and many mechanistic delusions spring from confusing the
theoretical with the practical aspects of an idea. The pseudosciences we
studied in chapter 3, for instance, are founded upon the idea that it is possible
to account for all the alternatives displayed by human minds and human
societies. They claim, thus, that it is possible to discover a mechanistic model
where the starting elements are some basic physiological entities, and the
values of the top element represent every possible mental act, or behaviour
pattern, or social phenomenon (see pp. 281–284). Now, it is perhaps true that
every alternative of the top element is, ultimately, a combination of some
elementary entities or propensities; but it doesn’t follow that we can express
these combinations in precise, mathematical terms. The mechanists invoke the
principles of reductionism and atomism to justify their optimism, but they
cannot discover a working mechanistic model; that is, a continuous series of
reductions down to the basic entities. So, while it may be possible in principle
to explain human intelligence or behaviour in terms of low-level physiological
entities, we cannot actually do it.

The most fantastic mechanistic delusion is Laplacean determinism, which
makes the following claim: the world is nothing but a system of particles of
matter acting upon one another according to the mechanistic theory of
gravitation; it should therefore be possible, in principle, to explain all current
entities and phenomena, and to predict all future ones, simply by expressing
the relations between all the particles in the universe in the form of equations
and then solving these equations. The mechanists admit that this is only an
idea, that we cannot actually do it; but this doesn’t stop them from concluding
that the world is deterministic. (We will discuss this fallacy in greater detail in
chapter 8; see pp. 810–812.)

Returning to the domain of computer science, a well-known example of a
mechanistic model that is only an idea is the Turing machine.Ë This theoretical
device consists of a read-write head and a tape that moves under it in both
directions, one position at a time. The device can be in one of a finite number
of internal states, and its current state changes at each step. Also at each step,
the device reads the symbol found on the tape in the current position, perhaps
erases it or writes another one, and then advances the tape one position left
or right. The operations performed at each step (erasing, replacing, or leaving
the symbol unchanged; advancing the tape left or right; and selecting the
next internal state) depend solely on the current state and the symbol found

Ë Named after the mathematician and computer pioneer Alan Turing, who invented it
while studying the concept of computable and non-computable functions.

the third delusion 555chapter 7

in the current position.
Turing machines can be programmed to execute algorithms. For example,

if the permissible symbols are the digits 0 to 9, a program could read a series
of digits written in consecutive positions on the tape, interpret them as a
number, calculate its square root by using the tape as working area, and finally
erase the temporary symbols and write on the tape the digits that make up the
result. (The program for a Turing machine is not a list of instructions, as for a
computer, but a table specifying the operations to be performed for every
possible combination of machine states and input symbols.)

There are many variations, but the most interesting Turing machines are
those that define a minimal device: the machine with the smallest number of
internal states, or the smallest alphabet of symbols, or the shortest tape,
that can still solve any problem from a certain class of problems. It should
be obvious, for instance, that we can always restrict Turing machines to
two symbols, such as 0 and 1, since we can reduce any data to this binary
representation, just as we do in computers. Compared with devices that use a
larger alphabet – the full set of letters and digits, for example – the minimal
device would merely need a larger program and a longer tape to execute a
given algorithm.

Now, it has been proved that a Turing machine can be programmed to
execute, essentially, any algorithm. This simple computational device can
represent, therefore, any deterministic phenomenon, any process that can be
described precisely and completely. In particular, it can be programmed
to execute any task that can be executed by more complicated devices –
computers, for instance. Again, the program for the Turing machine would be
larger and less efficient, and in most cases totally impractical, but the device is
only an idea. We are only interested in the fact that, in principle, it can solve any
problem. In principle, then, any problem, no matter how complicated, can be
reduced to the simple operations possible on a basic Turing machine.

Thus, although the Turing machine is only a theoretical device, it is an
interesting subject of study in computer science. Since we know that anything
that can be computed can also be computed on a Turing machine, we can
determine, say, whether a certain problem can be solved at all mathematically,
by determining whether or not it can be programmed on a Turing machine.
Often this is easier than actually finding a mathematical solution. The practi-
cality of this program is irrelevant, since we don’t have to run it, or even
to develop it; all we need is the knowledge that such a program could be
developed.

�

Restricting software applications to the standard flow-control constructs is just

556 structured programming chapter 7

like these other ideas: it is only possible in principle. Just like the theories that
can explain only in principle any intelligent act, or those that can predict only
in principle any future event, or the Turing machine that can execute only in
principle any algorithm, it is possible only in principle to restrict software
applications to the three standard constructs. The software theorists, thus, are
promoting as a practical programming method an idea that is the software
counterpart of well-known mechanistic fantasies.

Despite our mechanistic culture, not many scientists seriously claim that
those other ideas have immediate, practical applications. But the software
experts were enthusiastic about the possibility of mathematical programming.
The idea of transformations – and hence the whole idea of structured program-
ming, which ultimately depends on the practicality of these transformations –
was taken seriously by every theorist, even though one could see from the start
that it is the same type of fantasy as the other ideas.

But it is the Turing machine that is of greatest interest to us, not only because
of its connection to programming in general, but also because Böhm and
Jacopini actually discuss in their paper the link between Turing machines and
standard flow-control constructs. (This link is clearly indicated even in the
paper’s title: “Flow Diagrams, Turing Machines and Languages with Only Two
Formation Rules.”)

Although computers can be reduced to Turing machines, everyone agrees
that this is true only in principle, that most tasks would be totally impractical
on a Turing machine. Thus, no one has suggested that, given the theoretical
benefits of minimal computational devices, we replace our computers with
Turing machines. Nor has anyone suggested that, given the theoretical benefits
of minimal programming languages, we simulate the operation of a Turing
machine on our computers, and then restrict programming languages to the
instructions of the Turing machine.

At the same time, the software theorists perceive the transformations as a
practical programming principle, and insist that we actually restrict our
applications to the standard constructs. Their naivety is so great that, even in a
mechanistic culture like ours, it is hard to find a precedent for such an
absurd claim. And we must not forget that the delusion of transformations
is additional to the two delusions we discussed earlier. This means that,
since applications cannot be represented mechanistically in any case, the
transformations would be futile even if they were practical.

It is important to emphasize that Böhm and Jacopini discussed the standard
constructs and the transformations strictly as a concept in mathematical
logic; they say nothing in their paper about grounding a programming theory
on this concept. It was only the advocates of structured programming who,
desperate to find a scientific foundation for their mechanistic fantasy, decided

the third delusion 557chapter 7

to interpret the paper in this manner. Having accepted as established fact what
was only a wish – the idea that software applications can be represented
mathematically – they saw in this paper something that its authors had not
intended: the evidence for the possibility of a practical mechanistic program-
ming theory.

The link between flow diagrams and Turing machines discussed by Böhm
and Jacopini is this: They demonstrated that there exists a minimal Turing
machine which is logically equivalent to a flow diagram restricted to the
standard flow-control constructs. More specifically, they showed that a Turing
machine restricted to the equivalent of the sequential, conditional, and iterative
operations can still execute, essentially, any algorithm. In other words, any
Turing machine, no matter how complicated, can be reduced, in principle, to
this minimal configuration.

By discussing the link between flow diagrams and Turing machines, then,
Böhm and Jacopini asserted in effect that they considered the transformation
of flow diagrams to be, like the Turing machine, a purely theoretical concept.
So it can be said that their study is the exact opposite of what the later theorists
claimed it was: it is an abstract idea, not the basis of a practical program-
ming theory. The study is misrepresented when invoked as the foundation of
structured programming.

4

4
We saw that the advocates of structured programming misrepresent Böhm and
Jacopini’s paper when invoking it as the foundation of a practical programming
theory. But this is not all. They also misrepresent the paper when saying
that it proved that only three flow-control constructs – the sequential, the
conditional, and the iterative – are necessary to create software applications.
In reality, the paper proved that only two constructs are necessary – the
sequential and the iterative ones. The conditional construct, it turns out, is
merely a special case of the iterative construct. Just as we can reduce through
transformations all non-standard constructs to conditional and iterative
ones, we can further reduce, through similar transformations, all conditional
constructs to iterative ones.

Thus, the paper is routinely depicted as the mathematical foundation of
structured programming, and we are told that the only way to derive the
benefits of mathematics is by restricting our applications to the elementary
sequential, conditional, and iterative constructs – while the paper itself shows
that the conditional construct is not an elementary construct. There are
thousands of references to this paper – in casual as well as formal discussions

558 structured programming chapter 7

of structured programming, in popular as well as professional publications –
and it is difficult to find a single one stating what Böhm and Jacopini actually
proved. According to all these references, they proved that applications can be
built from three, not two, elementary constructs. We must study now this
second aspect of the misrepresentation.

It is true that Böhm and Jacopini started by proving that any flow diagram
can be reduced to the three elementary constructs. But they went on and
proved that the conditional construct can be reduced to the iterative one. And
they also proved that an equivalent reduction is possible for Turing machines
(so the minimal Turing machine does not require conditional operations). Like
the link to Turing machines, this final reduction is clearly indicated even
in the paper’s title (“. . . Languages with Only Two Formation Rules”) and
in its introduction (“. . . a language which admits as formation rules only
composition [i.e., merging consecutive constructs] and iteration”Ì).

Although they proved it through mathematical logic, we can demonstrate

Ì Böhm and Jacopini, “Flow Diagrams,” p. 3.

this reduction with flow diagrams (see figure 7-10). In the first step, the
conditional construct is reduced to two consecutive, simpler conditional
constructs. The new constructs have only one operation each, S1 and S2,

Figure 7-10

C1

True

False

S1

S2

C1

True

False

S1

not C1

True

False

S2

x ← 0 C1 and x=0

True

False

S1 x ← 1

x ← 0 (not C1) and x=0

True

False

S2 x ← 1

the third delusion 559chapter 7

and the condition in the second one is the logical negation of the original
condition. In the second step, the new constructs are transformed into two
consecutive iterative constructs: the variable x, cleared before each loop and set
in the first iteration, is part of the condition. In the end, either S1 or S2 is
executed, and only once.Í

The fallacy of the third delusion, we saw, is the idea of transformations. But
now we see that, even within this idea, there is an inconsistency. And, even if
we ignore the other delusions, and the other fallacies of the third delusion, this
inconsistency alone is serious enough to cast doubt on the entire idea of
structured programming.

The inconsistency is this: The theorists tell us that we must reduce our
applications to the three standard flow-control constructs, because only if
created with these elementary entities can applications be developed and
proved mathematically. But if the most elementary software entities are
two constructs, not three, the theorists claim in effect that even with some
unreduced constructs we can derive the benefits of mathematical program-
ming. It is unimportant, they tell us, to reduce our applications from three
constructs to two; that is, from the conditional to the iterative construct. This
reduction, though, as shown in figure 7-10, is similar to the reduction from
any non-standard construct to the standard ones. (We saw examples of these
other reductions earlier, from figure 7-5 to 7-6 and from figure 7-7 to 7-8,
pp. 524–527.) So, if the mathematical benefits are preserved even without a
complete reduction, if it is unimportant to reduce our applications from three
constructs to two, why is it important to reduce them to three constructs in the
first place?

Imagine an application that also employs a non-standard construct, for a
total of four types of constructs. If this application can be reduced through
similar transformations from four constructs to three and from three to two,
and if at the same time it is unimportant to reduce it from three to two, then it
must also be unimportant to reduce it from four to three. And, continuing this
logic, it must also be unimportant to reduce an application from five constructs
to four, from six to five, and so on. In other words, whatever mathematical
benefits we are promised to gain from a reduction to the three standard
constructs are ours to enjoy with any number of non-standard constructs.
The transformations, therefore, and structured programming generally, are
unnecessary, and we should be able to develop and prove our applications
mathematically no matter how we choose to program them.

The theory of structured programming, thus, is inconsistent if its principles

Í The use of a memory variable as switch was explained earlier, for the transformation
shown in figure 7-8 (see pp. 526–527).

560 structured programming chapter 7

prescribe a certain programming method, and the same principles lead to
the conclusion that this method is irrelevant. The promoters of structured
programming failed to notice what is, in fact, a blatant self-contradiction:
claiming, at the same time, that it is important and that it is unimportant to
reduce applications to three constructs. Having misrepresented Böhm and
Jacopini’s paper as the basis of a practical programming theory (as we saw
earlier), they were now actually attempting to implement their fantasy. So, in
their eagerness, they added to the misrepresentation. Moreover, they added to
the theory’s fallaciousness, by making it inconsistent.

It is impossible to prove mathematically the correctness of our applications
– with or without transformations, with three or with two constructs. Since
applications are not simple structures, the idea of mathematical programming
is a fantasy, so there are no benefits in reducing them to any set of constructs.
Let us ignore for a moment, though, this fallacy, and believe with the theorists
that the transformations are worthwhile. But then, to be consistent – that is, to
benefit from these transformations – we would have to seek a complete
reduction, to two constructs. This shows that stopping the reduction at three
constructs is a separate fallacy, additional to the fallacy of mathematical
programming.

�

The following quotations are typical of how Böhm and Jacopini’s work is
misrepresented in programming books (that is, by mentioning the reduction
to three constructs, not two): “In 1966, Böhm and Jacopini formally proved the
basic theory of structured programming, that any program can be written
using only three logical constructs.”Î “One of the theoretical milestones of
systems science was Böhm and Jacopini’s proof that demonstrated it was
possible to build a good program using only three logical means of construc-
tion: sequences, alternatives, and repetition of instruction.”Ï “The first major
step toward structured programming was made in a paper published by
C. Böhm and G. Jacopini. . . . They demonstrated that three basic control
structures, or constructs, were sufficient for expressing any flowchartable
program logic.”Ð “According to Böhm and Jacopini, we need three basic
building blocks in order to construct a program: 1. A process box. 2. A
generalized loop mechanism. 3. A binary-decision mechanism.”Ñ “Böhm and

Î Victor Weinberg, Structured Analysis (Englewood Cliffs, NJ: Prentice Hall, 1980), p. 27.
Ï Ken Orr, Structured Requirements Definition (Topeka, KS: Ken Orr and Associates,

1981), p. 58.
Ð Randall W. Jensen, “Structured Programming,” in Software Engineering, eds. Randall

W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979), p. 228.

the third delusion 561chapter 7

Jacopini . . . first showed that statement sequencing, IF-THEN-ELSE conditional
branching, and DO-WHILE conditional iteration would suffice as a set of control
structures for expressing any flow-chartable program logic.”ÉÈ “In a now-
classical paper, Böhm and Jacopini proved that any ‘proper’ program can
be solved using only the three logic structures . . . 1. Sequence. 2. Selection.
3. Iteration.”ÉÉ “Böhm and Jacopini provided the theoretical framework by
showing it possible to write any program using only three logic structures:
DOWHILE, IFTHENELSE, and SEQUENCE.”ÉÊ “A basic fact about structured pro-
gramming is that it is known to be possible to duplicate the action of any
flowchartable program by a program which uses as few as three basic program
figures, namely, a SEQUENCE, an IFTHENELSE, and a WHILEDO. . . . This fact is due
to C. Böhm and G. Jacopini.”ÉË “Structured programming is a technique of
writing programs that is based on the theorem (proved by Böhm and Jacopini)
that any program’s logic, no matter how complex, can be unambiguously
represented as a sequence of operations, using only three basic structures.”ÉÌ

Even the Encyclopedia of Computer Science, in the article on structured
programming, says the same thing: “. . . a seminal paper by Böhm and Jacopini,
who proved that every ‘flowchart’ (program), however complicated, could be
rewritten in an equivalent way using only repeated or nested subunits of no
more than three different kinds – a sequence of executable statements, a
decision clause . . . and an iteration construct.”ÉÍ

Why did the theorists misrepresent the original study? Why did they
not insist on a complete reduction, to two constructs, just as Böhm and
Jacopini did in their paper? Why, in other words, do they permit us to use the
conditional construct, when the paper proved that it is not an elementary
construct, and that it can be reduced to the iterative one?

To understand the reason, recall that characteristic feature of structured

Ñ Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975), p. 146.

ÉÈ Clement L. McGowan and John R. Kelly, Top-Down Structured Programming Tech-
niques (New York: Petrocelli/Charter, 1975), p. 5.

ÉÉ Robert T. Grauer and Marshal A. Crawford, The COBOL Environment (Englewood
Cliffs, NJ: Prentice Hall, 1979), p. 4.

ÉÊ Gary L. Richardson, Charles W. Butler, and John D. Tomlinson, A Primer on Structured
Program Design (New York: Petrocelli Books, 1980), p. 4.

ÉË Richard C. Linger and Harlan D. Mills, “On the Development of Large Reliable
Programs,” in Current Trends in Programming Methodology, vol. 1, Software Specification and
Design, ed. Raymond T. Yeh (Englewood Cliffs, NJ: Prentice Hall, 1977), p. 122.

ÉÌ Donald A. Sordillo, The Programmer’s ANSI COBOL Reference Manual (Englewood
Cliffs, NJ: Prentice Hall, 1978), pp. 296–297.

ÉÍ Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1309.

562 structured programming chapter 7

programming – the continual blending of formal and informal concepts.
The theorists like the formal, mechanistic principles, so they invoke them
whenever they want to make their claims appear “scientific.” But, because
software applications are non-mechanistic phenomena, the formal principles
are useless; so the theorists are compelled to revert to the informal concepts.

Thus, it would be embarrassing to ask programmers to avoid conditional
constructs, just because they are not elementary (that is, to replace them, in the
name of science, with their unwieldy transformation into iterative constructs),
seeing that programming languages already include the simple IF statement,
designed specifically for implementing conditional constructs.

But programming languages also include the simple GOTO statement,
designed specifically for implementing jumps, and hence non-elementary
flow-control constructs. And yet, while permitting us to use IF, the theorists
prohibit us from using GOTO. The explanation for the discrepancy is that asking
us to avoid GOTO can be made to look scientific, while asking us to avoid IF can
only look silly.

Mathematically, a flow diagram with GOTO statements is no different
from one with IF statements, since both can be reduced, through similar
transformations, to the same two elementary flow-control constructs. The
theorists, though, consider the former to be “unstructured” and the latter
“structured.” This attitude – invoking the formal, precise principles when
practical, and reverting to informal guidelines when the formal principles are
inconvenient – is the essence of the fourth delusion, as we will soon see. At that
point, many other non-elementary flow-control constructs will be permitted.

�

The academics and the gurus who routinely cite Böhm and Jacopini’s paper
probably never set eyes on it. Most likely, only a handful of theorists actually
studied it, and, blinded by their mechanistic obsession, saw in it the proof for
the possibility of a science of programming. The other theorists, and the
authors and the teachers, accepted then uncritically this distorted interpreta-
tion and helped to spread it further. By the time it reached the books and the
periodicals, the programmers and the managers, and the general public, no one
was questioning the interpretation, or verifying it against the original ideas.
(Few would have understood the original paper anyway, written as it is in a
formal, and rather difficult and laconic, language.) Everyone was convinced
that structured programming is an important theory, mathematically grounded
on Böhm and Jacopini’s work, when in reality it is just another mechanistic
fantasy, grounded on a misrepresentation of that work.

And so it is how Böhm and Jacopini – humble authors of an abstract study

the third delusion 563chapter 7

of flow diagrams – became unwitting pioneers of the structured programming
revolution.

5

5
For twenty years, in thousands of books, articles, and lectures, the software
experts were promoting structured programming. To understand how it is
possible to promote an invalid theory for twenty years, it may help to analyze
the style of this promotion. Typically, the experts start their discussion by
presenting the formal principles and the mathematical foundation; and,
often, they mention Böhm and Jacopini’s paper explicitly, as in the passages
previously quoted. This serves to set a serious, authoritative tone; but then they
continue with informal, childish arguments.

For example, the Encyclopedia of Computer Science,ÉÎ after citing Böhm and
Jacopini’s “seminal paper,” includes the following “principles” in the definition
of structured programming: “judicious use of embedded comments” (notes
to explain the program’s logic); “a preference for straightforward, easily
readable code over slightly more efficient but obtuse code”; modules no larger
than about one page, “mostly for the sake of the human reader”; “careful
organization of each such page into clearly recognizable paragraphs based on
appropriate indentation” of the nested constructs (again, for ease of reading).

Some of these “principles” make good programming sense, but what have
they to do with the theory of structured programming? Besides, if the validity
of structured programming has been proved mathematically, why are these
informal guidelines mentioned here? Or, conversely, if structured program-
ming is no longer a formal theory and “may be defined as a methodological
style,”ÉÏ why mention Böhm and Jacopini’s mathematical foundation? The
formal and the informal arguments overlap continually. They appear to
support each other, but in fact the informal ones are needed only because the
formal theory does not work.

Incredibly, we also find the following requirement listed as a structured
programming principle: “the ability to make assertions about key segments of
a structured program so as to ‘prove’ that the program is correct.”ÉÐ The
editors enclosed the word “prove” in quotation marks presumably because
the principle only stipulates an informal verification, not a real proof. This
principle, thus, is quite ludicrous, seeing that structured programming is
supposed to guarantee mathematically (that is, with no qualifications) the

ÉÎ The quotations in this paragraph are ibid., pp. 1309–1311. ÉÏ Ibid., p. 1308.
ÉÐ Ibid., p. 1311.

564 structured programming chapter 7

correctness of software; it is supposed to guarantee, moreover, the correctness
of the entire program, not just “key segments.”

Another absurd principle is the permission to deviate from the standard
constructs if this “removes a gross inefficiency.”ÉÑ It is illogical to suggest that
what is, in fact, the main tenet of this theory – the standard constructs – may
cause inefficiency and must be forsaken. This principle is an excellent example
of pseudoscientific thinking: every situation where one must deviate from the
standard constructs is a falsification of structured programming; and the
experts suppress these falsifications by turning them into features of the theory
– non-standard constructs.

Lastly, we are told that “still further evolution of [structured programming]
is to be expected.”ÊÈ The editors seem to have forgotten that structured
programming is a formally defined theory, so it cannot evolve. What can evolve
is only the interpretations of the theory. Only pseudosciences evolve – expand,
that is, and become increasingly vague, as their defenders add more and more
“principles” in order to suppress the endless falsifications.

�

Instead of all these arguments, formal and informal, why don’t the theorists
simply show us how to develop perfect applications using nothing but neat
structures of standard constructs? This, after all, was the promise of structured
programming. The theorists promote it as a practical programming concept,
but all they can show us is some small, artificial examples (which, presumably,
is the only type of software they ever wrote). They leave it to us to prove its
benefits with real, fifty-thousand-line applications.

It is also worth repeating that, while this discussion is concerned with
events that took place in the 1970s and 1980s, the principles of structured
programming are being observed today as faithfully as they were then. Current
textbooks and courses, for instance, avoid GOTO as carefully as did the earlier
ones. In other words, despite their failure, these principles were incorporated
into every programming theory and methodology that followed, and are now
part of our programming culture. The irresistible appeal that structured
programming has to the software bureaucrats, notwithstanding the popularity
of more recent theories, can be understood only by recognizing its unique
blend of mathematical pretences and trivial principles. Thus, simply by talking
about top-down design or about GOTO, ignorant academics, programmers, and
managers can feel like scientists.

ÉÑ Ibid., p. 1310. ÊÈ Ibid.

the third delusion 565chapter 7

The Fourth Delusion

The Fourth Delusion
1 1
The fourth delusion is the absurd notion of inconvenience. The theorists
continue to maintain that the principles of structured programming are sound,
and the reason it is so difficult to follow them is just the inconvenience of the
restriction to standard constructs. They note that structured programming
works in simple situations – in their textbook illustrations, for instance. And
they also note that the definition of structured programming guarantees its
success for programs of any size: all we have to do is combine constructs and
modules on higher and higher levels of nesting. So, they conclude, there is
nothing wrong with the theory. If we find it increasingly difficult to follow its
principles as we move to larger programs – and entirely impractical in serious
business applications – we must simply disregard as many of these principles
as is necessary to render the theory serviceable.

In particular, the theorists say, we don’t have to actually restrict ourselves to
standard constructs. Their justification for allowing non-standard constructs
is this: We know that it is possible, in principle, to develop any application with
standard constructs alone. And we know that, in principle, non-standard
constructs can be reduced to standard ones through transformations. Why,
then, restrict ourselves to the standard constructs? We will enjoy the benefits
of structured programming even if we use the more convenient non-standard
constructs.

Clearly, the theorists fail to appreciate the absurdity of this line of logic:
if structured programming is promoted as a programming theory, the fact
that its principles are impractical means that the theory is wrong. As was
the case with the previous delusions, the theorists can deny this falsification
of structured programming only by concocting an absurd explanation. The
benefits of structured programming were only shown to emerge if we actually
build our applications as hierarchies of standard constructs. If we agree
to forgo its principles whenever found to be inconvenient, those benefits
will vanish, and we no longer have a theory. What is left then is just some
informal guidelines, not very different from what we had before structured
programming.

The response should have been to determine why it is so difficult to apply
these principles. We don’t find it difficult to apply mechanistic principles in
those fields where the mechanistic model is indeed practical – in engineering,
for instance. We don’t find these principles inconvenient with physical systems,
or with electronic systems, so why are they inconvenient with software systems?

For mechanistic phenomena, the simple hierarchical structure works well

566 structured programming chapter 7

no matter how large is the system. In fact, the larger the system, the more
important it is to have a mechanistic model. When building a toy airplane,
for example, we may well find it inconvenient to follow strictly the hierarchical
principle of subassemblies, and impractical to adhere strictly to the mathemat-
ical principles of aerodynamics; but we couldn’t build a jumbo jet without these
principles. With software systems the problem is reversed: the mechanistic
principles of structured programming seem to work in simple cases, but break
down in large, serious applications.

The inconvenience is due, as we know, to the non-mechanistic nature of
software applications. While the hierarchical structure is a good model for
mechanistic phenomena, for non-mechanistic ones it is not: the approximation
it provides is rarely close enough to be useful. What we notice with poor
approximations is that the model works only in simple cases, or works in some
cases but not in others. Thus, the fact that structured programming fails in
serious applications while appearing to work in simple situations indicates that
software systems cannot be usefully represented with a simple hierarchical
structure.

Structured programming fails because it attempts to reduce software appli-
cations, which consist of many interacting structures, to one structure. It starts
by taking into account only the flow-control structures and ignoring the others.
And then it goes even further and recognizes only one flow-control structure
– the nesting scheme. But this reified model cannot represent accurately
enough the complex structure that is the actual application.

2

2
Let us examine some of the non-standard constructs that were incorporated
into structured programming, and their justification. The simplest example is a
loop where the terminating condition is tested after the operation – rather than
before it, as in the standard iterative construct (see figure 7-11). Although this
construct can be reduced to the standard one by means of a transformation,É
most programming languages provide statements for both. And since these
statements are equally simple, and the two types of loops are equally common
in applications, the theorists could hardly ask us to use one construct and
avoid the other. The justification for permitting the non-standard one, thus,
is the inconvenience of the transformation: “Do we need both iteration

É There is one transformation based on memory variables, and another based on
duplicating operations. The latter, for instance, is as follows: convert the non-standard
construct into a standard one that has the same operation and condition, S1 and C1, and
add in front of it an operation identical to S1.

the fourth delusion 567chapter 7

variants? The Böhm-Jacopini theorem says ‘no,’ but that theorem addresses
only constructibility and not convenience. For this reason, programmers like
to have both variants.”Ê

Ê Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1310.

Ë The term “CASE” refers to the different cases, or alternatives, handled by this construct.
An additional alternative (the default) is usually included to allow for the case when none
of the comparisons is successful.

Another example is the conditional construct CASE, shown in figure 7-12.
A variable, or the result of an expression, is compared with several values; a
certain sequential construct (a statement, or a block of statements) is specified
for each value, and only the one for which the comparison is successful is
actually executed.Ë

Again, we could use the standard conditional construct instead: we would
specify a series of consecutive IF statements and perform the comparison with
each value in turn. When only a few values are involved, this solution (or the
alternative solution of nesting a second IF in the ELSE part of the previous one,
and so on) is quite effective. But there are situations where we must specify
many values, sometimes more than a hundred; the CASE construct is then more
convenient (and also more efficient, because the compiler can optimize the
comparisons).

Figure 7-11

S1 C1

True

False

Figure 7-12

C1

C2

C3

…

S1

S2

S3

568 structured programming chapter 7

The most embarrassing problem for structured programming, however, is
the ordinary loop, one of the most common software constructs. Practically
every statement in a typical application is part of a loop of some sort, its
execution repeated under the control of various conditions. And it is not
just inconvenient, but totally impractical, to reduce all forms of repetitive
execution to the standard iterative construct. We already saw how the need to
specify the terminating condition at the end of the loop led to the acceptance
of a new construct. But this is only one of the situations that cannot be
managed with the standard construct. Just as common is the situation where
the terminating condition is in the middle of the loop, or where there are
conditions throughout the loop, or where a condition terminates the current
iteration but not the loop. Since the standard construct cannot handle these
situations, we must either perform some complicated transformations, or add
to programming languages a new construct for each situation, or resort to
explicit jumps (GOTO statements) and create our own, specialized constructs.

The problem is even more serious in the case of nested loops. A loop nested
within another is nearly as frequent as a single loop, and even three and
four levels of nesting are common. Thus, since the situations previously
mentioned can occur at all levels, without explicit jumps even more compli-
cated transformations would be required, or dozens of constructs would have
to be added to cover all possible combinations.

In the end, the software theorists adopted all three methods: they incorpo-
rated into structured programming a small number of built-in constructs
(typically, a statement that lets us terminate the iterations, and a statement that
lets us terminate just the current iteration, from anywhere in the loop); they
recommend transformations in the other situations; and they permit the use
of GOTO when the first two methods are impractical.

Nearly as difficult as the combination of loops and conditions is the
combination of conditions alone. Although we could, in principle, express all
combinations by nesting IF-THEN-ELSE statements, this often leads to unwieldy
transformations, or too many nesting levels, or huge blocks of statements in the
THEN or ELSE part. A common requirement, for instance, is to terminate
prematurely the current block or the current module. As in the case of loops,
we can implement this requirement through transformations, or by adding to
the language new constructs, or with explicit jumps. The theorists, in the
end, incorporated into structured programming such constructs as EXIT and
RETURN, which terminate a module; but we must still use transformations to
terminate a block, unless the transformations are especially awkward, in which
case we are permitted to use GOTO.

�

the fourth delusion 569chapter 7

The following quotations illustrate how the advocates of structured program-
ming justify the adoption of non-standard constructs. The fact that we need
these constructs at all proves that the theory of structured programming has
failed. The constructs, though, are presented as “extensions” of the theory.
They are substantially “in the spirit” of structured programming, we are told,
and the only reason we need them is to make structured programming easier,
or more practical, or more convenient. This explanation is illogical, of course:
one cannot claim that non-standard constructs make structured programming
easier, when the very essence of structured programming is the absence of non-
standard constructs. What these experts are doing, in effect, is promoting
the principles of structured programming, praising their benefits, and then
showing us how to override them.

Edward Yourdon, one of the best-known experts, has this to say: “While the
[three standard constructs] are sufficient to write any computer program, a
number of organizations have found it practical to add some ‘extensions.’”Ì

And after describing some of these “extensions,” Yourdon concludes: “A
number of other modifications or compromises of the basic structured pro-
gramming theory could be suggested and probably will be suggested as more
programming organizations gain familiarity with the concept. As indicated,
many of the compromises do not violate the black-box principle behind the
original Böhm and Jacopini structures; other compromises do represent a
violation and should be allowed only under extenuating circumstances.”Í

Note again the misrepresentation of Böhm and Jacopini’s paper. What
Yourdon calls the black-box principle – namely, the restriction to constructs
with one entry and exit, which allows us to ignore their internal details and nest
them hierarchically – is not a principle but a consequence of Böhm and
Jacopini’s theorem. (I will return to this point later.) Yourdon cites their work,
but ignores the real principle – the restriction to nested standard constructs.
Böhm and Jacopini did not say that we can use any construct that has one entry
and exit. Yourdon invokes an exact theorem, but feels free to treat it as an
informal rule: we can add to the theorem any “extensions,” “modifications,”
and “compromises” (and, “under extenuating circumstances,” violate even
what is left of it), and the result continues to be called structured programming.

Here is another author who expresses the same view: “Although it is
theoretically possible to write all well-formed programs using nothing more
than the three basic logic structures shown here, we will find that program-
ming is easier if we expand our repertoire a little. Extensions to the three basic
logic structures are permitted as long as they retain the one-entry, one-exit

Ì Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975), p. 149. Í Ibid., p. 152.

570 structured programming chapter 7

property.”Î And here is another misrepresentation of Böhm and Jacopini’s
work: “The legitimate code blocks using structured programming theory are
as follows: 1. SEQUENCE 2. IFTHENELSE 3. DOWHILE 4. DOUNTIL
5. CASE This basic set of logic structures is a practical extension of Böhm
and Jacopini’s original form, which proved theoretically that any problem
can be broken down into small subproblems whose equivalent form can be
expressed with only the first three logic types described above. However, from
a practical coding viewpoint, all five logic types outlined above facilitate the
process without destroying its basic intent.”Ï So the authors of this book have
decided that, in order to make structured programming practical, the original
theorem should be interpreted as the combination of a “basic intent,” which
must be respected, and some other parts, which may be ignored.

Some additional examples of the same justifications: “Usually the restriction
to allow only these three control constructs in a structured program is relaxed
to include extensions such as the nested IF, the CASE statement, and the escape.
Allowing these extensions makes the program easier to code and to maintain.”Ð

“To the three basic figures SEQUENCE, IF-THEN-ELSE, and DO-WHILE we have
added for programming convenience the ITERATIVE-DO . . . and the REPEAT-
UNTIL, LOOP-EXITIF-ENDLOOP, and the SELECT-CASE figures.”Ñ “One should always
try to solve the problem using the basic composition rules (sequencing,
conditionals, repetition and recursion). If this does not give a good solution,
then use of some of the special types of jumps is justified.”ÉÈ “In general, the
dogmatic use of only the structured constructs can introduce inefficiency when
an escape from a set of nested loops or nested conditions is required.”ÉÉ The
best solution, the author explains, is to redesign the module so as to avoid this
requirement; alternatively, though, the structured programming restrictions
may be “violated in a controlled manner,”ÉÊ because such a violation “can be
accommodated without violating the spirit of structured programming.”ÉË

Î Dennie Van Tassel, Program Style, Design, Efficiency, Debugging, and Testing, 2nd ed.
(Englewood Cliffs, NJ: Prentice Hall, 1978), p. 76.

Ï Gary L. Richardson, Charles W. Butler, and John D. Tomlinson, A Primer on Structured
Program Design (New York: Petrocelli Books, 1980), pp. 46–47.

Ð James Martin and Carma McClure, Structured Techniques: The Basis for CASE, rev. ed.
(Englewood Cliffs, NJ: Prentice Hall, 1988), p. 46. (Regarding “nested IF,” the authors are
wrong, of course: this is the nesting of standard conditional constructs, and hence not an
extension but within the concept of structured programming.)

Ñ Clement L. McGowan and John R. Kelly, Top-Down Structured Programming Tech-
niques (New York: Petrocelli/Charter, 1975), p. 76.

ÉÈ Suad Alagić and Michael A. Arbib, The Design of Well-Structured and Correct Programs
(New York: Springer-Verlag, 1978), p. 226.

ÉÉ Roger S. Pressman, Software Engineering: A Practitioner’s Approach (New York:
McGraw-Hill, 1982), p. 246. ÉÊ Ibid. ÉË Ibid., p. 247.

the fourth delusion 571chapter 7

So, with all useful constructs again permitted, what was left of the theory of
structured programming was just some informal bits of advice on disciplined
programming, supplemented with the exhortation to use standard constructs
and avoid GOTO “as much as possible.”

In general, whenever a programming language included some new, useful
constructs, these constructs were enthusiastically adopted, simply because
they obviated the need for GOTO. The jumps implicit in these constructs
could be easily implemented with GOTO; but this alternative was considered
bad programming, even as the constructs themselves were praised as good
programming. Many theorists went so far as to describe these constructs as
modern language enhancements that help us adhere to the principles of
structured programming, when their role, clearly, is to help us override those
principles. (The only jumps allowed in structured programming, we recall, are
those implicit in the standard conditional and iterative constructs.) The
absence of the phrase “go to” was enough to turn their jumps from bad to good
programming, and the resulting programs from unstructured to structured.

Thus, despite the insistence that structured programming is more than just
GOTO-less programming, this concern – contriving transformations or new
constructs in order to avoid GOTO, or debating whether GOTO is permissible in
a particular situation – became in fact the main preoccupation of both the
academics and the practitioners.

Their reaction to what is in reality a blatant falsification of structured
programming – the need for explicit jumps – clearly reveals the theorists’
ignorance and dishonesty. Not only were they naive enough to believe that we
can program without jumps, but they refused to accept the evidence when this
was tried in actual applications. Even more than the difficulties encountered
under the first three delusions, the apparent inconvenience of the standard
constructs should have motivated them to question the validity of structured
programming. Instead, they suppressed this falsification by reinstating the
very feature that the original theory had excluded (the use of non-standard
constructs), and on the exclusion of which its promises were based. The
original dream, thus, was now impossible even if we forget that the previous
delusions had already negated it. The theorists, nevertheless, continued to
advertise structured programming with the same promises.

3

3
Returning to the previous quotations, what is striking is the lack of explanation.
The theorists mention rather casually that the reason we are permitted to
violate the principles of structured programming is the inconvenience of the

572 structured programming chapter 7

standard constructs. They are oblivious to the absurdity of this justification; it
doesn’t occur to them that this inconvenience is an important clue, that we
ought to study it rather than avoid it. Incredibly, they are convinced that if the
theory of structured programming does not work, we can make it work
simply by disregarding some of its principles. Specifically, those important
transformations we discussed earlier need to be performed now only when
convenient. We will derive the same benefits, the theorists say, whether we
actually reduce the application to standard constructs, or simply know that in
principle we could do it.

When we do find an explanation, it is the black-box principle that is
invoked. This principle, we are told now, is the only important one: since any
flow-control construct with one entry and one exit will function, for all
practical purposes, just like a standard construct, there is no need to restrict
ourselves to the standard constructs. We will enjoy the benefits of structured
programming with any constructs that have one entry and one exit.ÉÌ

We saw the meaning of a software “black box” in figures 7-4 to 7-8 (pp. 513,
524–527). A program is deemed structured if its flow diagram can be repre-
sented with nested boxes. Each box encloses a standard construct and can be
treated as a separate software element. And, since the standard constructs have
only one entry and exit, from the perspective of the flow of execution each box
is in effect a sequential construct. Moreover, when studying a certain box
from higher nesting levels, its internal details are immaterial; each element,
therefore, can be programmed independently of the others.

This principle applies at all nesting levels, so the entire application can be
developed simply by creating standard constructs: one construct at a time, one
level at a time. The restriction to software elements with one entry and exit
guarantees that, regardless of the number of nesting levels, the application can
be represented as a perfect hierarchical structure. The ultimate benefit of this
restriction, then, is that we can develop and prove our applications with the
formal methods of mathematics: if each element is correct, and if the relations
between levels (reflected in the single entries and exits) are correct, the
application as a whole is bound to be correct.

ÉÌ The term black box refers to a device, real or theoretical, that consists of an input, an
output, and an internal process that is unknown, or is immaterial in the current context. All
we can see, and all we need to know, is how the output changes as a function of the input.
Strictly speaking, then, since software flow-control constructs do not have input and output,
the theorists are wrong to describe them as black boxes: the entry and exit points seen in
the diagram do not depict an input value converted by a process into an output value, but
rather a construct’s place relative to the other constructs in the sequence of execution. Only
if taken in its most general and informal sense, simply as a device whose internal operation
is immaterial, can the concept of a black box be used at all with software flow-control
constructs.

the fourth delusion 573chapter 7

Suddenly, then, it seems that the principles of structured programming can
be relaxed: from a restriction to the standard constructs, to a restriction to any
constructs that have one entry and exit. Incredibly, structured programming
can be expanded from three to an infinity of constructs without having to give
up any of its original benefits. Still, as we just saw, there is no obvious fallacy in
this expansion; those benefits appear indeed attainable through any constructs
that have one entry and exit. But this sudden freedom, this ease of expanding
the theory, is precisely what should have worried the advocates of structured
programming, what should have prompted them to doubt its soundness.
Instead, they interpreted this apparent freedom as a good thing, as evidence
of its power: we can now combine in one theory, they concluded, the strictness
of a mathematical concept and the convenience needed in a practical program-
ming methodology.

This freedom is an illusion, of course. It appears logical only if we study
the new claim in isolation, only if we forget that the principles of structured
programming had been refuted before the theorists discovered the inconven-
ience of the standard constructs. Thus, to recognize the fallacies inherent in the
new delusion we must bear in mind the previous ones.

We note, first, that what the theorists call the black-box principle is not a
principle at all; it is a corollary, a consequence of the principles of structured
programming. Since the standard constructs have only one entry and exit, if
we restrict ourselves to standard constructs the flow diagram will display this
characteristic at every nesting level. The main principle is the restriction to the
standard constructs. The theorists take what is one of the results of this
principle (constructs with only one entry and exit) and make it the main
principle. Then, they substitute for what is the actual restriction (the three
standard constructs) a new, vague restriction.

The new restriction merely states that we should use non-standard con-
structs “as little as possible.” The number of constructs varies from expert to
expert: some permit only three or four (the minimum needed to alleviate the
inconvenience of the standard ones), others permit a dozen, and some go so
far as permitting any constructs with one entry and exit. Whether permitting
few or many, though, this restriction is specious; it is not an exact principle, as
was the restriction to standard constructs. In reality, if permitted to use a
construct just because it has one entry and exit, it matters little whether we use
one or a hundred: the issue now is, at best, one of programming style. But by
counting, studying, and debating the new constructs, and by describing them
as extensions of structured programming, the experts can delude themselves
that they still have a theory.

�

574 structured programming chapter 7

So the experts embraced the black-box principle because it allowed them to
bypass the rigours of structured programming. For, once we annul the real
principle (the restriction to standard constructs), any flow-control construct
can be said to have only one entry and exit. Take the CASE construct, for
instance – one of the first to be permitted in structured programming (see
figure 7-12, p. 568). Its flow diagram contains one component with several exits;
but, if we draw a rectangular box around the whole diagram, that box will have
only one entry and exit.

The same trick, obviously, can be performed with any piece of software:
first, we create the most effective or convenient construct, which will likely
violate the principles of structured programming by containing parts with
more than one entry or exit; then, we draw a box around the whole thing and
declare it an extension of structured programming, because now it has only
one entry and exit. It is entirely up to us to decide at what point this structuring
method becomes silly.

All non-standard constructs are based, ultimately, on this trick. And
every expert was convinced that structured programming could be saved by
extending it in this fashion. To pick just one case, Jensen allows six non-
standard constructs in his definition of structured programming.ÉÍ One of
these constructs, for example, is called POSIT, and its purpose is to replace a
particular combination of conditional statements, which involves an unusual
jump.ÉÎ Jensen shows us how much simpler his POSIT is than using standard
constructs and transformations, and he considers this to be sufficient justifi-
cation for including it in structured programming. (The jump, of course, is
even easier to implement with GOTO; the sole reason for his new construct is to
avoid the GOTO.) But Jensen may well be the only expert who deems this
particular instance of explicit jumps important enough to become an official
construct. Some experts would recommend transformations, others would
permit the use of GOTO, and others yet would suggest more than six non-
standard constructs. Still, no one saw how absurd these ideas were. Clearly, if
each expert is free to interpret the theory of structured programming in his
own way, there is no limit to the number of variants that can be invented. Is
structured programming, then, this open-ended collection of variants?

Significantly, the experts did not replace the original principle with a more
flexible, but equally precise, one. The original principle was strict and simple:
in only two situations – within the standard conditional and iterative constructs
– can the flow diagram include a component with more than one entry or exit.

ÉÍ Randall W. Jensen, “Structured Programming,” in Software Engineering, eds. Randall
W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979), p. 238.

ÉÎ Ibid., p. 250.

the fourth delusion 575chapter 7

By adopting the black-box principle, the experts increased the number of
permitted situations from two to an infinity.

And with this permission, structured programming finally became a
practical concept: whenever we want to avoid an awkward transformation, we
can simply use a language-specific construct, or create a specialized flow-
control construct, and justify this by claiming that it is a logical extension of
structured programming.

We recognize in the black-box principle the pseudoscientific stratagem of
turning falsifications into features (see “Popper’s Principles of Demarcation”
in chapter 3): the theory is expanded by permitting those situations that
would otherwise falsify it, and calling them new features. Thus, the black-box
principle permits almost any constructs, while the principle of standard
constructs permitted only three. As a result, constructs whose usefulness
originally falsified the theory are now features of the theory. This saves the idea
of structured programming from refutation, but at the price of making it
unfalsifiable, and hence worthless.

4

4
It is even easier to understand the fourth delusion when we represent applica-
tions as systems of interacting software structures. Recall our discussion under
the second delusion. The purpose of the standard conditional and iterative
constructs is to provide alternatives to the flow of execution defined by the
nesting scheme. Each alternative endows the application with a unique flow-
control structure. And, since the actual flow of execution is affected by all the
flow-control constructs in the application, it is in reality a system comprising
all the individual flow-control structures (see pp. 541–545).

So the two standard constructs already make the flow of execution a
complex structure. When we study the application from the perspective of the
nesting scheme alone – when we study the flow diagram, for instance – what
we see is elements neatly related through one hierarchical structure. But if
some of these elements are conditional or iterative constructs, the actual flow
of execution will comprise many structures. Each one of these structures differs
from the nesting scheme only slightly, in one element of one particular flow-
control construct.

As far as their effect on the flow of execution is concerned, then, there is
indeed no difference between the standard and the non-standard flow-control
constructs. Just like the standard ones, any flow-control construct provides, by
means of jumps, alternatives to the flow of execution defined by the nesting
scheme: each possible jump creates a different flow-control attribute, and

576 structured programming chapter 7

hence a flow-control structure. In the standard constructs, the jumps are
implicit. In non-standard constructs, the jumps can be both implicit (when we
use built-in, language-specific constructs) and explicit (when we create our
own constructs with GOTO).

Thus, in a certain sense, the software theorists are right to claim that any
construct with one entry and one exit is a valid structured programming
extension. Since constructs possessing this quality can be elements in a
hierarchical structure, a nesting scheme that includes non-standard constructs
remains a correct hierarchy. There is no fallacy in the claim that, within the
nesting scheme, non-standard constructs function just like the standard ones.
The fallacy, rather, is in the belief that the nesting scheme alone represents the
flow of execution.

The reason it seems that we can add an infinity of extensions and still enjoy
the benefits promised by structured programming is that those benefits were
already lost, since the first delusion. If the application consists of interacting
flow-control structures even when restricted to the standard constructs, this
means that it cannot be represented mathematically in any case. So it is
true that there is nothing to lose by allowing non-standard constructs. The
extensions are logical, just as the theorists say, but for a different reason: they
are logical, not because structured programming is valid both with and
without them, but because it is invalid both with and without them.

�

The dream of structured programming was always to establish a direct, one-
to-one correspondence between the static flow diagram and the actual flow of
execution (see pp. 532–533). Since flow diagrams can be drawn as hierarchical
structures, and hence represented with the exact tools of mathematics, such a
correspondence means that the same model that describes mathematically the
flow diagram would also describe the flow of execution, and therefore the
behaviour of the running application.

So the restriction to one entry and exit is important to the theorists because
it guarantees that all the elements in the application are related through a
simple hierarchical structure. And indeed, this restriction makes the flow
diagram a hierarchical structure. The theorists then mistakenly conclude that
the flow of execution, formed as it is from the same elements and relations, will
mirror at run time the flow diagram; so it too will be a hierarchical structure.
The flow of execution, though, is the combination of all the flow-control
structures in the application. We could perhaps represent mathematically each
one of those structures. But even if we accomplished this, we still could not
represent mathematically the complex structure that is their totality, and which

the fourth delusion 577chapter 7

is the only true model of the application’s flow of execution. And we must not
forget the other types of structures – structures based on shared data or
operations, and on business or software practices – all interacting with one
another and with the flow-control structures, and therefore affecting the
application’s performance.

It is only when we recognize the great complexity of software that we can
appreciate how ignorant the software experts are, and how naive is their belief
that the nesting scheme represents the flow of execution. As I pointed out
earlier, the theory of structured programming was refuted in the first delusion,
when this belief was born. The movement known as structured programming
was merely the pursuit of the various delusions that followed. It was, thus, a
fraud: a series of dishonest and futile attempts to defend an invalid mechanistic
theory.

5

5
Our concept of software structures can also help us to understand why the
restriction to standard constructs is, indeed, inconvenient. The theorists, we
saw, make no attempt to explain the reason for this inconvenience. They
correctly note that non-standard constructs are more convenient, but they
don’t feel there is a need to understand this phenomenon. They invoke their
convenience to justify their use, but, ultimately, it is precisely this phenomenon
– the difference in convenience between the standard and the non-standard
constructs – that must be explained.

The few theorists who actually attempt to explain this phenomenon seem to
conclude that, since non-standard constructs can be reduced to standard ones,
they function as software subassemblies: non-standard constructs consist of
combinations of standard ones in the same way that subassemblies consist of
simpler parts in a physical structure. So they are more convenient in building
software structures for the same reason it is more convenient to start with
subassemblies than with individual parts when building physical structures.
In short, non-standard constructs are believed to be at a higher level of
abstraction than the standard ones.ÉÏ Let us analyze this fallacy.

We saw, under the second delusion, that the theorists confuse the operations
performed by the three standard constructs with the operations that define a

ÉÏ Knuth, for example, expresses this mistaken view when he says that the various flow-
control constructs represent in effect different levels of abstraction in a given programming
language, and that we can resolve the inconvenience of the standard constructs simply by
inventing some new, higher-level constructs. Donald E. Knuth, “Structured Programming
with go to Statements,” in Computing Surveys 6, no. 4 (©1974 ACM, Inc.): 295–296.

578 structured programming chapter 7

hierarchical structure; they confuse these constructs, thus, with the operations
that create the elements of one level from those of the lower level. Now it seems
that this confusion extends to the non-standard constructs.

The only operations that define software structures, we saw, are those
performed by the sequential constructs, and those that invoke modules and
subroutines; in other words, the kind of operations that combine software
elements into larger elements, one level at a time (see pp. 541–542). This is how
the application’s nesting scheme is formed, and we can create hierarchical
software structures of any size with sequential constructs alone. The condi-
tional and iterative constructs do not perform the same kind of operation; they
do not combine elements into larger, higher-level elements. Their role, in fact,
is to override the operations performed by the sequential constructs, by
providing alternatives to the nesting scheme. And they do it by endowing the
software elements with flow-control attributes (in the form of jumps): each
attribute gives rise to an additional flow-control structure.

The non-standard constructs, too, endow elements with flow-control
attributes; so their role, too, is to create additional flow-control structures.
The two kinds of constructs fulfil a similar function, therefore, and their
relationship is not one of high to low levels.

�

So the theorists are correct when noting that the non-standard constructs are
more convenient, but they are wrong about the reason: the convenience is not
due to starting from higher levels of abstraction. Let us try to find the real
explanation.

Whether we employ non-standard constructs or restrict ourselves to the
standard ones, the application will have multiple, interacting flow-control
structures. In either case, then, it is our mind that must solve the most difficult
programming problem – dealing with the interactions between structures.
Thus, even when following the principles of structured programming, our
success depends largely on our skills and experience, not on the soundness of
these principles.

The defenders of structured programming delude themselves when main-
taining that a perfectly structured program can be represented with an exact,
mechanistic model. The static flow-control structure – the nesting scheme
depicted by the flow diagram – has perhaps a mathematical representation. But
this cannot help us, since we must ensure that the dynamic, complex flow-
control structure is correct; we must ensure, in other words, that all the
individual flow-control structures, and their interactions, are correct. So the
most difficult aspect of programming is precisely that aspect which cannot be

the fourth delusion 579chapter 7

represented mathematically, and which lies therefore beyond the scope of
structured programming (or any other mechanistic theory).

The goal of all mechanistic software theories is to eliminate our dependence
on the non-mechanistic capabilities of the mind, on such imprecise qualities as
talent, skill, and experience. And the only way to eliminate this dependence
is by treating software applications as simple structures, or as systems of
separable structures. This is an illogical quest, however, because software
structures must interact. Our affairs consist of interacting processes and
events; so, if we want our software to mirror our affairs accurately, the software
entities that make up applications must be related in several ways at the same
time. The only way for software entities to have multiple relations is by sharing
more than one attribute. And, since each attribute gives rise to a different
structure, these entities will belong to several structures at the same time,
causing them to interact.

Even within that one aspect of the application that is the flow of execution,
we find the need for multiple, interacting structures: to represent our affairs,
the application’s elements must possess and share several flow-control attri-
butes. Each flow-control attribute serves to relate a number of elements,
from the perspective of the flow of execution, in a unique way. The nesting
scheme is, in effect, a flow-control attribute shared by all the elements in the
application. And we create the other flow-control attributes by introducing
jumps in the flow of execution: each possible jump, whether explicit or
implicit, gives rise to a unique flow-control attribute, and hence a different
flow-control structure.

The standard conditional and iterative constructs, useful as they are, can
provide only two types of jumps; so they can create only some of the flow-
control relations between the application’s elements, only some of the attributes.
In order to mirror in software our affairs, we need more types of relations, and
hence more types of flow-control attributes. We need, in other words, more
types of jumps than those provided by the standard constructs. We can provide
the additional relations with our own, explicit jumps, or with the implicit
jumps found in some language-specific constructs. Or, if we want to avoid
jumps altogether, as structured programming recommends, we can resort to
transformations: we provide the additional relations then, not through flow-
control attributes, but through attributes based on shared data or shared
operations.

And herein lies the explanation for the inconvenience of the standard
constructs and the transformations. We usually need several relations of
other types to replace one flow-control relation. That is, instead of one flow-
control attribute, our elements must have several attributes of other types in
order to implement a given requirement. More precisely, to replace one flow-

580 structured programming chapter 7

control attribute deriving from non-standard constructs, we need one or more
flow-control attributes deriving from standard constructs, plus one or more
attributes deriving from shared data or shared operations. Thus, since each
attribute gives rise to a structure, we end up with more structures, and more
interactions. While the additional complexity may be insignificant with only
a few elements and attributes, as in a small piece of software, it becomes
prohibitive in a serious application, because the number of interactions grows
exponentially relative to the number of structures.

To make matters worse, the substitute relations are less intuitive than the
flow-control ones. They do not reflect the actual relations – those relations we
observe in our activities, and which we wanted to implement in software. The
substitute relations are unnatural, in that they exist only between software
elements, and are necessary only in order to satisfy an illogical principle.

Our programming languages, as a matter of fact, do permit us to implement
the actual relations simply and naturally, but only if we use both standard and
non-standard constructs. It is the restriction to standard constructs that creates
artificial relations, and makes the application larger and more complicated.

Let us analyze a specific case: the requirement to exit an iterative construct
depending on a condition encountered in the middle of the loop. The simplest
way to implement this requirement is by jumping out of the loop with a GOTO.
This jump, moreover, simulates naturally in software what we do in our
everyday activities when we want to end a repetitive act. If, however, we want
to avoid the explicit jump, we must use a memory variable as switch (this
transformation is similar to the one shown in figure 7-8, p. 527). Instead of
simply terminating the loop, the condition only sets the switch; the operations
to the end of the loop are placed in the other branch of this condition, so
they are bypassed; then, the switch is checked in the main condition, so
the loop will end before the next iteration. This method is more complicated
than a GOTO, but it is the one recommended by the advocates of structured
programming.

In our everyday activities, we terminate a repetitive act simply by ending
the repetition; we don’t make a note about ending the repetition, go back to the
beginning of the act as if we intended to repeat it, pretend to discover the
note we made a moment earlier, and only then decide to end the repetition.
A person who regularly behaved in this manner would be considered stupid.
Yet, we are asked to display this behaviour in our programming activities. No
wonder we find the transformations inconvenient – unnatural and impractical.

We need thousands of such transformations in a serious application. Still,
the real difficulty is not the large number of individual transformations, but
their interactions. We saw that the application remains a system of interacting
structures, and that the transformations add even more structures. Thus, in

the fourth delusion 581chapter 7

addition to the original interactions, we must now deal with the interactions
between the new structures, and between these and the original ones. So,
when multiplying, transformations that individually are merely inconvenient
become a major part of the application’s logic. In the end, it is the transforma-
tions, rather than the actual requirements, that govern the application’s design.

Since it is quite easy to implement isolated transformations, we can justify
the additional effort by calling this activity “software engineering.” Software
engineering, though, becomes increasingly awkward as our applications
grow in size and detail. So what we perceive then as a new problem – the
impracticality of the transformations – is in reality the same phenomenon as
in simple situations, where structured programming appears to work. The only
difference is that we can disregard the inconvenience when slight, but must
face it when it becomes a handicap.

�

The inconvenience of the restriction to standard constructs indicates that our
mental effort, even when developing “structured” software, entails more than
just following mechanistic principles. It indicates that we are also using our
non-mechanistic capabilities. It indicates, therefore, that we are dealing with
systems of interacting structures; for, were applications mechanistic in nature,
the restriction to standard constructs would be increasingly helpful as they grew
in size.

The phenomenon of inconvenience proves, then, that it is not the mecha-
nistic principles of structured programming but our mind – our skills and
experience – that we are relying on. This phenomenon proves, in other words,
that the theory of structured programming is invalid. So, by misinterpreting
the inconvenience, the theorists missed the fourth opportunity to recognize
the fallaciousness of structured programming.

In conclusion, non-standard constructs are more convenient because
they result in fewer structures and interactions for implementing the same
requirements. We need a certain number of flow-control attributes in order to
mirror in software a given combination of processes and events; and we end up
with more attributes, and hence more structures, when replacing the flow-
control attributes with attributes of other types. There is a limit to our capacity
to process interacting structures in our mind, and we reach this limit much
sooner when following the principles of structured programming.

The best programming method, needless to say, is the one that results in the
fewest interactions. The promise of structured programming is to eliminate the
interactions altogether, and thereby obviate the need for non-mechanistic
thinking. But now we see that the opposite is taking place: programmers need

582 structured programming chapter 7

even greater non-mechanistic capabilities – an even greater capacity to process
complex structures – with structured programming than without it.

A simple, ten-line piece of software will be changed by structured program-
ming into a slightly more involved piece of software. Thus, if we believe in
some ultimate benefits, we will gladly accept the small increase in complexity.
But this self-deception cannot help us in real-world situations. Because the
complexity induced by structured programming grows exponentially, a serious
application will become, not slightly more, but much more, involved. Creating
and maintaining such an application is not just inconvenient but totally
impractical. Moreover, because it is still a system of interacting structures, the
application will still be impossible to represent mathematically. There are no
ultimate benefits, and no one ever developed a serious application while
rigorously adhering to the principles of structured programming.

In the end, structured programming turned the activities of programmers
into a kind of game: searching for ways to avoid GOTO. The responsibility of
programmers shifted, from creating useful applications and improving their
skills, to merely conforming to a certain dogma. They were pleased with their
success in performing transformations on isolated pieces of software, while
reverting to non-standard constructs whenever the transformations were
inconvenient. And they believed that this senseless programming style was
structured programming; after all, even the experts were recommending it.
Thus, just as the experts were deluding themselves that structured program-
ming was a valid theory, the programmers could delude themselves that what
they were practising was structured programming.

6

6
Let us examine, lastly, that aspect of the fourth delusion that is the continued
belief in an exact, mathematical representation of software applications, when
in fact no one ever managed to represent mathematically anything but small
and isolated pieces of software. When a phenomenon is mechanistic, mathe-
matics works just as well for large systems as it does for small ones. Thus, the
fact that a mathematical theory that works for small pieces of software becomes
increasingly impractical as software grows in size should have convinced the
theorists that software systems give rise to non-mechanistic phenomena.

Take a trivial case: an IF statement where, for instance, a memory variable is
either incremented or decremented depending on a condition. Even this
simple construct, with just one condition and two elements, is related to the
rest of the application through more than one structure; so it is part of a
complex system. In its static representation, there are at least two logical

the fourth delusion 583chapter 7

connections between the two elements, and between these elements and the
rest of the application: the flow-control structure, the structure based on the
memory variable, and further structures if the condition itself entails variables,
subroutines, etc. And in the dynamic representation there are at least three
logical connections, because the condition’s branches generate an additional
structure (we studied these structures under the second delusion). We are
dealing with a complex system; but because it is such a small system, we
can identify all the structures and even some of the interactions. In real
applications, however, we must deal with thousands of structures, most of them
interacting with one another; and, while in principle we can still study these
systems, we cannot actually do it. Many mechanistic delusions, we saw earlier,
spring from the failure to appreciate this difference between simple and real-
world situations (see p. 555).

Thus, even at this advanced stage, even after all the falsifications, many
theorists remained convinced that structured programming allows us to
develop and prove applications mathematically. The success of this idea in
simple situations gave them hope that, with further work, we would be able to
represent mathematically increasingly large pieces of software. Entire books
have been written with nothing more solid than this belief as their foundation.
In one example after another, we are shown how to prove the validity of
a piece of software by reducing it to simpler entities, just as we do with
mathematical problems. But these demonstrations are worthless, because the
theorists recognize only one structure – the static nesting scheme, typically –
and ignore the other relations that exist between the same software elements;
they only prove, therefore, the validity of one aspect of that piece of software.
So, even when correct, these demonstrations remain abstract studies and have
no practical value. Whether empirical (using software transformations) or
analytical (using mathematical logic), they rely on the fact that, in simple
situations, those structures and interactions that we can identify constitute a
major portion of the system. Thus, although their study only approximates the
complex software phenomenon, for small pieces of software the approximation
may well be close enough to be useful.

The theorists take the success of these demonstrations as evidence that it
is possible to represent software mathematically: if the method works in
simple cases, they say, the principles of reductionism and atomism guarantee
its success for larger and larger pieces of software, and eventually entire
applications. But the number of structures and interactions in real-world
situations grows very quickly, and any method that relies on identifying and
studying them separately is bound to fail. No one ever managed to prove,
either empirically or analytically, the validity of a significant piece of software,
let alone a whole application. The software mechanists remain convinced

584 structured programming chapter 7

that mathematical programming is a practical concept, when, like the other
mechanistic delusions, it is only valid in principle.ÉÐ

In principle, then, it is indeed possible to develop and prove applications
mathematically – just as it is possible, in principle, to predict future events
through Laplacean determinism, or to explain human acts with the theories of
behaviourism, or to depict social phenomena with the theories of structural-
ism, or to represent languages with Chomskyan linguistics. But actually using
a mathematical programming theory – just like using those other theories –
is inconvenient.

�

The mathematical representation of software, thus, is treated by the theorists
just like the restriction to standard constructs: they show that it works in
simple, isolated cases; they believe that the principles of structured program-
ming assure its success in actual applications; and they refuse to see its failure
in actual applications as evidence that structured programming does not work.

So the conclusion we must draw from the fourth delusion is that structured
programming never works, not even in those situations where we do not find
it inconvenient. Even requirements simple enough to program with standard
constructs alone, and simple enough to represent mathematically, give rise to
multiple, interacting structures. But because in these situations we can identify
the structures and the interactions, we can delude ourselves that we are dealing
with a mechanistic phenomenon. The fourth delusion, then, can also be
described as the belief that structured programming is inconvenient only in
certain situations, while in reality the inconvenience is always present. We just
don’t notice it, or don’t mind it, for simple requirements.

Simple requirements, in fact, can be programmed with mechanistic knowl-
edge alone, if we follow a method that takes into account the most important
structures and interactions. Thus, we often hear the remark that inexperienced
programmers find it easier than experienced ones to adapt to the rigours
of structured programming. As usual, the theorists misinterpret this fact.
Experienced programmers dislike structured programming, the theorists say,
because they are accustomed to the old-fashioned, undisciplined style of
programming. Actually, experienced programmers dislike structured program-
ming because they already possess superior, non-mechanistic knowledge, which

ÉÐ It must be noted that this fallacy affected, not just the specific theory known as
structured programming, but all theories based on structures of nested constructs. As
example, here is a methodology that claims to validate mathematically entire applications,
and an actual development system based on it: James Martin, System Design from Provably
Correct Constructs (Englewood Cliffs, NJ: Prentice Hall, 1985).

the fourth delusion 585chapter 7

exceeds the benefits of a mechanistic theory. Inexperienced programmers
possess no knowledge at all, or a modicum of mechanistic knowledge; so
they like structured programming because they indeed accomplish more
with it than without it. But substituting rules and methods for skills and
experience can benefit them only in simple situations. Ultimately, with serious
applications, programmers possessing non-mechanistic knowledge easily
outperform those who attempt to practise strict structured programming.

This, incidentally, explains also why CASE (the promise of automatic
software generation, see pp. 465–469) works in simple situations while failing
for real-world applications. Only by following precise rules and methods – that
is, by treating software as a mechanistic phenomenon – can a device convert
requirements into applications. (Software devices, thus, display the same type
of behaviour as inexperienced programmers.) In simple situations, the device
can account for most interactions; but this method of programming breaks
down when tried with serious applications, where the number of interactions
is practically infinite.

Mathematics can represent large systems as easily as it can small ones. This
is why phenomena that are truly mechanistic can be represented mathemati-
cally no matter how many elements, levels, and relations are involved. But,
because software phenomena are not mechanistic, mechanistic theories only
appear to represent software systems mathematically. When practical at all,
they work merely by accounting for the individual interactions – not through
general principles, like the truly useful mathematical theories.ÉÑ

The GO TO Delusion

The GOTO Delusion
1 1
There is no better way to conclude our discussion of the structured program-
ming delusions than with an analysis of the GO TO delusion – the prohibition
and the debate.

We have already encountered the GO TO delusion: under the third delusion,
we saw that the reason for transformations was simply to avoid GOTOs; and
under the fourth delusion, we saw that the reason for introducing non-
standard constructs into structured programming was, again, to avoid GO TOs.

ÉÑ A related fallacy is the idea of software metrics – the attempt to measure the complexity
of an application by counting and weighing in various ways the conditions, iterations,
subroutines, etc., that make it up. Like the mathematical fallacy, these measurements
reflect individual aspects of the application, not their interactions; so the result is a poor
approximation of the actual complexity.

586 structured programming chapter 7

The GO TO delusion, however, deserves a closer analysis. The most famous
problem in the history of programming, and unresolved to this day, this
delusion provides a vivid demonstration of the ignorance and dishonesty of
the software theorists. They turned what is the most blatant falsification
of structured programming – the need for explicit jumps in the flow of
execution – into its most important feature: new flow-control constructs that
hide the jumps within them. The sole purpose of these constructs is to perform
jumps without using GOTO statements. Thus, while purposely designed to
help programmers override the principles of structured programming, these
constructs were described as language enhancements that facilitate structured
programming.

Turning falsifications into features is how fallacious theories are saved from
refutation (see “Popper’s Principles of Demarcation” in chapter 3). The GO TO

delusion alone, therefore, ignoring all the others, is enough to characterize
structured programming as a pseudoscience.

Clearly, if it was proved mathematically that structured programming needs
no GO TOs, the very fact that a debate is taking place indicates that structured
programming has failed as a practical programming concept. In the end, the
GO TO delusion is nothing but the denial of this reality, a way for the theorists
and the practitioners to cling to the idea of structured programming years and
decades after its failure.

It is difficult for a lay person to appreciate the morbid obsession that was
structured programming, and its impact on our programming practices.
Consider, first, the direct consequence: programmers were more preoccupied
with the “principles” of structured programming – with trivial concepts like
top-down design and avoiding GO TO – than with the actual applications they
were supposed to develop, and with improving their skills. A true mass
madness possessed the programming community in the 1970s – a madness
which the rest of society was unaware of. We can recall this madness today by
studying the thousands of books and papers published during that period,
something well worth doing if we want to understand the origins of our
software bureaucracy. All universities, all software experts, all computer
publications, all institutes and associations, and management in all major
corporations were praising and promoting structured programming – even as
its claims and promises were being falsified in a million instances every day,
and the only evidence of usefulness consisted of a few anecdotal and distorted
“success stories.”

The worst consequence of structured programming, though, is not what
happened in the 1970s, but what has happened since then. For, the incompe-
tence and irresponsibility engendered by this worthless theory have remained
the distinguishing characteristic of our software culture. As programmers and

the goto delusion 587chapter 7

managers learned nothing from the failure of structured programming, they
accepted with the same enthusiasm the following theories, which suffer in fact
from the same fallacies.

2

2
Recall what is the GOTO problem. We need GOTO statements in order to
implement explicit jumps in the flow of execution, and we need explicit jumps
in order to create non-standard flow-control constructs. But explicit jumps and
non-standard constructs are forbidden under structured programming. If we
restrict ourselves to the three standard constructs, the theorists said at first, we
will need no explicit jumps, and hence no GO TOs. We may have to subject our
requirements to some awkward transformations, but the benefits of this
restriction are so great that the effort is worthwhile.

The theorists started, thus, by attempting to replace the application’s flow-
control structures with structures based on shared data or shared operations; in
other words, to replace the unwanted flow-control relations between elements
with relations of other types. Then, they admitted that it is impractical to
develop applications in this fashion, and rescued the idea of structured
programming by permitting the use of built-in non-standard constructs; that
is, constructs already present in a particular programming language. These
constructs, specifically prohibited previously, were described now as extensions
of the original theory, as features of structured programming. Only the use of
GO TO – that is, creating our own constructs – continued to be prohibited.

The original goal of structured programming had been to eliminate all
jumps, and thereby restrict the flow-control relations between elements to
those defined by a single hierarchical structure. This is what the restriction to a
nesting scheme of standard flow-control constructs was thought to accomplish
– mistakenly, as we saw under the second delusion, because the implicit jumps
present in these constructs already create multiple flow-control structures.
Apart from this fallacy, though, it is illogical to permit built-in non-standard
constructs while prohibiting our own constructs. For, just as there is no real
difference between standard constructs and non-standard ones, there is no
real difference between built-in non-standard constructs and those we create
ourselves. All these constructs fulfil, in the end, the same function: they create
additional flow-control structures in order to provide alternatives to the flow
of execution established by the nesting scheme. Thus, all that the built-in
constructs accomplish is to relate elements through implicit rather than
explicit jumps. So they render the GO TOs unnecessary, not by eliminating the
unwanted jumps, but by turning the explicit unwanted jumps into implicit

588 structured programming chapter 7

unwanted ones. The unwanted relations between elements, therefore, and the
multiple flow-control structures, remain.

The goal of structured programming, thus, was now reversed: from the
restriction to standard constructs – the absence of GO TO being then merely a
consequence – to searching for ways to replace GO TOs with implicit jumps; in
other words, from avoiding non-standard constructs, to seeking and praising
them. More and more constructs were introduced, but everyone agreed in the
end that it is impractical to provide GOTO substitutes for all conceivable
situations. So GOTO itself was eventually reinstated, with the severe admonition
to use it “only when absolutely necessary.” The theory of structured program-
ming was now, in effect, defunct. Incredibly, though, it was precisely at this
point that it generated the greatest enthusiasm and was seen as a programming
revolution. The reason, obviously, is that it was only at this point – only after
its fundamental principles were annulled – that it could be used at all in
practical situations.

The GO TO delusion, thus, is the belief that the preoccupation with GO TO is
an essential part of a structured programming project. In reality, the idea of
structured programming had been refuted, and the use or avoidance of
GOTO is just a matter of programming style. What had started as a precise,
mathematical theory was now an endless series of arguments on whether GO TO

or a transformation or a built-in construct is the best method in one situation
or another. And, while engaged in these childish arguments, the theorists and
the practitioners called their preoccupation structured programming, and
defended it on the strength of the original, mathematical theory.É

�

Let us see first some examples of the GOTO prohibition – that part of the
debate which claims, without any reservation, that GOTO leads to bad program-
ming, and that structured programming means avoiding GO TO: “The primary
technique of structured programming is the elimination of the GOTO statement

É For example, as late as 1986, and despite the blatant falsifications, the theorists were
discussing structured programming just as they had been discussing it in the early 1970s: it
allows us to prove mathematically the correctness of applications, write programs that work
perfectly the first time, and so on. Then, as evidence, they mention a couple of “success
stories” (using, thus, the type of argument used to advertise weight-loss gadgets on
television). See Harlan D. Mills, “Structured Programming: Retrospect and Prospect,” in
Milestones in Software Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA:
IEEE Computer Society Press, ©1990 IEEE), pp. 286–287 – paper originally published in
IEEE Software 3, no. 6 (1986): 58–66. See also Harlan D. Mills, Michael Dyer, and Richard C.
Linger, “Cleanroom Software Engineering,” in Milestones, eds. Oman and Lewis, pp. 217–218
– paper originally published in IEEE Software 4, no. 5 (1987): 19–24.

the goto delusion 589chapter 7

and its replacement with a number of other, well-structured branching and
control statements.”Ê “The freedom offered by the GO TO statement has been
recognized as not in keeping with the idea of structures in control flow. For
this reason we will never use it.”Ë “If a programmer actively endeavours to
program without the use of GO TO statements, he or she is less likely to make
programming errors.”Ì “By eliminating all GO TO statements, we can do even
better, as we shall see.”Í “In order to obtain a simple structure for each segment
of the program, GOTO statements should be avoided.”Î “Using the techniques of
structured programming, the GO TO or branch statement is avoided entirely.”Ï

And the Encyclopedia of Computer Science offers us the following (wrong
and silly) analogy as an explanation for the reason why we must avoid GO TO:
it makes programs hard to read, just like those articles on the front page
of a newspaper that are continued (with a sort of “go to”) to another page.
Then the editors conclude: “At least some magazines are more considerate,
however, and always finish one thought (article) before beginning another.
Why can’t programmers? Their ability to do so is at the heart of structured
programming.”Ð

It is not difficult to understand why the subject of GOTO became such
an important part of the structured programming movement. After all the
falsifications, what was left of structured programming was just a handful
of trivial concepts: top-down design, hierarchical structures of software
elements, constructs with only one entry and exit, etc. These concepts were
then supplemented with a few other, even less important ones: indenting the
nested elements in the program’s listing, inserting comments to explain the
program’s logic, restricting modules to a hundred lines, etc. The theorists
call these concepts “principles,” but these simple ideas are hardly the basis
of a programming theory. Some are perhaps a consequence of the original
structured programming principles, but they are not principles themselves.

Ê Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs, NJ:
Prentice Hall, 1975), p. 145.

Ë J. N. P. Hume and R. C. Holt, Structured Programming Using PL/1, 2nd ed. (Reston, VA:
Reston, 1982), p. 82.

Ì Ian Sommerville, Software Engineering, 3rd ed. (Reading, MA: Addison-Wesley,
1989), p. 32.

Í Gerald M. Weinberg et al., High Level COBOL Programming (Cambridge, MA:
Winthrop, 1977), p. 43.

Î Dennie Van Tassel, Program Style, Design, Efficiency, Debugging, and Testing, 2nd ed.
(Englewood Cliffs, NJ: Prentice Hall, 1978), p. 78.

Ï Nancy Stern and Robert A. Stern, Structured COBOL Programming, 7th ed. (New York:
John Wiley and Sons, 1994), p. 13.

Ð Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1308.

590 structured programming chapter 7

To appreciate this, imagine that the only structured programming concepts
we ever knew were top-down design, hierarchical structures, indenting state-
ments, etc. Clearly, no one would call it a programming revolution on the
strength of these concepts. It was the promise of precision and rigour that
made it famous – the promise of developing and proving software applications
mathematically.

So, now that what was left of structured programming was only the trivial
concepts, the preoccupation with GO TO provided a critical substitute for the
original, strict principles: it allowed both the theorists and the practitioners to
delude themselves that they were still pursuing a serious idea. GOTO-less
programming is the only remnant of the formal theory, so it serves as a link to
the original claims, to the promise of mathematical programming.

The formal theory, however, was about structures of standard constructs,
not about avoiding GOTO. All the theory says is that, if we adhere to these
principles, we will end up with GO TO-less programs. The defenders of struc-
tured programming violate the strict principles (because impractical), and
direct their efforts instead to what was meant to be merely a consequence of
those principles. By restricting and debating the use of GOTO, and by contriving
substitutes, they hope now to attain the same benefits as those promised by the
formal theory.

Here are some examples of the attempt to ground the GOTO prohibition
on the original, mathematical principles: “A theorem proved by Böhm and
Jacopini tells us that any program written using GOTO statements can be
transformed into an equivalent program that uses only the [three] structured
constructs.”Ñ “Böhm and Jacopini showed that essentially any control flow
can be achieved without the GO TO by using appropriately chosen sequential,
selection, and repetition control structures.”ÉÈ “Dijkstra’s [structured pro-
gramming] proposal could, indeed, be shown to be theoretically sound by
previous results from [Böhm and Jacopini,] who had showed that the control
logic of any flowchartable program . . . could be expressed without GO TOs, using
sequence, selection, and iteration statements.”ÉÉ

We saw under the third delusion that the theorists misrepresent Böhm and
Jacopini’s work (see pp. 557–561). Thus, invoking their work to support the
GO TO prohibition is part of the misrepresentation.

Ñ Doug Bell, Ian Morrey, and John Pugh, Software Engineering: A Programming Approach
(Hemel Hempstead, UK: Prentice Hall, 1987), p. 14.

ÉÈ Ralston and Reilly, Encyclopedia, p. 361.
ÉÉ Harlan D. Mills, “Structured Programming: Retrospect and Prospect,” in Milestones

in Software Evolution, eds. Paul W. Oman and Ted G. Lewis (Los Alamitos, CA: IEEE
Computer Society Press, ©1990 IEEE), p. 286 – paper originally published in IEEE Software
3, no. 6 (1986): 58–66.

the goto delusion 591chapter 7

�

The GOTO preoccupation, then, was the answer to the failure of the formal
theory. By degrading the definition of structured programming from exact
principles to a preoccupation with GO TO, everyone appeared to be practising
scientific programming while pursuing in reality some trivial and largely
irrelevant ideas.

It is important to note that the absurdity of the GO TO delusion is not so much
in the idea of avoiding GO TO, as in the never-ending debates and arguments
about avoiding it: in which situations should it be permitted, and in which ones
forbidden. Had the GOTO avoidance been a strict prohibition, it could have
been considered perhaps a serious principle. In that case, we could have agreed
perhaps to redefine structured programming as programming without the use
of explicit jumps. But, since a strict GOTO prohibition is impractical, what
started as a principle became an informal rule: the exhortation to avoid it “as
much as possible.” The prohibition, in other words, was to be enforced only
when the GO TO alternatives were not too inconvenient.

An even more absurd manifestation of the GO TO delusion was the attempt to
avoid GO TO by replacing it with certain built-in, language-specific constructs,
which perform in fact the same jumps as GOTO. The purpose of avoiding
GOTO had been to avoid all jumps in the flow of execution, not to replace
explicit jumps with implicit ones. Thus, in their struggle to save structured
programming, the theorists ended up interpreting the idea of avoiding GO TO

as a requirement to avoid the phrase “go to,” not the jumps. I will return to this
point later.

Recognizing perhaps the shallowness of the GOTO preoccupation, some
theorists were defending structured programming by insisting that the GO TO

prohibition is only one of its principles. Thus, the statement we see repeated
again and again is that structured programming is “more” than just GO TO-less
programming: “The objective of structured programming is much more far
reaching than the creation of programs without GOTO statements.”ÉÊ “There
is, however, much more to structured programming than modularity and
the elimination of GOTO statements.”ÉË “Indeed, there is more to structured
programming than eliminating the GO TO statement.”ÉÌ

These statements, though, are specious. They sound as if “more” meant
the original, mathematical principles. But, as we saw, those principles were
falsified. So “more” can only mean the trivial principles – top-down design

ÉÊ James Martin and Carma McClure, Structured Techniques: The Basis for CASE, rev. ed.
(Englewood Cliffs, NJ: Prentice Hall, 1988), p. 39.

ÉË L. Wayne Horn and Gary M. Gleason, Advanced Structured COBOL: Batch and
Interactive (Boston: Boyd and Fraser, 1985), p. 1. ÉÌ Yourdon, Techniques, p. 140.

592 structured programming chapter 7

and nested constructs, writing and documenting programs clearly, etc. – which
had replaced the original ones.

The degradation from a formal theory to trivial principles is also seen in
the fact that the term “structured” was commonly applied now, not just to
programs restricted to certain flow-control constructs, but to almost any
software-related activity. Thus, in addition to structured programming, we
had structured coding, structured techniques, structured analysis, structured
design, structured development, structured documentation, structured flow-
charts, structured requirements, structured specifications, structured English
(for writing the specifications), structured walkthrough (visual inspection
of the program’s listing), structured testing, structured maintenance, and
structured meetings.

3

3
To summarize, there are three aspects to the GO TO delusion. The first one is the
reversal in logic: from the original principle that applications be developed as
structures of standard constructs, to the stipulation that applications be
developed without GO TO. The GO TO statement is not even mentioned in the
original theory; its absence is merely a consequence of the restriction to
standard constructs. Thus, the first aspect of the GOTO delusion is the belief that
a preoccupation with ways to avoid GO TO can be a substitute for an adherence
to the original principle.

The second aspect is the belief that avoiding GOTO need not be a strict,
formal principle: we should strive to avoid it, but we may use it when its
elimination is inconvenient. So, if the first belief is that we can derive the same
benefits by avoiding GO TO as we could by restricting applications to standard
constructs, the second belief is that we can derive the same benefits if we avoid
GOTO only when it is convenient to do so. The second aspect of the GOTO

delusion can also be described as the fallacy of making two contradictory
claims: the claim that GOTO is harmful and must be banned (which sounds
scientific and evokes the original theory), and the claim that GOTO is sometimes
acceptable (which turns the GO TO prohibition from a fantasy into a practical
method). Although in reality the two claims cancel each other, they appear to
express important programming concepts.

Lastly, the third aspect of the GO TO delusion is the attempt to avoid GO TO,
not by eliminating those programming situations that require jumps in the flow
of execution, but by replacing GOTO with some new constructs, specifically
designed to perform those jumps in its stead. The third aspect, thus, is the
belief that we can derive the same benefits by converting explicit jumps into

the goto delusion 593chapter 7

implicit ones, as we could with no jumps at all; in other words, the belief that
it is not the jumps, but just the GO TO statement, that must be avoided.

�

We already saw examples of the first aspect of the GOTO delusion – those
statements simply asserting that structured programming means programming
without GO TO (see pp. 589–590). Let us see now some examples of the second
aspect; namely, claiming at the same time that GO TO must be avoided and that
it may be used.

The best-known case is probably that of E. W. Dijkstra himself. One of the
earliest advocates of structured programming, Dijkstra is the author of the
famous paper “Go To Statement Considered Harmful.” We have already
discussed this paper (see pp. 508–509), so I will only repeat his remark that
he was “convinced that the GOTO statement should be abolished from all
‘higher level’ programming languages”ÉÍ (in order to make it impossible for
programmers to use it, in any situation). He reasserted this on every oppor-
tunity, so much so that his “memorable indictment of the GOTO statement”
is specifically mentioned in the citation for the Turing award he received
in 1972.ÉÎ

Curiously, though, after structured programming became a formal theory –
that is, when it was claimed that Böhm and Jacopini’s paper vindicated
mathematically the abolition of GO TO – Dijkstra makes the following remark:
“Please don’t fall into the trap of believing that I am terribly dogmatical about
[the GO TO statement].”ÉÏ

Now, anyone can change his mind. Dijkstra, however, did not change his
mind about the validity of structured programming, but only about the
strictness of the GO TO prohibition. Evidently, faced with the impossibility of
programming without explicit jumps, he now believes that we can enjoy the
benefits of structured programming whether or not we restrict ourselves to the
standard constructs. Thus, the popularity of structured programming was
unaffected by his change of mind. Those who held that GO TO must be banned
could continue to cite his former statement, while those who accepted GO TO

could cite the latter. Whether against or in favour of GO TO, everyone could base
his interpretation of structured programming on a statement made by the
famous theorist Dijkstra.

ÉÍ E. W. Dijkstra, “Go To Statement Considered Harmful,” in Milestones, eds. Oman and
Lewis, p. 9. ÉÎ Ralston and Reilly, Encyclopedia, p. 1396.

ÉÏ E. W. Dijkstra, quoted as personal communication in Donald E. Knuth, “Structured
Programming with go to Statements,” in Computing Surveys 6, no. 4 (©1974 ACM, Inc.): 262
(brackets in the original).

594 structured programming chapter 7

One of those who chose Dijkstra’s latter statement, and a famous theorist
and Turing award recipient himself, is Donald Knuth: “I believe that by
presenting such a view I am not in fact disagreeing sharply with Dijkstra’s
ideas”ÉÐ (meaning his new idea, that GO TO is not harmful). Knuth makes this
statement in the introduction to a paper that bears the striking title “Structured
Programming with go to Statements” – a forty-page study whose goal is “to lay
[the GO TO] controversy to rest.”ÉÑ It is not clear how Knuth hoped to accomplish
this, seeing that the paper is largely an analysis of various programming
examples, some with and others without GO TO, some where GO TO is said to be
bad and others where it is said to be good; in other words, exactly what was
being done by every other expert, in hundreds of other studies. The examples,
needless to say, are typical textbook cases: trivial, isolated pieces of software
(the largest has sixteen statements), where GO TO is harmless even if misused,
and which have little to do, therefore, with the real reasons why jumps are good
or bad in actual applications. One would think that if the GO TO controversy
were simple enough to be resolved by such examples, it would have ended long
before, through the previous studies. Knuth, evidently, is convinced that his
discussion is better.

From the paper’s title, and from some of his arguments, it appears at first
that Knuth intends to “lay to rest” the controversy by boldly stating that the use
of GO TO is merely a matter of programming style, or simplicity, or efficiency.
But he only says this in certain parts of the paper. In other parts he tells us that
it is important to avoid GOTO, shows us how to eliminate it in various situations,
and suggests changes to our programming languages to help us program
without GO TO.ÊÈ

By the time he reaches the end of the paper, Knuth seems to have forgotten
its title, and concludes that GOTO is not really necessary: “I guess the big
question, although it really shouldn’t be so big, is whether or not the ultimate
language will have GO TO statements in its higher levels, or whether GO TO will
be confined to lower levels. I personally wouldn’t mind having GOTO in the
highest level, just in case I really need it; but I probably would never use it, if
the general iteration and situation constructs suggested in this paper were
present.”ÊÉ

ÉÐ Donald E. Knuth, “Structured Programming with go to Statements,” in Computing
Surveys 6, no. 4 (©1974 ACM, Inc.): 262. ÉÑ Ibid., p. 291.

ÊÈ Knuth admits proudly that he deliberately chose “to present the material in this
apparently vacillating manner” (ibid., p. 264). This approach, he explains, “worked beauti-
fully” in lectures: “Nearly everybody in the audience had the illusion that I was largely
supporting his or her views, regardless of what those views were!” (ibid.). What is the point
of this approach, and this confession? Knuth and his audiences are evidently having fun
debating GOTO, but are they also interested in solving this problem? ÊÉ Ibid., p. 295.

the goto delusion 595chapter 7

Note how absurd this passage is: “wouldn’t mind . . . just in case I really need
it; but I probably would never use it” This is as confused and equivocal as a
statement can get. Knuth is trying to say that it is possible to program without
GO TO, but he is afraid to commit himself. So what was the point of this lengthy
paper? Why doesn’t he state, unambiguously, either that the ideal high-level
programming language must include certain constructs but not GOTO, or,
conversely, that it must include GOTO, because we will always encounter
situations where it is the best alternative?

Knuth also says, at the end of the paper, that “it’s certainly possible to write
well-structured programs with GOTO statements,”ÊÊ and points to a certain
program that “used three GOTO statements, all of which were perfectly easy
to understand.” But then he adds that some of these GOTOs “would have
disappeared” if that particular language “had had a WHILE statement.” Again, he
is unable to make up his mind. He notes that the GO TOs are harmless when used
correctly, then he contradicts himself: he carefully counts them, and is pleased
that more recent languages permit us to reduce their number.

One more example: In their classic book, The C Programming Language,
Brian Kernighan and Dennis Ritchie seem unsure whether to reject or accept
GO TO.ÊË It was included in C, and it appears to be useful, but they feel they must
conform to the current ideology and criticize it. First they reject it: “Formally,
the GO TO is never necessary, and in practice it is almost always easy to write
code without it. We have not used GO TO in this book.”ÊÌ We are not told how
many situations are left outside the “almost always” category, but their two
GO TO examples represent in fact a very common situation (the requirement to
exit from a loop that is nested two or more levels within the current one).

At this point, then, the authors are demonstrating the benefits of GO TO. They
even point out (and illustrate with actual C code) that any attempt to eliminate
the GO TO in these situations results in an unnatural and complicated piece of
software. The logical conclusion, thus, ought to be that GOTO is necessary in C.
Nevertheless, they end their argument with this vague and ambiguous remark:
“Although we are not dogmatic about the matter, it does seem that GOTO

statements should be used sparingly, if at all.”ÊÍ

�

ÊÊ The quotations in this paragraph are ibid., p. 294.
ÊË Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood

Cliffs, NJ: Prentice Hall, 1978), pp. 62–63.
ÊÌ Ibid., p. 62. Incidentally, they managed to avoid GOTO in all their examples simply

because, as in any book of this kind, the examples are limited to small, isolated, artificial
bits of logic. But the very fact that the avoidance of GOTO in examples was a priority
demonstrates the morbidity of this preoccupation. ÊÍ Ibid., p. 63.

596 structured programming chapter 7

It is the third aspect of the GO TO delusion, however, that is the most absurd:
eliminating the GO TO statements by replacing them with new constructs that
are designed to perform exactly the same jumps. At this point, it is no longer
the jumps that we are asked to avoid, but just the phrase “go to.”

At first, we saw under the fourth delusion, the idea of structured pro-
gramming was modified to include a number of non-standard constructs –
constructs already found in the existing programming languages. Originally,
these constructs had been invented simply as language enhancements, as
alternatives to the most common jumps. (They simplify the jumps, typically,
by obviating the need for a destination label.) But, as they allowed practitioners
to bypass the restriction to standard constructs, they were enthusiastically
incorporated into structured programming and described as “extensions”
of the theory.

Although the inclusion of language-specific constructs appeared to rescue
the idea of structured programming, there remained many situations where
GO TO could only be eliminated through some unwieldy transformations, and
still others where GO TO-based constructs were the only practical alternative.
So the concept of language-specific constructs – what had been originally
intended merely as a way to improve programming languages – was expanded
and turned by the theorists into a means to eliminate GO TO. Situations easily
implemented with GOTO in any language became the subject of research,
debate, and new constructs. More and more constructs were suggested as GO TO

replacements, although, in the end, few were actually added to the existing
languages.

The theorists hoped to discover a set of constructs that would eliminate
forever the need for GOTO by providing built-in jumps for all conceivable
programming situations. They hoped, in other words, to redeem the idea
of structured programming by finding an alternative to the contrived and
impractical transformations. No such set was ever found, but this failure was
not recognized as the answer to the GOTO delusion, and the controversy
continued.

The theorists justified their attempts to replace GO TO with language-specific
constructs by saying that these constructs facilitate structured programming.
But this explanation is illogical. If we interpret structured programming as
the original theory, with its restriction to standard constructs, the role of
the non-standard constructs is not to facilitate but to override structured
programming. And if we interpret structured programming as the extended
theory, which allows any construct with one entry and exit, we can implement
all the constructs we need by combining standard constructs and GOTO

statements; in this case, then, the role of the non-standard constructs is not to
facilitate structured programming but to facilitate GOTO-less programming.

the goto delusion 597chapter 7

The theorists, therefore, were not inventing built-in constructs out of a concern
for structured programming – no matter how we interpret this theory – but
only in order to eliminate GO TO.

As an example of the attempts to define a set of flow-control constructs that
would make GOTO unnecessary, consider Jensen’s study.ÊÎ Jensen starts by
defining three “atomic” components: “We use the word atomic to character-
ize the lowest level constituents to which we can reduce the structure of a
program.”ÊÏ The three atomic components are called process node, predicate
node, and collector node, and represent lower software levels than do the
three standard constructs of structured programming. Then, Jensen defines
nine flow-control constructs based on these components (the three standard
constructs plus six non-standard ones), proclaims structured programming to
mean the restriction, not to the three standard constructs but to his nine
constructs, and asserts that any application can be developed in this manner:
“By establishing program structure building blocks (akin to molecules made
from our three types of atoms) and a structuring methodology, we can scientif-
ically implement structured programs.”ÊÐ But, even though Jensen discusses the
practical implementation of this concept with actual programming languages
and illustrates it with a small program, the concept remains a theoretical study,
and we don’t know how successful it would be with real-world applications.

An example of a set of constructs that was actually put into effect is found
in a language called Bliss. One of its designers makes the following statement
in a paper presented at an important conference: “The inescapable conclusion
from the Bliss experience is that the purported inconvenience of programming
without a GO TO is a myth.”ÊÑ

It doesn’t seem possible that the GO TO delusion could reach such levels, but
it did. That statement is ludicrous even if we overlook the fact that Bliss
was just a special-purpose language (designed for systems software, so the
conclusion about the need for GOTO is not at all inescapable in the case of other
types of programs). The academics who created Bliss invented a number of
constructs purposely in order to replace, one by one, various uses of GOTO. The
constructs, thus, were specifically designed to perform exactly the same jumps
as GO TO. To claim, then, that using these constructs instead of GO TO proves that
it is possible to program without GO TO, and to have such claims published and
debated, demonstrates the utter madness that had possessed the academic and
the programming communities.

ÊÎ Randall W. Jensen, “Structured Programming,” in Software Engineering, eds. Randall
W. Jensen and Charles C. Tonies (Englewood Cliffs, NJ: Prentice Hall, 1979).

ÊÏ Ibid., p. 238. ÊÐ Ibid., p. 241.
ÊÑ William A. Wulf, “A Case against the GOTO,” Proceedings of the ACM Annual

Conference, vol. 2 (1972), p. 795.

598 structured programming chapter 7

Here is how Knuth, in the aforementioned paper, describes this madness:
“During the last few years several languages have appeared in which the
designers proudly announced that they have abolished the GOTO statement.
Perhaps the most prominent of these is Bliss, which originally replaced
GOTO’s by eight so-called ‘escape’ statements. And the eight weren’t even
enough. . . . Other GOTO-less languages for systems programming have similarly
introduced other statements which provide ‘equally powerful’ alternative ways
to jump. . . . In other words, it seems that there is widespread agreement that
GO TO statements are harmful, yet programmers and language designers still
feel the need for some euphemism that ‘goes to’ without saying GO TO.”ËÈ

Unfortunately, Knuth ends his paper contradicting himself; now he praises
the idea of replacing GO TO with new constructs designed to perform the same
operation: “But GOTO is hardly ever the best alternative now, since better
language features are appearing. If the invariant for a label is closely related to
another invariant, we can usually save complexity by combining those two into
one abstraction, using something other than GOTO for the combination.”ËÉ

What Knuth suggests is that we improve our programming languages by
creating higher levels of abstraction: built-in flow-control constructs that
combine several operations, including all necessary jumps. Explicit jumps, and
hence GO TO, will then become unnecessary: “As soon as people learn to apply
principles of abstraction consciously, they won’t see the need for GO TO.”ËÊ

Knuth’s mistake here is the fallacy we discussed under the second and fourth
delusions (see pp. 539–542, 578–579): he confuses the flow-control constructs
with the operations of a hierarchical structure. In the static flow diagram – that
is, in the nesting scheme – these constructs do indeed combine elements to
form higher levels of abstraction. But because they employ conditions, their
task in the flow of execution is not to create higher levels, but to create multiple,
interacting nesting schemes.

The idea of replacing GOTO with higher-level constructs is, therefore,
fallacious. Only an application restricted to a nesting scheme of sequential
constructs has a flow of execution that is a simple hierarchical structure,
allowing us to substitute one construct for several lower-level ones. And no
serious application can be restricted to such a nesting scheme. This is why
no one could invent a general-purpose language that eliminates the need
for jumps. In the end, all flow-control constructs added to programming
languages over the years are doing exactly what GOTO-based constructs are
doing, but without using the phrase “go to.”

ËÈ Knuth, “Structured Programming,” pp. 265–266. ËÉ Ibid., p. 294.
ËÊ Ibid., pp. 295–296.

the goto delusion 599chapter 7

4

4
Because of its irrationality, the GOTO prohibition acquired in the end the
character of a superstition: despite the attempt to ground the debate on
programming principles, avoiding GOTO became a preoccupation similar in
nature to avoiding black cats, or avoiding the number 13.

People who cling to an unproven idea develop various attitudes to rational-
ize their belief. For example, since it is difficult to follow strictly the precepts
of any superstition, we must find ways to make the pursuit of superstitions
practical. Thus, even if convinced that certain events bring misfortune, we will
tolerate them when avoiding them is inconvenient – and we will contrive an
explanation to justify our inconsistency. Similarly, we saw, while GOTO is
believed to bring software misfortune, most theorists agree that there is no
need to be dogmatic: GO TO is tolerable when avoiding it is inconvenient.

Humour is an especially effective way to mask the irrationality of our acts.
Thus, it is common to see people joke about their superstitions – about their
habit of touching wood, for instance – even as they continue to practise them.
So we shouldn’t be surprised to find humorous remarks accompanying the
most serious GO TO discussions. Let us study a few examples.

In his assessment of the benefits of structured programming, Yourdon
makes the following comment: “Many programmers feel that programming
without the GOTO statement would be awkward, tedious, and cumbersome. For
the most part, this complaint is due to force of habit. . . . The only response that
can be given to this complaint comes from a popular television commercial
that made the rounds recently: ‘Try it – you’ll like it!’”ËË This is funny, perhaps,
but what is the point of this quip? After explaining and praising GOTO-less
programming, Yourdon admits that the only way to demonstrate its benefits is
with the techniques of television advertising.

Another example of humour is the statement COME FROM, introduced as an
alternative to GOTO. Although meant as a joke, this statement was actually
implemented in several programming languages, and its merits are being
discussed to this day in certain circles. Its operation is, in a sense, the reverse
of GO TO; for instance, COME FROM L1 tells the computer to jump to the statement
following it when the flow of execution encounters the label L1 somewhere in
the program. (The joke is that, apart from being quite useless, COME FROM is
even more difficult than GOTO to understand and to manage.) It is notable that
the official introduction of this idea was in Datamation’s issue that proclaimed

ËË Yourdon, Techniques, p. 178.

600 structured programming chapter 7

structured programming a revolution (see p. 523). Thus, out of the five articles
devoted to this revolution, one was meant in its entirety as a joke.ËÌ

One expert claims that the GO TO prohibition does not go far enough: the
next step must be to abolish the ELSE in IF statements.ËÍ Since an IF-THEN-ELSE

statement can be expressed as two consecutive IF-THEN statements where the
second condition is the logical negation of the first, ELSE is unnecessary and
complicates the program. The expert discusses in some detail the benefits of
ELSE-less programming. The article, which apparently was not meant as a joke,
ends with this sentence: “Structured programming, with elimination of the
GO TO, is claimed to be a step toward changing programming from an art to a
cost-effective science, but the ELSE will have to go, too, before the promise is a
reality”ËÎ (note the pun, “go, too”).

Knuth likes to head his writings with epigraphs, but from the quotations he
chose for his aforementioned paper on GO TO, it is impossible to tell whether
this is a serious study or a piece of entertainment. Two quotations, from a
poem and from a song, were chosen, it seems, only because they include the
word “go”; the third one is from an advertisement offering a remedy for
“painful elimination.” Also, we find the following remark in the paper: “The
use of four-letter words like GO TO can occasionally be justified even in the best
of company.”ËÏ

The most puzzling part of Knuth’s humour, however, is his allusion to
Orwell’s Nineteen Eighty-Four. He dubs the ideal programming language
Utopia 84, as his “dream is that by 1984 we will see a consensus developing. . . .
At present we are far from that goal, yet there are indications that such a
language is very slowly taking shape. . . . Will Utopia 84, or perhaps we should
call it Newspeak, contain GO TO statements?”ËÐ

Is this a joke or a serious remark? Does Knuth imply that the role of
programming languages should be the same as the role of Newspeak in
Orwell’s totalitarian society – that is, to degrade knowledge and minds? (See
“Orwell’s Newspeak” in chapter 5.) Perhaps this is Knuth’s dream, unless the
following statement, too, is only a joke: “The question is whether we should
ban [GOTO], or educate against it; should we attempt to legislate program
morality? In this case I vote for legislation, with appropriate legal substitutes in
place of the former overwhelming temptations.”ËÑ

As the theorists and the practitioners recognized the shallowness of their
preoccupation with GO TO, humour was the device through which they could

ËÌ R. Lawrence Clark, “A Linguistic Contribution to GOTO-less Programming,” Data-
mation 19, no. 12 (1973): 62–63.

ËÍ Allan M. Bloom, “The ‘ELSE’ Must Go, Too,” Datamation 21, no. 5 (1975): 123–128.
ËÎ Ibid., p. 128. ËÏ Knuth, “Structured Programming,” p. 282.
ËÐ Ibid., pp. 263–264. ËÑ Ibid., p. 296.

the goto delusion 601chapter 7

pursue two contradictory ideas: that the issue is important, and that it is
irrelevant. Humour, generally, is a good way to deal with the emotional conflict
arising when we must believe in two contradictory concepts at the same
time. Thus, like people joking about their superstitions, the advocates of
structured programming discovered that humour allowed them to denounce
the irrational preoccupation with GO TO even while continuing to foster it.

5

5
The foregoing analysis has demonstrated that the GOTO prohibition had no
logical foundation. It has little to do with the original structured program-
ming idea, and can even be seen as a new theory: the theory of structured
programming failed, and the GO TO preoccupation took its place. The theorists
and the practitioners kept saying that structured programming is more than
just GOTO-less programming, but in reality the elimination of GOTO was
now the most important aspect of their work. What was left of structured
programming was only some trivial concepts: top-down design, constructs
with one entry and exit, indenting the levels of nesting in the program’s listing,
and the like.

To appreciate this, consider the following argument. First, within the
original, formal theory of structured programming, we cannot even discuss
GOTO; for, if we adhere to the formal principles we will never encounter
situations requiring GO TO. So, if we have to debate the use of GO TO, it means
that we are not practising structured programming.

It is only within the modified, informal theory that we can discuss GO TO at
all. And here, too, the GO TO debate is absurd, because this degraded variant of
structured programming can be practised both with and without GOTO. We
can have structured programs either without GOTO (if we use only built-in
constructs) or with GOTO (if we also design our own constructs). The only
difference between the two alternatives is the presence of explicit jumps in
some of the constructs, and explicit jumps are compatible with the informal
principles. With both methods we can practise top-down design, create
constructs with one entry and exit, restrict modules to a hundred lines, indent
the levels of nesting in the program’s listing, and so forth. Every principle
stipulated by the informal theory of structured programming can be rigorously
followed whether or not we use GO TO.

The use of GO TO, thus, is simply a matter of programming style, or program-
ming standards, which can vary from person to person and from place to place.
Since it doesn’t depend on a particular set of built-in constructs, the informal
style of structured programming can be practised with any programming

602 structured programming chapter 7

language (even with low-level, assembly languages): we use built-in constructs
when available and when effective, and create our own with explicit jumps
when this alternative is better. (So we will have more GO TOs in COBOL, for
example, than in C.)

Then, if GOTO does not stop us from practising the new, informal structured
programming, why was its prohibition so important? As I stated earlier (see
pp. 590–591), the GO TO preoccupation served as a substitute for the original
theory: that theory restricted us to the three standard flow-control constructs
(a rigorous principle that is all but impossible to follow), while the new theory
permits us to use an arbitrary, larger set of constructs (in fact, any built-in
constructs). Thus, the only restriction now is to use built-in constructs rather
than create our own with GOTO. This principle is more practical than the
original one, while still appearing precise. By describing this easier principle as
an extension of structured programming, the theorists could delude them-
selves that they had a serious theory even after the actual theory had been
refuted.

The same experts who had promised us the means to develop and prove
applications mathematically were engaged now in the childish task of studying
the use of GO TO in small, artificial pieces of software. And yet, no one saw this
as evidence that the theory of structured programming had failed. While still
talking about scientific programming, the experts were debating whether one
trivial construct is easier or harder to understand than some other trivial
construct. Is this the role of software theorists, to decide for us which style of
programming is clearer? Surely, practitioners can deal with such matters on
their own. We listened to the theorists because of their claim that software
development can be a formal and precise activity. And if this idea turned out
to be mistaken, they should have studied the reasons, admitted that they
could not help us, and tried perhaps to discover what is the true nature of
programming. Instead, they shifted their preoccupation to the GO TO issue, and
continued to claim that programming would one day become a formal and
precise activity.

The theorists knew, probably, that the small bits of software they were
studying were just as easy to understand with GO TO as they were without it. But
they remained convinced that this was a critical issue: it was important to find
a set of ideal constructs because a flow-control structure free of GO TOs would
eventually render the same benefits as a structure restricted to the three
standard constructs. The dream of rigorous, scientific programming was still
within reach.

The theorists fancied themselves as the counterpart of the old thinkers, who,
while studying what looked like minute philosophical problems, were laying in
fact the foundation of modern knowledge. Similarly, the theorists say, subjects

the goto delusion 603chapter 7

like GOTO may seem trivial, but when studying the appearance of small
bits of software with and without GOTO they are determining in fact some
important software principles, and laying the foundation of the new science of
programming.

�

The GOTO issue was important to the theorists, thus, as a substitute for the
formal principles of structured programming. But there was a second, even
more important motivation for the GO TO prohibition.

Earlier in this chapter we saw that the chief purpose of structured pro-
gramming, and of software engineering generally, was to get inexperienced
programmers to perform tasks that require in fact great skills. The software
theorists planned to solve the software crisis, not by promoting programming
expertise, but, on the contrary, by eliminating the need for expertise: by
turning programming from a difficult profession, demanding knowledge,
experience, and responsibility, into a routine activity, which could be per-
formed by almost anyone. And they hoped to accomplish this by discovering
some exact, mechanistic programming principles – principles that could be
incorporated in methodologies and development tools. The difficult skills
needed to create software applications would then be reduced to the easier
skills needed to follow methods and to operate software devices. Ultimately,
programmers would only need to know how to use the tools provided by the
software elite.

The GOTO prohibition was part of this ideology. Structured programs,
we saw, can be written both with and without GOTO: we use only built-in
flow-control constructs, or also create our own with GOTO statements. The
difference is a matter of style and efficiency. So, if structured programming is
what matters, all that the theorists had to do was to explain the principle of
nested flow-control constructs. Responsible practitioners would appreciate
its benefits, but the principle would not prevent them from developing an
individual programming style. They would use custom constructs when better
than the built-in ones, and the GO TOs would make their programs easier, not
harder, to understand.

Thus, it was pointed out more than once that good programmers were
practising structured programming even before the theorists were promoting
it. And this is true: a programmer who develops and maintains large and
complex applications inevitably discovers the benefits of hierarchical flow-
control structures, indenting the levels of nesting in the program’s listing, and
other such practices; and he doesn’t have to avoid GO TO in order to enjoy these
benefits.

604 structured programming chapter 7

But the theorists had decided that programmers should not be expected to
advance beyond the level attained by an average person after a few months of
practice – beyond what is, in effect, the level of novices. The possibility of
educating and training programmers as we do individuals in other professions
– that is, giving them the time and opportunity to develop all the knowledge
that human minds are capable of – was not even considered. It was simply
assumed that if programmers with a few months of experience write bad
software, the only way to improve their performance is by preventing them
from dealing with the more difficult aspects of programming.

And, since the theorists believed that the flow-control structure is the most
important aspect of the application, the conclusion was obvious: programmers
must be forced to use built-in flow-control constructs, and prohibited from
creating their own. In this way, even inexperienced programmers will create
perfect flow-control structures, and hence perfect applications. Restricting
programmers to built-in constructs, the theorists believed, is like starting with
subassemblies rather than basic parts when building appliances: programming
is easier and faster, and one needs lower skills and less experience to create the
same applications. (We examined this fallacy earlier; see pp. 578–579.) Thus,
simply by prohibiting mediocre programmers from creating their own flow-
control constructs, we will attain about the same results as we would by
employing expert programmers.

�

It is clear, then, why the theorists could not just advise programmers to follow
the principles of structured programming. Since their goal was to control
programming practices, it was inconceivable to allow the programmers to
decide whether to use a built-in construct or a non-standard one, much less to
allow them to design a construct. With its restriction to the three standard
constructs, the original theory had the same goal, but it was impractical. So
the theorists looked for a substitute, a different way to control the work of
programmers. With its restriction to built-in constructs – constructs sanc-
tioned by the theorists and incorporated into programming languages – the
GO TO prohibition was the answer.

We find evidence that this ideology was the chief motivation for the GO TO

prohibition in the reasons typically adduced for avoiding GO TO. The theorists
remind us that its use gives rise to constructs with more than one entry or exit,
thereby destroying the hierarchical nature of the flow-control structure;
and they point out that it has been proved mathematically that GOTO is
unnecessary. But despite the power of these formal explanations, they ground
the prohibition, ultimately, on the idea that GOTO tempts programmers to

the goto delusion 605chapter 7

write “messy” programs. It is significant, thus, that the theorists consider the
informal observation that GOTO allows programmers to create bad software
more convincing than the formal demonstration that GO TO is unnecessary.

Here are some examples: “The GO TO statement should be abolished” because
“it is too much an invitation to make a mess of one’s program.”ÌÈ “GOTO

instructions in programs can go to anywhere, permitting the programmer to
weave a tangled mess.”ÌÉ “It would be wise to avoid the GOTO statement
altogether. Unconditional branching encourages a patchwork (spaghetti code)
style of programming that leads to messy code and unreliable performance.”ÌÊ

“The GOTO can be used to produce ‘bowl-of-spaghetti’ programs – ones
in which the flow of control is involuted in arbitrarily complex ways.”ÌË

“Unrestricted use of the GO TO encourages jumping around within programs,
making them difficult to read and difficult to follow.”ÌÌ “One of the most
confusing styles in computer programs involves overuse of the GOTO state-
ment.”ÌÍ “GO TO statements make large programs very difficult to read.”ÌÎ

What these authors are saying is true. What they are describing, though, is
not programming with GO TO, but simply bad programming. They believe that
there are only two alternatives to software development: bad programmers
allowed to use GO TO and writing therefore bad programs, and bad program-
mers prevented from using GOTO. The possibility of having good programmers,
who write good programs with or without GO TO, is not considered at all.

The argument about messy programs is ludicrous. It is true that, if used
incorrectly, GOTO can cause execution to “go to anywhere,” can create an
“arbitrarily complex” flow of control, and can make the program “difficult
to follow.” But the GOTO problem is no different from any other aspect of
programming: bad programmers do everything badly, so the messiness of their
flow-control constructs is not surprising. Had these authors studied other
aspects of those programs, they would have discovered that the file operations,
or the definition of memory variables, or the use of subroutines, or the
calculations, were also messy. The solution, however, is not to prohibit bad
programmers from using certain features of a programming language, but to
teach them how to program; in particular, how to create simple and consistent

ÌÈ Dijkstra, “Go To Statement,” p. 9.
ÌÉ Martin and McClure, Structured Techniques, p. 133.
ÌÊ David M. Collopy, Introduction to C Programming: A Modular Approach (Upper Saddle

River, NJ: Prentice Hall, 1997), p. 142.
ÌË William A. Wulf, “Languages and Structured Programs,” in Current Trends in Pro-

gramming Methodology, vol. 1, Software Specification and Design, ed. Raymond T. Yeh
(Englewood Cliffs, NJ: Prentice Hall, 1977), p. 37.

ÌÌ Clement L. McGowan and John R. Kelly, Top-Down Structured Programming Tech-
niques (New York: Petrocelli/Charter, 1975), p. 43.

ÌÍ Weinberg et al., High Level COBOL, p. 39. ÌÎ Van Tassel, Program Style, p. 78.

606 structured programming chapter 7

flow-control constructs. And if they are incapable or unwilling to improve
their work, they should be replaced with better programmers.

The very use of terms like “messy” to describe the work of programmers
betrays the distorted attitude that the software elite has toward this profession.
Programmers whose work is messy should not even be employed, of course.
Incredibly, the fact that individuals considered professional programmers
create messy software is perceived as a normal state of affairs. Theorists,
employers, and society accept the incompetence of programmers as a necessary
and irremediable situation. And we accept not only their incompetence, but
also the fact that they are irresponsible and incapable of improving their skills.
Thus, everyone agrees that it is futile to teach them how to use GOTO correctly;
they cannot understand, or don’t care, so it is best simply to prohibit them from
using it.

To be considered a professional programmer, an individual ought to display
the highest skill level attainable in the domain of programming. This is how we
define professionalism in other domains, so why do we accept a different
definition for programmers? The software theorists claim that programmers
are, or are becoming, “software engineers.” At the same time, they are redefin-
ing the notions of expertise and responsibility to mean something entirely
different from what they mean for engineers and for other professionals. In the
case of programmers, expertise means acquaintance with the latest theories
and standards, and responsibility means following them blindly. And what do
these theories and standards try to accomplish? To obviate the need for true
expertise and responsibility. No one seems to note the absurdity of this
ideology.

6

6
We must take a moment here to discuss some of the programming aspects of
the GO TO problem; namely, what programming style creates excellent, rather
than messy, GO TO-based constructs. Had the correct use of GO TO demanded
great expertise – outstanding knowledge of computers or mathematics, for
instance – the effort to prevent programmers from creating their own con-
structs might have been justified. I want to show, however, that the correct use
of GOTO is a trivial issue: from the many kinds of knowledge involved in
programming, this is one of the simplest.

The following discussion, thus, is not intended to promote a particular
programming style, but to demonstrate the triviality of the GO TO problem, and
hence the absurdity of its prohibition. This will serve as additional evidence for
my argument that the GOTO prohibition was motivated, not by some valid

the goto delusion 607chapter 7

software concerns, but by the corrupt ideology held by the software theorists.
They had already decided that programmers must remain incompetent, and
that it is they, the elite, who will control programming practices.

�

The first step is to establish, within the application, the boundaries for each set
of jumps: the whole program in the case of a small application, but usually a
module, a subroutine, or some other section that is logically distinct. Thus,
even when the programming language allows jumps to go anywhere in the
program, we will restrict each set of jumps to the section that constitutes a
particular procedure, report, data entry function, file updating operation, and
the like.

The second step is to decide what types of jumps we want to implement with
GOTO. The number of reasons for having jumps in the flow of execution is
surprisingly small, so we can easily account for all the possibilities. We can
agree, for example, to restrict the forward jumps to the following situations:
bypassing blocks of statements (in order to create conditional constructs);
jumping to the point past the end of a block that is at a lower nesting level than
the current one (in order to exit from any combination of nested conditions
and iterations); jumping to any common point (in order to terminate one
logical process and start another). And we can agree to restrict the backward
jumps to the following situations: jumping to the beginning of a block (in
order to create iterative constructs, and also to end prematurely a particular
iteration); jumping to any common point (in order to repeat the current
process starting from a particular operation).

We need, thus, less than ten types of jumps; and by combining jumps we can
create any flow-control constructs we like. We will continue to use whatever
built-in constructs are available in a particular language, but we will not depend
on them; we will simply use them when more effective than our own. Recall
the failed attempts to replace all possible uses of GO TO with built-in constructs.
Now we see that this idea is impractical, not because of the large number of
types of jumps, but because of the large number of combinations of jumps. And
the problem disappears if we can design our own constructs, because now we
don’t have to plan in advance all conceivable combinations; we simply create
them as needed.

Lastly, we must agree on a good naming system for labels. Labels are
those flow-control variables that identify the statement where execution is to
continue after a jump. And, since each GOTO statement specifies a label, we can
choose names that link logically the jump’s origin, its destination, and the
purpose of the jump. This simple fact is overlooked by those who claim that

608 structured programming chapter 7

jumps unavoidably make programs hard to follow. If we adopt an intelligent
naming system, the jumps, instead of confusing us, will explain the program’s
logic. (The compiler, of course, will accept any combination of characters as
label names; it is the human readers that will benefit from a good naming
convention.)

Here is one system: the first character or two of the name are letters
identifying that section of the program where a particular set of jumps and
labels are in effect; the next character is a letter identifying the type of jump;
and these letters are followed by a number identifying the relative position of
the label within the current set of jumps. In the name RKL3, for example, RK is
the section, L identifies the start of a loop, and 3 means that the label is found
after labels with numbers like 1 or 25, but before labels with numbers like 31 or
6. Similarly, T could identify the point past the end of a loop, S the point past a
block bypassed by a condition, E the common point for dealing with an error,
and so on.ÌÏ

Note that the label numbers identify their order hierarchically, not through
their values. For example, in a section called EM, the sequence of labels might
be as follows: EMS2, EML3, EMS32, EMS326, EML35, EMT36, EMT4, EME82. The
advantage of hierarchical numbering is that we can add new labels later
without having to modify the existing ones. Note also that, while the numbers
can be assigned at will, we can also use them to convey some additional
information. For example, labels with one- or two-digit numbers could signify
points in the program that are more important than those employing labels
with three- or four-digit numbers (say, the main loop versus an ordinary
condition).

Another detail worth mentioning is that we will sometimes end up with two
or more consecutive labels. For example, a jump that terminates a loop and one
that bypasses the block in which the loop is nested will go to the same point in
the program, but for different reasons. Therefore, even though the compiler
allows us to use one label for both jumps, each operation should have its own
label. Also, while the order of consecutive labels has no effect on the program’s
execution, here it should match the nesting levels (for the benefit of the human
readers); thus, the label that terminates the loop should come before the one
that bypasses the whole block (EMT62, EMS64).

Simple as it is, this system is actually too elaborate for most applications.
First, since the jump boundaries usually parallel syntactic units like subrou-
tines, in many languages the label names need to be unique only within each

ÌÏ In COBOL, labels are known as paragraph names, and paragraphs function also as
procedures, or subroutines; but the method described here works the same way. (It is poor
practice to use the same paragraph both as a GOTO destination and as a procedure, except
for jumps within the procedure.)

the goto delusion 609chapter 7

section; so we can often dispose of the section identifier and start all label
names in the program with the same letter. Second, in well-designed programs
the purpose of most jumps is self-evident, so we can usually dispose of the type
identifier too. (It is clear, for instance, whether a forward jump is to a common
error exit or is part of a conditional construct.) The method I have followed for
many years in my applications is to use even-numbered labels for forward
jumps (EM4, EM56, EM836, etc.) and odd-numbered ones for backward jumps
(EM3, EM43, EM627, etc.). I find this simplified identification of jump types
adequate even in the most intricate situations.ÌÐ

It is obvious that many other systems of jump types and label names are
possible. It is also obvious that the consistent use of a particular system is more
important than its level of sophistication. Thus, if we can be sure that every
jump and label in a given application obeys a particular convention, we will
have no difficulty following the flow of execution.

�

So the solution to the famous GOTO problem is something as simple as a
consistent system of jump types and label names. All the problems that the
software theorists attribute to GO TO have now disappeared. We can enjoy the
benefits of a hierarchical flow-control structure and the versatility of explicit
jumps at the same time.

The maintenance problem – the difficulty of understanding software created
by others – has also disappeared: no matter how many GO TOs are present in the
program, we know now for each jump where execution is going, and for each
label where execution is coming from. We know, moreover, the purpose of each
jump and label. Designing an effective flow-control structure, or following the
logic of an existing one, may still pose a challenge; but, unlike the challenge of
dealing with a messy structure, this is now a genuine programming problem.
The challenge, in fact, is easier than it is with built-in constructs, because we
have the actual, self-documented jumps and labels, rather than just the implicit
ones. So, even when a built-in construct is available, the GO TO-based one is
often a better alternative.

Now, it is hard to believe that any programmer can fail to understand a
system of jumps and labels; and it is also hard to believe that no theorist ever
thought of such a system. Thus, since a system of jumps and labels answers all
the objections the theorists have to using GOTO, why were they trying to
eliminate it rather than simply suggesting such a system? They describe the

ÌÐ Figures 7-13 to 7-16 (pp. 680, 683–685) exemplify this style. Note that this method also
makes the levels of nesting self-evident, obviating the need to indent the loops.

610 structured programming chapter 7

harmful effects of GOTO as if the only way to use it were with arbitrary
jumps and arbitrary label names. They say nothing about the possibility of an
intelligent and consistent system of jumps, or meaningful label names. They
describe the use of GOTO, in other words, as if the only alternative were to have
incompetent and irresponsible programmers. They appear to be describing a
programming problem, but what they are describing is their distorted view of
the programming profession: by stating that the best solution to the GOTO

problem is avoidance, they are saying in effect that programmers will forever
be too stupid even to follow a simple convention.

�

Structured programming, and the GO TO prohibition, did not make program-
ming an exact activity and did not solve the software crisis. Programmers who
had been writing messy programs before were now writing messy GO TO-less
programs: they were messy in the way they were avoiding GOTO, and also in the
way they were implementing subroutines, calculations, file operations, and
everything else. Clearly, programmers who must be prohibited from using
GOTO (because they cannot follow a simple system of jumps and labels) are
unlikely to perform correctly any other programming task.

Recall what was the purpose of this discussion. I wanted to show that the
GO TO prohibition, while being part of the structured programming movement,
has little to do with its principles, or with any other programming principles.
It is just another aspect of a corrupt ideology. The software elites claim
that their theories are turning programming into a scientific activity, and
programmers into engineers. In reality, the goal of these theories is to turn
programmers into bureaucrats. The programming profession, according to the
elites, is a large body of mediocre workers trained to follow certain methods
and to use certain tools. Structured programming was the first attempt to
implement this ideology, and the GO TO prohibition in particular is a blatant
demonstration of it.

The Legacy

The Legacy

Because the theorists thought that the flow-control structure is the most
important part of an application, they noticed at first only the GO TO messiness,
and concluded that a restriction to built-in flow-control constructs would solve
the problem of bad programming. Then, when this restriction was found to
make no difference, they started to notice the other types of messiness. But the

the legacy 611chapter 7

solution was thought to be, again, not helping programmers to improve their
skills, but preventing them from dealing on their own with various aspects of
programming. Thus, structured programming was followed by many other
theories, languages, methodologies, and database systems, all having the same
goal: to degrade the work of programmers by shifting it to higher and higher
levels of abstraction; to replace programming skills with a dependence on
development systems; and to reduce the contribution of programmers to
simple acts that require practically no knowledge or experience.

Had the theorists tried to understand why structured programming failed,
perhaps they would have discovered the true nature of software and program-
ming. They would have realized then that no mechanistic theory can help us,
because software applications consist of interacting structures. The mechanistic
software delusions, thus, could have ended with structured programming.
But because they denied its failure, and because they continued to claim
that formal programming methods are possible, the theorists established a
mechanistic software culture. After structured programming, the traditional
idea of expertise – skills that are mainly the result of personal knowledge and
experience – was no longer accepted in the field of programming.

Unlike structured programming, today’s theories are embodied in develop-
ment environments – large and complicated systems known as object-oriented,
fourth-generation, database management, CASE, and so on. Consequently, it
is mainly the software companies behind these systems, rather than the
theorists, that form now the software elite. No matter how popular they
are, though, the development environments are ultimately grounded on
mechanistic principles. So, if the mechanistic programming theories cannot
help us, these systems cannot help us either. The reason they appear to work is
that their promoters continually “enhance” them: while praising their high-
level features, they reinstate – within these systems, and under new names – the
low-level, versatile capabilities of the traditional programming languages. In
other words, instead of correctly interpreting a particular inadequacy as a
falsification of the original principles, they eliminate the inadequacy by
annulling those principles. Thus, the same stratagem that made structured
programming appear successful – modifying the theory by reinstating the very
features it was supposed to replace – also serves to cover up the failure of
development environments. (See “The Delusion of High Levels” in chapter 6;
see also “The Quest for Higher Levels” in the next section.)

Turning falsifications into features, we recall, is how pseudoscientists
manage to rescue their theories from refutation. High-level programming
aids, thus, are fraudulent: after all the “enhancements,” using a development
environment is merely a more complicated form of the same programming
work that we had been performing all along, with the traditional languages.

612 structured programming chapter 7

We must also recall the other method employed by pseudoscientists to
defend their theories: looking for confirmations instead of falsifications; that
is, studying the few cases where the theory appears to work, and ignoring the
many cases where it fails. All software theories are promoted with this simple
trick, whether or not they also benefit from the more sophisticated stratagem
of turning falsifications into features.

Thus, it is common to see a particular theory or development system
praised in books and periodicals on the basis of just one or two “success
stories.” Structured programming, for example, was tried with thousands of
applications, but the only evidence of usefulness comes from a handful of
cases: we see the same stories repeated over and over everywhere structured
programming is promoted. (And there is not a single case where a serious
application was implemented by following the original, formal principles.)

�

The study of structured programming is more than the study of a chapter in
the history of programming. If all mechanistic theories suffer from the same
fallacy – the belief that software applications can be separated into independent
structures – then what we learned in our analysis of structured programming
can help us to recognize the fallaciousness of any other programming theory.
All we need to do is identify the structures that each theory attempts to extract
from the complex whole.

The failure of structured programming is the failure of all mechanistic
programming theories, and hence the failure of the whole idea of software
engineering. This is true because software engineering is, in the final analysis,
the ideology of software mechanism; so one cannot say that the idea of
software engineering is sound if the individual theories are failing. The
dream of structured programming was to represent software applications
mathematically, and to turn programming into a precise, predictable activity.
And it is the same dream that we find in the other theories, and in the general
idea of software engineering. Individual theories may come and go, but if
they are all based on mechanistic principles, they are in effect different
manifestations of the same delusion.

If the individual theories are failing, the whole project of software engineer-
ing – replacing personal skills with formal methods, developing software the
way we build appliances, designing and proving applications mathematically –
is failing. Each theory displays the characteristics of a pseudoscience; but, in
addition, the failure of each theory constitutes a falsification of the very idea
of software engineering. Thus, by denying the failure of the individual theories,
software engineering as a whole has been turned into a pseudoscience.

the legacy 613chapter 7

Object-Oriented Programming Object-Oriented Programming
The Quest for Higher Levels

The Quest for Higher Levels

Mechanistic software theories attempt to improve programming productivity
by raising the level of abstraction in software development; specifically, by
introducing methods, languages, and systems where the starting elements are
of a higher level than those found in the traditional programming languages.
But the notion of higher starting levels is a delusion. It stems from the two
mechanistic fallacies, reification and abstraction: the belief that we can separate
the structures that make up a complex phenomenon, and the belief that we
can represent a phenomenon accurately even while ignoring its low-level
elements.

The similarity of software and language, we saw, can help us to understand
this delusion. We cannot start from higher levels in software development for
the same reason we cannot start with ready-made sentences in linguistic
communication. In both cases, when we ignore the low levels we lose the ability
to implement details and to link structures. The structures are the various
aspects of an idea, or of a software application. In language, therefore, we must
start with words, and create our own sentences, if we want to be able to express
any idea; and in programming, we must start with the traditional software
elements, and create our own constructs, if we want to be able to implement
any application.

In a simple structure, the values displayed by the top element reflect
the combinations of elements at the lower levels. So, the lower the starting
elements, the more combinations are possible, and the larger is the number of
alternatives for the value of the top element. In a complex structure even
more values are possible, because the top element is affected by several
interacting structures. Software applications are complex structures, so the
impoverishment caused by starting from higher levels can be explained as a
loss of both combinations and interactions: fewer combinations are possible
between elements within the individual structures, and fewer interactions
are possible between structures. As a result, there are fewer possible values
for the top element – the application. (See “Abstraction and Reification” in
chapter 1.)

While starting from higher levels may be practical for simple applications,
or for applications limited to a narrow domain, for general business applica-
tions the starting level cannot be higher than the one found in the traditional

614 object-oriented programming chapter 7

programming languages. Any theory that attempts to raise this level must be
“enhanced” later with features that restore the low levels. So, while praising the
power of the high levels, the experts end up contriving more and more low-
level expedients – without which their system, language, or method would be
useless.

We already saw this charlatanism in the previous section, when non-
standard flow-control constructs, and even GOTO, were incorporated into
structured programming. But because structured programming was still based
on the traditional languages, the return to low levels was not, perhaps, evident;
all that the experts had to do to restore the low levels was to annul some of the
restrictions they had imposed earlier. The charlatanism became blatant,
however, with the theories that followed, because these theories restrict
programming, not just to certain constructs, but to special development
systems. Consequently, when the theories fail, the experts do not restore the
low levels by returning to the traditional programming concepts, but by
reproducing some of these concepts within the new systems. In other words,
they now prevent us from regaining the freedom of the traditional languages,
and force us to depend on their systems.

In the present section, we will see how this charlatanism manifests itself
in the so-called object-oriented systems; then, in the next section, we will
examine the same charlatanism in the relational database systems. Other
systems belonging to this category are the fourth-generation languages and
tools like spreadsheets and database query, which were discussed briefly in
chapter 6 (see pp. 441–442, 444–445, 452–453).

If we recall the language analogy, and the hypothetical system that would
force us to combine ready-made sentences instead of words, we can easily
imagine what would happen. We would be unable to express a certain idea
unless the system happened to include the required sentences. So the experts
would have to offer us more and more sentences, and more and more methods
to use them – means to modify a sentence, to combine sentences, and so forth.
We would perceive every addition as a powerful new feature, convinced that
this was the only way to have language. We would spend more and more
time with these sentences and methods, and communication would become
increasingly complicated. But, in the end, even with thousands of sentences
and features, we would be unable to express ourselves as well as we do now,
simply by combining words.

While it is hard to see how anyone could be persuaded to depend on a
system that promises higher starting levels in language, the whole world is
being fooled by the same promise in software. And when this idea turns out to
be a delusion, we continue to be fooled: we agree to depend on these systems
even as we see them being modified to reinstate the low levels.

the quest for higher levels 615chapter 7

At first, the software experts try to enhance the functionality of their system
by adding more and more high-level elements: whenever we fail to implement
a certain requirement by combining existing elements, they provide some new
ones. But we need an infinity of alternatives in our applications, and it is
impossible to provide enough high-level elements to generate them all. So the
experts must also add some low-level elements, similar to those found in the
traditional languages. By then, their system ceases to be the simple and elegant
high-level environment they started with; it becomes an awkward mixture of
high and low levels, built-in functions, and odd software concepts.

And still, many requirements remain impossible or difficult to implement.
There are two reasons for this. First, the experts do not restore all the low-level
elements we had before; and without enough low-level elements we cannot
create all the combinations needed to implement details and to link the
application’s structures. Second, the low-level elements are provided as an
artificial extension to the high-level features, so we cannot use them freely.
Instead of the simple, traditional way of combining elements – from low to high
levels – we must now use some contrived methods based on high-level features.

In conclusion, these systems are fraudulent: not only do they fail to provide
the promised improvement (programming exclusively through high-level
features), but they make application development even more difficult than
before. Their true purpose is not to increase productivity, but to maintain
programming incompetence and to prevent programming freedom. The
software elites force us to depend on complicated, expensive, and inefficient
development environments, when we could accomplish much more with
ordinary programming languages. (We discussed the fallacy of high-level
starting elements in “The Delusion of High Levels” in chapter 6.)

The Promise

The Promise

Like structured programming before it, object-oriented programming was
hailed as an entirely new approach to application development: “OOP –
Object-Oriented Programming – is a revolutionary change in programming.
Without a doubt, OOP is the most significant single change that has occurred
in the software field.”É “Object technology . . . represents a major watershed in
the history of computing.”Ê “Object-oriented technology promises to produce

É Peter Coad and Jill Nicola, Object-Oriented Programming (Englewood Cliffs, NJ: PTR
Prentice Hall, 1993), p. xxxiii.

Ê Paul Harmon and David A. Taylor, Objects in Action: Commercial Applications of
Object-Oriented Technologies (Reading, MA: Addison-Wesley, 1993), p. 15.

616 object-oriented programming chapter 7

a software revolution in terms of cost and quality that will rival that of
microprocessors and their integrated circuit technologies during the 1980s.”Ë

“The goal is not just to improve the programming process but to define an
entirely new paradigm for software construction.”Ì “Object orientation is . . .
the technology that some regard as the ultimate paradigm for the modelling of
information, be that information data or logic.”Í “The paradigm shift we’ll
be exploring . . . is far more fundamental than a simple change in tools or
terminology. In fact, the shift to objects will require major changes in the way
we think about and use business computing systems, not just how we develop
the software for them.”Î

Thus, while structured programming had been just a revolution, object-
oriented programming was also a new paradigm. Finally, claimed the theorists,
we have achieved a breakthrough in programming concepts.

If the promise of structured programming had been to develop and prove
applications mathematically, the promise of object-oriented programming was
“reusable software components”: employing pieces of software the way we
employ subassemblies in manufacturing and construction. The new paradigm
will change the nature of programming by turning the dream of software reuse
into a practical concept. Programming – the “construction” of software – will
be simplified by systematically eliminating all repetition and duplication.
Software will be developed in the form of independent “objects”: entities
related and classified in such a way that no one will ever again need to program
a piece of software that has already been programmed. One day, when enough
classes of objects are available, the development of a new application will entail
little more than putting together existing pieces of software. The only thing we
will have to program is the differences between our requirements and the
existing software.

Some of these ideas were first proposed in the 1960s, but it was only in the
1980s that they reached the mainstream programming community. And it was
in the 1990s, when it became obvious that structured programming and the
structured methodologies did not fulfil their promise, that object-oriented
programming became a major preoccupation. A new madness possessed the
universities and the corporations – a madness not unlike the one engendered

Ë Stephen Montgomery, Object-Oriented Information Engineering: Analysis, Design, and
Implementation (Cambridge, MA: Academic Press, 1994), p. 11.

Ì David A. Taylor, Object-Oriented Technology: A Manager’s Guide (Reading, MA:
Addison-Wesley, 1990), p. 88.

Í John S. Hares and John D. Smart, Object Orientation: Technology, Techniques, Manage-
ment and Migration (Chichester, UK: John Wiley and Sons, 1994), p. 1.

Î Michael Guttman and Jason Matthews, The Object Technology Revolution (New York:
John Wiley and Sons, 1995), p. 13.

the promise 617chapter 7

by structured programming in the 1970s. Twenty years later, we hear the same
claims and the same rhetoric: There is a software crisis. Software development
is inefficient because our current practices are based, like those of the old
craftsmen, on personal skills. We must turn programming into a formal
activity, like engineering. It is concepts like standard parts and prefabricated
subassemblies that make our manufacturing and construction activities so
successful, so we must emulate these concepts in our programming activities.
We must build software applications the way we build appliances and houses.

Some examples: “A major theme of object technology is construction from
parts, that is, the fabrication, customization, and assembly of component parts
into working applications.”Ï “The software-development process is similar
in concept to the processes used in the construction and manufacturing
industries.”Ð “Part of the appeal of object orientation is the analogy between
object-oriented software components and electronic integrated circuits. At
last, we in software have the opportunity to build systems in a way similar to
that of modern electronic engineers by connecting prefabricated components
that implement powerful abstractions.”Ñ “Object-oriented techniques allow
software to be constructed of objects that have a specified behavior. Objects
themselves can be built out of other objects, that in turn can be built out of
objects. This resembles complex machinery being built out of assemblies,
subassemblies, sub-subassemblies, and so on.”ÉÈ

�

For some theorists, the object-oriented idea goes beyond software reuse.
The ultimate goal of object-oriented programming, they say, is to reduce
programming to mathematics, and thereby turn software development into an
exact, error-free activity. Thus, because they failed to see why the earlier idea,
structured programming, was mistaken despite its mathematical aspects, these
theorists are committing now the same fallacy with the object-oriented idea.
Here is an example: “For our work to become a true engineering discipline, we
must base our practices on hard science. For us, that science is a combination
of mathematics (for its precision in definition and reasoning) and a science of

Ï Daniel Tkach and Richard Puttick, Object Technology in Application Development
(Redwood City, CA: Benjamin/Cummings, 1994), p. 4.

Ð Ed Seidewitz and Mike Stark, Reliable Object-Oriented Software: Applying Analysis and
Design (New York: SIGS Books, 1995), p. 6.

Ñ Meilir Page-Jones, What Every Programmer Should Know about Object-Oriented
Design (New York: Dorset House, 1995), p. 66.

ÉÈ James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), pp. 4–5.

618 object-oriented programming chapter 7

information. Today we are starting to see analysis methods that are based on
these concepts. The Shlaer-Mellor method of OOA [object-oriented analysis],
for example, is constructed as a mathematical formalism, complete with
axioms and theorems. These axioms and theorems have been published as
‘rules’; we expect that as other methods become more fully developed, they,
too, will be defined at this level of precision.”ÉÉ

And, once the analysis and design process is fully formalized, that elusive
dream, the automation of programming, will finally be within reach. With the
enormous demand for software, we can no longer afford to squander our
skills constructing software by hand. We must alter the way we practise
programming, from handcrafting software, to operating machines that make
software for us: “We as practitioners must change. We must change from highly
skilled artisans to being software manufacturing engineers. . . . We cannot
afford to sit in front of our workstations and continue to build, fit, smooth, and
adjust, making by hand each part of each subassembly, of each assembly, of
each product. . . . How far away is this future? Not very far. . . . Our New Year’s
resolution is to continue this effort and, working with commercial toolmakers,
to put meaningful automation in your hands by year’s end. I think we can
do it.”ÉÊ

Thus, the mechanistic software ideology – the belief that software develop-
ment is akin to manufacturing, and the consequent belief that it is not better
programmers that we need but better methods and tools – did not change.
What was perceived as a shift in paradigms was in reality only a shift in
preoccupations, from “structured” to “object-oriented.”

This shift is also reflected in the accompanying rhetoric: as all the claims
and promises made previously for structured programming were now being
made for object-oriented programming, old slogans could be efficiently
reused, simply by replacing the term “structured” with “object-oriented.” Thus,
we now have object-oriented techniques, object-oriented analysis, object-
oriented design, object-oriented methodologies, object-oriented modeling,
object-oriented tools, object-oriented user interface, object-oriented project
management, and so forth.

There is one striking difference, though: the use of the term “technology.”
While structured programming was never called a technology, expressions like

ÉÉ Sally Shlaer, “A Vision,” in Wisdom of the Gurus: A Vision for Object Technology, ed.
Charles F. Bowman (New York: SIGS Books, 1996), pp. 219–220.

ÉÊ Ibid., pp. 222–223. These statements express perfectly that absurd, long-standing wish
of the software theorists – to reduce software to mechanics: the “parts” that we build, fit, etc.,
in the quotation are software parts; and the “toolmakers” are making software tools, to be
incorporated into software machines (development systems), which will then automatically
make those parts for us.

the promise 619chapter 7

“object technology” and “object-oriented technology” are widespread. What is
just another programming concept is presented as a technology. But this is
simply part of the general inflation in the use of “technology,” which has
affected all discourse (see “The Slogan ‘Technology’” in chapter 5).

�

To further illustrate the object-oriented propaganda, let as analyze a few
passages from a book that was written as a guide for managers:ÉË “We see
object-oriented technology as an important step toward the industrialization
of software, in which programming is transformed from an arcane craft to a
systematic manufacturing process. But this transformation can’t take place
unless senior managers understand and support it.”ÉÌ This is why “this guide is
written for managers, not engineers”:ÉÍ for individuals who need not “know
how to program a computer or even use one.”ÉÎ The guide, in other words, is for
individuals who can believe that, although they know nothing about program-
ming, they will be able to decide, just by reading a few easy pages, whether this
new “technology” can solve the software problems faced by their organization.

Taylor continues by telling us about the software crisis, in sentences that
could have been copied directly from a text written twenty years earlier:
development projects take longer than planned, and cost more; often, the
resulting applications have so many defects that they are unusable; many of
them are never completed; those that work cannot be modified later to meet
their users’ evolving needs.ÉÏ Then, after describing some of the previous
attempts to solve the crisis (structured programming, fourth-generation
languages, CASE, various database models), Taylor concludes: “Despite all
efforts to find better ways to build programs, the software crisis is growing
worse with each passing year. . . . We need a new approach to building software,
one that leaves behind the bricks and mortar of conventional programming
and offers a truly better way to construct systems. This new approach must be
able to handle large systems as well as small, and it must create reliable systems
that are flexible, maintainable, and capable of evolving to meet changing
needs. . . . Object-oriented technology can meet these challenges and more.”ÉÐ

The object-oriented revolution will transform programming in the same
way the Industrial Revolution transformed manufacturing. Taylor reminds us
how goods were produced earlier: Each product was a unique creation of a
particular craftsman, and consequently its parts were not interchangeable with

ÉË David A. Taylor, Object-Oriented Technology: A Manager’s Guide (Reading, MA:
Addison-Wesley, 1990). ÉÌ Ibid., p. iii.

ÉÍ Ibid., p. vii (“engineers,” of course, means programmers). ÉÎ Ibid.
ÉÏ Ibid., pp. 1–2. ÉÐ Ibid., pp. 13–14.

620 object-oriented programming chapter 7

those of another product, even when the products were alike. Goods made
in this fashion were expensive, and their quality varied. Then, in 1798, Eli
Whitney conceived a new way of building rifles: by using standard parts. This
greatly reduced the overall time and cost of producing them; moreover, their
quality was now uniform and generally better. Modern manufacturing is based
on this concept.ÉÑ

The aim of object-oriented technology is to emulate in programming the
modern manufacturing methods. It is a radical departure from the traditional
approach to software development – a paradigm shift, just as the concept of
standard parts was for manufacturing: “Two hundred years after the Industrial
Revolution, the craft approach to producing material goods seems hopelessly
antiquated. Yet this is precisely how we fabricate software systems today. Each
program is a unique creation, constructed piece by piece out of the raw
materials of a programming language by skilled software craftspeople. . . .
Conventional programming is roughly on a par with manufacturing two
hundred years ago. . . . This comparison with the Industrial Revolution reveals
the true ambition behind the object-oriented approach. The goal is not just to
improve the programming process but to define an entirely new paradigm for
software construction.”ÊÈ

Note, throughout the foregoing passages, the liberal use of terms like “build,”
“construct,” “manufacture,” and “fabricate” to describe software development,
without any attempt to prove first that programming is similar to the activities
performed in a factory. Taylor doesn’t doubt for a moment that software
applications can be developed with the methods we use to build appliances. It
doesn’t occur to him that the reason we still have a software crisis after all
these years is precisely this fallacy, precisely because all theories are founded
on mechanistic principles. He claims that object-oriented programming is
different from the previous ideas, but it too is mechanistic, so it too will fail.

This type of propaganda works because few people remember the previous
programming theories, and even fewer understand the reason for their failure.
The assertions made in these passages – presenting the latest theory as salva-
tion, hailing the imminent transition of programming from an arcane craft to
an engineering process – are identical to those made twenty years earlier in
behalf of structured programming. And they are also identical to those made
in behalf of the so-called fourth-generation languages, and CASE. It is because
they didn’t study the failure of structured programming that the theorists and
the practitioners fall prey to the same delusions with each new idea.

Also identical is calling incompetent programmers “skilled software crafts-
people” (as in the last quotation), or “highly skilled artisans” (as in a previous

ÉÑ Ibid., pp. 86–87. ÊÈ Ibid., p. 88.

the promise 621chapter 7

quotation, see p. 619). We discussed this distortion earlier (see pp. 483–485).
The same theorists who say that programmers are messy and cannot even learn
to use GOTO correctly (see pp. 605–607) say at the same time that programmers
have attained the highest possible skills (and, hence, that new methods and
tools are the only way to improve their work). Although absurd – because they
are contradictory, and also untrue – these claims are enthusiastically accepted
by the software bureaucrats with each new theory. Thus, at any given time,
and just by being preoccupied with the latest fantasies, ignorant academics,
managers, and programmers can flatter themselves that they are carrying out
a software revolution.

The Theory

The Theory
1 1
Let us examine the theory behind object-oriented programming. Software
applications are now made up of objects, rather than modules. Objects are
independent software entities that represent specific processes. The attributes
of an object include various types of data and the operations that act on this
data. The objects that make up an application communicate with one other
through messages: by means of a message, one object invokes another and asks
it to perform one of the operations it is capable of performing. Just as in calling
traditional subroutines, a message may include parameters, and the invoked
object may return a value. So it is this structure of objects and messages that
determines the application’s performance, rather than a structure of modules
and flow-control constructs, as was the case under structured programming.

Central to the concept of objects is their hierarchical organization. Recall
our discussion of hierarchical structures and levels of abstraction (in “Simple
Structures” in chapter 1). When we move up from one level to the next, the
complexity of the elements increases, because one element is made up of
several lower-level elements. At each level we extract, or abstract, those
attributes that define the relation between the two levels, and ignore the others;
so the higher-level element retains only those attributes that are common to all
the elements that make it up. Conversely, when we move down, each of the
lower-level elements possesses all the attributes of the higher-level element,
plus some new ones. There are more details as we move from high to low levels,
and fewer as we move from low to high levels. Thus, the levels of a hierarchy
function as both levels of complexity and levels of abstraction.

We saw how the process of abstraction works in classification systems. Take,
for example, a classification of animals: we can divide animals into wild and

622 object-oriented programming chapter 7

domestic, the domestic into types like dogs, horses, and chickens, the dogs into
breeds like spaniel, terrier, and retriever, and finally each breed into the
individual animals. Types like dogs, horses, and chickens possess specific
attributes, and in addition they share those attributes defining the higher-level
element to which they all belong – domestic animals. Similarly, while each
breed is characterized by specific attributes, all breeds share those attributes
that distinguish them as a particular type of animal – dogs, for instance. Finally,
each individual animal, in addition to possessing some unique attributes,
shares with others the attributes of its breed.

Just like the elements in the classification of animals, software objects form
a hierarchical structure. The elements at each level are known as classes, and
the attributes relating one level to the next are the data types and the operations
that make up the objects. A particular class, thus, includes the objects that
possess a particular combination of data types and operations. And each class
at the next lower level possesses, in addition to these, its own, unique data types
and operations. The lower the level, the more data types and operations take
part in the definition of a class. Conversely, the higher the level, the simpler the
definition, since each level retains only those data types and operations that are
common to all the classes of the lower level. So, as in any hierarchical structure,
the levels in the classification of software objects also function as levels of
abstraction.

This hierarchical relationship gives rise to a process called inheritance, and
it is through inheritance that software entities can be systematically reused. As
we just saw, the classes that make up a particular level inherit the attributes (the
data types and operations) of the class that forms the next higher level. And,
since the latter inherits in its turn the attributes of the next higher level, and so
on, each class in the hierarchy inherits the attributes of all the classes above it.
Each class, therefore, may possess many inherited attributes in addition to its
own, unique attributes.

The process of inheritance is, obviously, the process of abstraction observed
in reverse: when following the hierarchy from low to high levels, we note the
abstraction of attributes (fewer and fewer are retained); from high to low levels,
we note the inheritance of attributes (more and more are acquired).

Through the process of inheritance, we can create classes of objects with
diverse combinations of attributes without having to define an attribute more
than once. All we need to do for a new class is define the additional attributes
– those that are not possessed by the higher-level classes. To put it differently,
simply by defining the classes of objects hierarchically, as classes within classes,
we eliminate the need to duplicate attributes: a data type or operation defined
for a particular class will be inherited by all the classes below it. So, as we
extend the software hierarchy with lower and lower levels of classes, we will

the theory 623chapter 7

have classes that, even if adding few attributes of their own, can possess a rich
set of attributes – those of all the higher-level classes.

The classes are only templates, definitions of data types and operations. To
create an application, we generate replicas, or instances of these templates, and
it is these instances that become the actual objects. All classes, regardless of
level, can function as templates; and each one can engender an unlimited
number of actual objects. Thus, only in the application will the data types and
operations defined in the class hierarchy become real objects, with real data
and operations.

2

2
These, then, are the principles behind the idea of object-oriented program-
ming. And it is easy to see why they constitute a new programming paradigm,
a radical departure from the traditional way of developing applications. It is not
the idea of software reuse that is new, but the idea of taking software reuse to
its theoretical limit: in principle, we will never again have to duplicate a
programming task.

We always strove to avoid rewriting software – by copying pieces of software
from previous applications, for example, and by relying on subroutine libraries.
But the traditional methods of software reuse are not very effective. Their
main limitation is that the existing module must fit the new requirements
perfectly. This is why software reuse was limited to small pieces of code, and to
subroutines that perform some common operations; we could rarely reuse a
significant portion of an application. Besides, it was difficult even to know
whether reusable software existed: a programmer would often duplicate a
piece of software simply because he had no way of knowing that another
programmer had already written it.

So code reuse was impractical before because our traditional development
methods were concerned largely with programming issues. Hierarchical soft-
ware classes, on the other hand, reflect our affairs, which are themselves related
hierarchically. Thus, the hierarchical concept allows us to organize and relate
the existing pieces of software logically, and to reuse them efficiently.

The object-oriented ideal is that all the software in the world be part of one
giant hierarchy of classes, related according to function, and without any
duplication of data types or operations. For a new application, we would start
with some of the existing classes, and create the missing functions in the form
of new classes that branch out of the existing ones. These classes would then
join the hierarchy of existing software, and other programmers would be able
to use them just as we used the older ones.

624 object-oriented programming chapter 7

Realistically, though, what we should expect is not one hierarchy but a large
number of separate hierarchies, created by different programmers on different
occasions, and covering different aspects of our affairs. Still, because their
classes can be combined, all these hierarchies together will act, in effect, as one
giant hierarchy. For example, we can interpret a certain class in one hierarchy,
together perhaps with some of its lower-level classes, as a new class that
branches out of a particular class in another hierarchy. The only deviation from
the object-oriented ideal is in the slight duplication of classes caused by the
separation of hierarchies.

The explanation for the exceptional reuse potential in the object-oriented
concept is that a class hierarchy allows us to start with software that is just close,
in varying degrees, to a new requirement – whereas before we could only reuse
software that fitted a new requirement exactly. It is much easier to find software
that is close to our needs than software that matches our needs. We hope, of
course, to find some low-level classes in the existing software; that is, classes
which already include most of the details we have to implement. But even when
no such classes exist, we can still benefit from the existing software. In this case,
we simply agree to start from slightly higher levels of abstraction – from classes
that resemble only broadly our requirements – and to create a slightly larger
number of new classes and levels. Thus, regardless of how much of the
required software already exists, the object-oriented approach guarantees that,
in a given situation, we will only perform the minimum amount of work;
specifically, we will only program what was not programmed before.

Let us take a specific situation. In many business applications we find data
types representing the quantity in stock of various items, and operations that
check and alter these values. Every day, thousands of programmers write pieces
of software that are, in the end, nothing but variations of the same function:
managing an item’s quantity in stock. The object-oriented approach will
replace this horrendous duplication with one hierarchy of classes, designed to
handle the most common situations. Programmers will then start with these
classes, and perhaps add a few classes of their own to implement some unique
functions. Thus, the existing classes will allow us to increment and decrement
the quantity, interpret a certain stock level as too high or too low, and the like.
And if we need an unusual function – say, a history of the lowest monthly
quantities left in stock – we will simply add to the hierarchy our own class, with
appropriate data types and operations, just for this one function.

Clearly, we could have a hierarchy of this kind for every aspect of our work.
But we could also have classes for entire processes, even entire applications.
For example, we could have a hierarchy of specialized classes for inventory
management systems. Then, starting with these classes, we could quickly
create any inventory management application: we would take some classes

the theory 625chapter 7

from low levels and others from high levels; we would ignore some classes
altogether; and we would add our own classes to implement details and
unusual requirements. We could even combine classes from several inventory
management hierarchies, supplied by different software vendors.

This is how the experts envisage the future of application development:
“The term software industrial revolution has been used to describe the
move to an era when software will be compiled out of reusable components.
Components will be built out of other components and vast libraries of such
components will be created.”É “In the not-too-distant future, it will probably be
considered archaic to design or code any application from scratch. Instead, the
norm will be to grab a bunch of business object classes from a gigantic,
worldwide assortment available on the meganet, create a handful of new classes
that tie the reusable classes together, and – voilà! – a new application is born
with no muss, no fuss, and very little coding.”Ê

Programming as we know it will soon become redundant, and will be
remembered as we remember today the old manufacturing methods. The
number of available object classes will grow exponentially, so programmers
will spend more and more time combining existing classes, and less and less
time creating new ones. The skills required of programmers, thus, will change
too: from knowing how to create new software, to knowing what classes are
available and how to combine them. Since the new skills can be acquired more
easily and more quickly, we will no longer depend on talented and experienced
programmers. The object-oriented paradigm will solve the software crisis,
therefore, both by reducing the time needed to create a new application and by
permitting a larger number of people to create applications.

The Contradictions

The Contradictions
1 1
We recognize in the object-oriented fantasy the software variant of the lan-
guage fantasies we studied in chapter 4. The mechanistic language theories, we
saw, assume that it is possible to represent the world with a simple hierarchical
structure. Hence, if we invent a language that can itself be represented as
a hierarchical structure, we will be able to mirror the world perfectly in
language: the smallest linguistic elements (the words, for example) will mirror

É James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), p. 5.

Ê Michael Guttman and Jason Matthews, The Object Technology Revolution (New York:
John Wiley and Sons, 1995), p. 76.

626 object-oriented programming chapter 7

the smallest entities that make up the world; and the relations between
linguistic elements will mirror the natural laws that govern the real things. The
hierarchical structure of linguistic elements will then correspond on a one-to-
one basis to the hierarchical structure of real objects, processes, and events. By
combining sentences in this language as we do operations in mathematical
logic, we will be able to explain any phenomenon. Thus, being logically perfect
and at the same time a perfect picture of the world, a language designed as a
simple hierarchical structure will allow us to represent and to understand
the world.

From the theories of Leibniz, Dalgarno, and Wilkins in the seventeenth
century to those of Russell and Carnap in the twentieth, the search for a
logically perfect language has been one of the most persistent manifestations
of the mechanistic myth. The fallacy, we saw, is not so much in the idea of a
logically perfect language, as in the belief that such a language can accurately
mirror the world. It is quite easy, in fact, to design a language in the form
of a hierarchical structure, and to represent in it the entities and levels of
abstraction that exist in the world. The problem, rather, is that there are many
such structures – many different ways to represent the world – all correct and
relevant.

The entities that make up the world possess many attributes, and are
therefore connected through many structures at the same time, one structure
for each attribute. Thus, if our language is to represent reality accurately, the
linguistic elements too must be connected through more than one structure at
the same time. The language mechanists attempt to find one classification, or
one system, that would relate all objects, processes, and events that can exist in
the world. But this is a futile quest. Even a simple object has many attributes –
shape, dimensions, colour, texture, position, origin, age, and so forth. To place
it in one hierarchy, therefore, we would have to choose one attribute and ignore
the others. So, if we cannot represent with one hierarchy even ordinary objects,
how can we hope to represent the more complex aspects of the world?

It is precisely because they are not logically perfect that our natural lan-
guages allow us to describe the world. Here is how: We use words to represent
the real things that make up the world. Thus, since the real things share many
attributes and are linked through many structures, the words that represent
those things will also be linked, in our mind, through many structures. The
words that make up a message, a story, or an argument will form one structure
for each structure formed by the real things.

The mechanistic language theories fail to represent the world accurately
because their elements can be connected in only one way: they attempt to
represent with one linguistic structure the system of structures that is the world.
The mechanists insist on a simple structure because this is the only way to

the contradictions 627chapter 7

have a deterministic system of representation. But if the world is a complex
structure, and is therefore an indeterministic phenomenon, any theory that
attempts to represent it through deterministic means is bound to fail.

�

Since it is the same world that we have to represent through language and
through software, what is true for language is also true for software. To
represent the world, the software entities that make up an application must be
related through many structures at the same time. If we restrict their relations
to one hierarchy, the application will not mirror the world accurately. Thus,
whether we classify all the existing software entities or just the entities of one
application, we need a system of interacting structures. One structure, as in the
object-oriented paradigm, can only represent the relations created by one
attribute (or perhaps by a few attributes, if shared by the software entities in a
limited way).

Recall our discussion of complex structures in chapter 1 (pp. 98–102) and
in chapter 4 (pp. 354–361). We saw that any attempt to represent several
attributes with one structure results in an incorrect hierarchy. Because the
attributes must be shown within one another, all but the first will be repeated
for each branch created by the previous ones; and this is not how entities
possess attributes in reality.

Only when each attribute is possessed by just some of the entities can they
all be included in one hierarchy. Here is how this can be done, if we agree to
restrict the attributes (figure 1-6, p. 101, is an example of such a hierarchy): the
class of all entities is shown as the top element, and one attribute can be shared
by all the entities; on the basis of the values taken by this attribute, the entities
are divided into several classes, thereby creating the lower level; then, in each
one of these classes the entities can possess a second attribute (but they must
all possess the same attribute, and this attribute cannot be shared with entities
from the other classes); on the basis of the values taken by this attribute, each
class is then divided into third-level classes, where the entities can possess a
third attribute, again unique to each class; and so on. (On each level, instead of
one attribute per class, we can have a set of several attributes, provided they are
all unique to that class. The set as a whole will act in effect as one attribute, so
the levels and classes will be the same as in a hierarchy with single attributes.)

The issue, then, is simply this: Is it possible to restrict software entities to the
kind of relations that can be represented through a strict hierarchical structure,
as described above? Do software entities possess their attributes in such a
limited way that we can represent all existing software with one structure? Or,
if not all existing software, can we represent at least each individual application

628 object-oriented programming chapter 7

with one structure? As we saw, the answer is no. To mirror the world, software
entities must be related through all their attributes at the same time; and these
attributes, which reflect the various processes implemented in the application
(see pp. 345–346), only rarely exist within one another. Only rarely, therefore,
can software entities be classified or related through one hierarchical structure.
Whether the classification includes all existing software, or just the objects of
one application, we need a system of structures – perhaps as many structures as
there are attributes – to represent their relations.

The benefits promised by the object-oriented theory can be attained only
with a simple hierarchical structure. Thus, since it assumes that the relations
between software entities can be completely and precisely represented with one
structure, the theory is fundamentally fallacious.

�

Let us recall some of the hierarchies we encountered in previous chapters. The
biological classification of animals – classes, orders, families, genera, species –
remains a perfect hierarchy only if we agree to take into account just a few of
their attributes, and to ignore the others. We deliberately limit ourselves to
those attributes that can be depicted within one another; then, obviously, the
categories based on these attributes are related through a strict hierarchy.
This classification is important to biologists (to match the theory of natural
evolution, for instance); but we can easily create other classifications, based on
other attributes.

The distinction between wild and domestic, for example, cannot be part of
the biological classification. The reason is that those attributes we use to
distinguish an animal as wild or domestic cannot be depicted within those
attributes we use to distinguish it as mammal, or bird, or reptile; nor can the
latter attributes be depicted within the former. The two hierarchies overlap.
Thus, horses and foxes belong to different categories (domestic and wild) in
one hierarchy, but to the same category (class of mammals) in the other;
chickens and dogs belong to the same category (domestic) in one hierarchy,
but to different categories (birds and mammals) in the other. Clearly, if we
restricted ourselves to the biological classification we wouldn’t be able to
distinguish domestic from wild animals. Each classification is useful if we
agree to view animals from one perspective at a time. But only a system of
interacting structures can represent all their attributes and relations: a system
consisting of several hierarchies that exist at the same time and share their
terminal elements, the individual animals.

Similarly, organizations like corporations and armies can be represented as
a strict hierarchy of people only if we take into account one attribute – the role

the contradictions 629chapter 7

or rank of these people. This is the hierarchy we are usually concerned with,
but we can also create hierarchies by classifying the people according to their
age, or gender, or height, or any other attribute. Each classification would likely
be different, and only rarely can we combine two hierarchies by depicting one
attribute within the other.

For example, only if the positions in an organization are gender-dependent
can we combine gender and role in one hierarchy: we first divide the people
into two categories, men and women, and then add their various roles as lower
levels within these two categories. The final classification is a correct hierarchy,
with no repetition of attributes. It is all but impossible, however, to add a third
attribute to this hierarchy without repetition; that is, by depicting it strictly
within the second one. We cannot add a level based on age, for instance,
because people of the same age are very likely found in more than one of the
categories established by the various combinations of gender and role.

Recall, lastly, the structure of subassemblies that make up a device like a car
or appliance. This structure too is a strict hierarchy, and we can build devices
as hierarchies of things within things because we purposely design them so that
their parts are related mainly through one attribute – through their role in the
construction and operation of the device. The levels of subassemblies are then
the counterpart of the levels of categories in a classification hierarchy. But, just
as entities can be the terminal elements in many classifications, the ultimate
parts of a device can be the terminal elements of many hierarchies.

The hierarchy we are usually concerned with – the one we see in engineering
diagrams and in bills of material, and which permits us to build devices as
levels of subassemblies – is the structure established by their physical and
functional relationship. But we can think of many other relations between the
same parts – relations based on such attributes as weight, colour, manufacturer,
date of manufacture, life expectancy, or cost. We can classify parts on the basis
of any attribute, and each classification would constitute a different hierarchy.
Besides, only rarely do parts possess attributes in such a way that we can depict
their respective hierarchies as one within another. Only rarely, therefore, can
we combine several hierarchies into one. (Parts made on different dates, for
example, may be used in the same subassembly; and parts used in different
subassemblies may come from the same manufacturer.)

�

The promise of object-oriented programming is specifically the concept of
hierarchical classes. This concept is well-suited for representing our affairs in
software, the experts say, because the entities that make up the world are
themselves related hierarchically: “A model which is designed using an object-

630 object-oriented programming chapter 7

oriented technology is often easy to understand, as it can be directly related to
reality.”É “The object-oriented viewpoint attempts to more closely reflect the
natural structure of the problem domain rather than the implicit structure of
computer hardware.”Ê “OOP [object-oriented programming] enables pro-
grammers to write software that is organized like the problem domain under
consideration.”Ë “One of the greatest benefits of an object-oriented structure is
the direct mapping from objects in the problem domain to objects in the
program.”Ì “OOP design is less concerned with the underlying computer
model than are most other design methods, as the intent is to produce a
software system that has a natural relationship to the real world situation it is
modelling.”Í “Object orientation . . . should help to relate computer systems
more closely to the real world.”Î “The intuitive appeal of object orientation is
that it provides better concepts and tools with which to model and represent
the real world as closely as possible.”Ï “The models we build in OO [object-
oriented] analysis reflect reality more naturally than the models in traditional
systems analysis. . . . Using OO techniques, we build software that more closely
models the real world.”Ð

But, as we saw, the entities that make up the world are related through many
hierarchies, not one. How, then, can software entities related through one
classification mirror them accurately? The software mechanists want to have
both the simplicity of a hierarchical structure and the ability to mirror the
world. And in their attempt to realize this dream, they commit the fallacy
of reification: they extract one structure from the complex phenomenon,
expecting this structure alone to provide a useful approximation.

Now, it is obvious that hierarchical software classes allow us to implement
such applications as the process of assembling an appliance, or the positions
held by people in an organization, or the biological classification of animals.

É Ivar Jacobson et al., Object-Oriented Software Engineering: A Use Case Driven Approach,
rev. pr. (Reading, MA: Addison-Wesley/ACM Press, 1993), p. 42.

Ê Ed Seidewitz and Mike Stark, Reliable Object-Oriented Software: Applying Analysis and
Design (New York: SIGS Books, 1995), p. 26.

Ë Peter Coad and Jill Nicola, Object-Oriented Programming (Englewood Cliffs, NJ: PTR
Prentice Hall, 1993), p. xxxiii.

Ì Greg Voss, Object-Oriented Programming: An Introduction (Berkeley, CA: Osborne
McGraw-Hill, 1991), p. 30.

Í Mark Mullin, Object-Oriented Program Design (Reading, MA: Addison-Wesley,
1989), p. 5.

Î Daniel Tkach and Richard Puttick, Object Technology in Application Development
(Redwood City, CA: Benjamin/Cummings, 1994), p. 17.

Ï Setrag Khoshafian and Razmik Abnous, Object Orientation: Concepts, Languages,
Databases, User Interfaces (New York: John Wiley and Sons, 1990), p. 6.

Ð James Martin and James J. Odell, Object-Oriented Analysis and Design (Englewood
Cliffs, NJ: Prentice Hall, 1992), p. 67.

the contradictions 631chapter 7

But these are artificial structures, the result of a design that deliberately
restricted the relations between elements to certain attributes: we can ignore
the other structures because we ensured that the relations caused by the other
attributes are much weaker. These structures, then, do not represent the actual
phenomenon, but only one aspect of it – an aspect that can be depicted with
one hierarchy. So, like any mechanistic concept, hierarchical software classes
are useful when the problem can indeed be approximated with one structure.

The object-oriented promise, though, is that the concept of hierarchical
classes will help us to implement any application, not just those that are already
a neat hierarchy. Thus, since the parts that make up our affairs are usually
related through several hierarchies at the same time, the object-oriented
promise cannot possibly be met. Nothing stops us from restricting every
application to what can be represented with one hierarchy; namely, relations
based on one attribute, or a small number of carefully selected attributes. But
then, our software will not mirror our affairs accurately.

As we saw under structured programming, an application in which all
relations are represented with one hierarchy is useless, because it must always
do the same thing (see p. 533). Such an application can have no conditions
or iterations, for example. Whether the hierarchy is the nesting scheme
of structured programming, or the object classification of object-oriented
programming, each element must always be executed, always executed once,
and always in the same relative sequence. This, after all, is what we expect to
see in any system represented with one hierarchy; for instance, the parts
and subassemblies that make up an appliance always exist, and are always
connected in the same way.

Thus, after twenty years of structured programming delusions, the software
experts started a new revolution that suffers, ultimately, from the same fallacy:
the belief that our affairs can be represented with one hierarchical structure.

2

2
What we have discussed so far – the neatness of hierarchical classes, the
benefits of code reuse, the idea of software concepts that match our affairs – is
what we see in the promotion of object-oriented programming; that is, in
advertisements, magazine articles, and the introductory chapters of textbooks.
And this contrasts sharply with the reality of object-oriented programming:
what we find when attempting to develop actual applications is difficult, non-
intuitive concepts. Let us take a moment to analyze this contradiction.

As we saw, the theorists promote the new paradigm by claiming that it lets
us represent our affairs in software more naturally. Here are some additional

632 object-oriented programming chapter 7

examples of this claim: “The models built during object-oriented analysis
provide a more natural way to think about systems.”Ñ “Object-oriented pro-
gramming is built around classes and objects that model real-world entities in
a more natural way. . . . Object-oriented programming allows you to construct
programs the way we humans tend to think about things.”ÉÈ “The object-
oriented approach to computer systems is . . . a more natural approach for
people, since we naturally think in terms of objects and we classify them into
hierarchies and divide them into parts.”ÉÉ

The illustrations, too, are simple and intuitive. One book explains the idea
of hierarchical classes using the Ford Mustang car: there is a plain, generic
model; then, there is a base model and an improved LX model, each one
inheriting the features of the generic model but also adding its own; and there
is the GT sports model, derived from the LX but with some features replacing
or enhancing the LX features.ÉÊ Another book explains the object-oriented
concepts using the world of baseball: objects are entities like players, coaches,
balls, and stadiums; they have attributes like batting averages and salaries,
perform operations like pitching and catching, and belong to classes like teams
and bases.ÉË

The impression conveyed by the promotion of object-oriented program-
ming, thus, is that all we have to do is define our requirements in a hierarchical
fashion – an easy task in any event, since this is how we normally view the
world and conduct our affairs – and the application is almost done. The power
of this new technology is ours to enjoy simply by learning a few principles and
purchasing a few tools.

When we study the actual object-oriented systems, however, we find
an entirely different reality: huge development environments, complicated
methodologies, and an endless list of definitions, rules, and principles that we
must assimilate. Hundreds of books had to be written to help us understand
the new paradigm. In one chapter after another, strange and difficult concepts
are being introduced – concepts which have nothing to do with our program-
ming or business needs, but which must be mastered if we want to use
an object-oriented system. In other words, what we find when attempting

Ñ James Martin, Principles of Object-Oriented Analysis and Design (Englewood Cliffs, NJ:
PTR Prentice Hall, 1993), p. 3.

ÉÈ Andrew C. Staugaard Jr., Structured and Object-Oriented Techniques: An Introduction
Using C++, 2nd ed. (Upper Saddle River, NJ: Prentice Hall, 1997), p. 29.

ÉÉ John W. Satzinger and Tore U. Ørvik, The Object-Oriented Approach: Concepts,
Modeling, and System Development (Cambridge, MA: Course Technology, 1996), p. 11.

ÉÊ Khoshafian and Abnous, Object Orientation, pp. 8–10.
ÉË Donald G. Firesmith, Object-Oriented Requirements Analysis and Logical Design: A

Software Engineering Approach (New York: John Wiley and Sons, 1993), pp. 5–9.

the contradictions 633chapter 7

to practise object-oriented programming is the exact opposite of what its
promotion says.

To make matters worse, the resulting applications are large, unwieldy, and
difficult to manage. What can be programmed with just a few statements in a
traditional language ends up as an intricate system of classes, objects, defini-
tions, and relations when implemented in an object-oriented environment.

The theorists agree. After telling us that object-oriented programming is a
natural, intuitive concept, they tell us that it is in fact difficult, and that it
requires much time and effort to learn: “Many experienced and intelligent
information systems developers have difficulty understanding and accepting
this new point of view.”ÉÌ “Those who have programmed before may well find
OOP [object-oriented programming] strange at first. It may take a while
to forget the ways you have learned, and to [master] another method of
programming.”ÉÍ “To use OO [object-oriented] technology well, much careful
training is needed. It takes time for computer professionals to think in terms
of encapsulation, inheritance, and the diagrams of OO analysis and design. . . .
Good use of inheritance and reusable classes requires cultural and organiza-
tional changes.”ÉÎ

Claiming at the same time that the object-oriented principles are simple and
that they are difficult is not as absurd as it sounds; for, in reality, the theorists
are describing two different things. When praising the simplicity of these
principles, they are referring to the original idea – the fantasy of combining
and extending hierarchically classes of objects. And indeed, implementing
applications as strict hierarchies of objects is easy and intuitive. Very few
applications, however, can be implemented in this fashion, because very few
aspects of the world are mechanistic. So, since most applications must be
implemented as systems of hierarchies, the original idea was worthless. To
make object-oriented programming practical, the means to create multiple,
interacting hierarchies had to be restored. But this capability – a natural part of
the traditional programming concepts – can only be added to an object-
oriented system through contrived, awkward extensions. And it is these
extensions, as opposed to the simple original idea, that the theorists have
in mind when warning us that the object-oriented principles are hard to
understand.

The difficulties caused by the object-oriented systems are due, thus, to the
reversal of a fundamental programming principle: instead of creating high-
level software elements by starting with low-level ones, we are asked to start

ÉÌ Satzinger and Ørvik, Object-Oriented Approach, p. 3.
ÉÍ David N. Smith, Concepts of Object-Oriented Programming (New York: McGraw-Hill,

1991), pp. 11–12. ÉÎ Martin, Object-Oriented Analysis, p. 45.

634 object-oriented programming chapter 7

with high-level elements (classes of objects) and to add, where required, lower-
level ones. But this is rarely practical. Only by starting with low-level elements
can we create all the elements we need at the higher levels. Starting with
low-level elements is, therefore, the only way to implement the interacting
structures that make up a serious application. The object-oriented theory
claimed that we can start with classes of objects because it assumed that we
can restrict ourselves to isolated, non-interacting structures; but then, it
was extended to permit us to link these structures. So now we must create
the interactions by starting with high-level elements, which is much more
complicated than the traditional way – starting with low-level ones.

3

3
If a theory expects us to represent our affairs with one hierarchy, while our
affairs can only be represented with a system of interacting hierarchies, we
must either admit that the theory is invalid, or modify it. The original object-
oriented theory was falsified again and again, every time a programmer failed
to represent with a strict hierarchical classification a real-world situation. The
experts responded to these falsifications, however, not by doubting the theory,
but by expanding it: they added more and more “features” to make it cope with
those situations that would have otherwise refuted it. The theory became, thus,
unfalsifiable. As is usually the case with a pseudoscientific theory, the experts
saved it from refutation by turning its falsifications into new features. And it is
these features, rather than the original concepts, that constitute the actual
theory – what is being practised under the object-oriented paradigm.

The new features take various forms, but their ultimate purpose is the same:
to help us override the restrictions imposed by the original theory. The actual
theory, thus, is the set of features that allow us to create interacting hierarchies.
It is these features, the experts explain, that make the object-oriented paradigm
such a powerful concept. In other words, the power of the theory derives from
those features introduced in order to bypass the theory. We will examine some
of these features shortly.

Structured programming, we recall, became practical only after restoring
the means to create multiple, interacting flow-control structures – precisely
what the original theory had condemned and claimed to be unnecessary. So,
in the end, what was called structured programming was the exact opposite of
the original theory. Similarly, the object-oriented concepts became practical
only after restoring the means to create multiple, interacting class hierarchies.
So what is called now object-oriented programming is the exact opposite of the
original idea. To this day, the object-oriented concepts are being promoted by

the contradictions 635chapter 7

praising the benefits of strict hierarchical relations, and by demonstrating
these benefits with trivial examples. At the same time, the actual object-
oriented systems are specifically designed to help us override this restriction.
But if the benefits are attainable only with a single hierarchy, just as the original
theory said, the conclusion must be that the actual object-oriented systems
offer no benefits.

So the object-oriented paradigm is no better than the other mechanistic
software theories: it gives us nothing that we did not have before, with the
traditional programming concepts and with any programming language. Each
time, the elites promise us a dramatic increase in programming productivity
by invoking the hierarchical model. Ultimately, these theories are nothing but
various attempts to reduce the complex reality to a simple structure: an isolated
flow-control structure, an isolated class structure, and so on. And when this
naive idea proves to be worthless, the elites proceed to “enhance” the theories
so as to allow us to create complex structures again: they restore both the lower
levels and the means to link structures, which is the only way to represent our
affairs in software.

But by the time a mechanistic theory is “enhanced” to permit multiple,
interacting structures, the promised benefits – formal methods for reusing
existing software, for building applications as we build appliances, for proving
their validity mathematically – are lost. Now it is again our minds that we need,
our personal skills and experience, because only minds can process complex
structures. So we are back where we were before the theory. The theory, and
also the methodologies, programming tools, and development environments
based on it, are now senseless. They are even detrimental, because they force
us to express our requirements in more complicated ways. We are told that the
complications are worthwhile, that this is the only way to attain those benefits.
But if the benefits were already lost, all we have now is a theory that makes
programming more difficult than it was before.

Thus, by refusing to admit that their theory has failed, by repeatedly
expanding it and asking us to depend on it, the elites are committing a fraud:
they are covering up the fact that they have nothing to offer us; they keep
promising us an increase in programming productivity, when in reality they
are preventing us from practising this profession and improving our skills.

�

As we did for structured programming, we will study the object-oriented
fantasy by separating it into several delusions: the belief that we can represent
our affairs with a neat, hierarchical classification of software entities; the
belief that, instead of one classification, we can represent the same affairs by

636 object-oriented programming chapter 7

combining many small, independent classifications; the belief that we can use
the object-oriented concepts through traditional programming languages; the
belief that we can modify the concepts of abstraction and inheritance in any
way we like and still retain their benefits; and the belief that we no longer need
to concern ourselves with the application’s flow of execution.

Although the five delusions occurred at about the same time, they can be
seen, like the delusions of structured programming, as stages in a process of
degradation: repeated attempts to rescue the theory from refutation. Each stage
was an opportunity for the software experts to recognize the fallaciousness of
their theory; instead, at each stage they chose to expand it, by incorporating the
falsifications and describing them as new features. The stages, thus, mark the
evolution of the theory into a pseudoscience (see “Popper’s Principles of
Demarcation” in chapter 3).

Also as was the case with structured programming, when the object-
oriented concepts were being promoted as a revolution and a new paradigm,
all five delusions had already occurred. Thus, there never existed a serious,
practical theory of object-oriented programming. What the experts were
promoting was something entirely different: complicated development envi-
ronments that helped us to create precisely what that theory had claimed to be
unnecessary – multiple, interacting software hierarchies.

The First Delusion

The First Delusion

The first object-oriented delusion is the belief that we can represent the world
with a simple structure of software entities. In fact, only isolated aspects of the
world can be represented with simple structures. To represent the world
accurately we need a system of structures. We need, in other words, a complex
structure: a set of software entities that belong to several hierarchies at the
same time.

The first delusion is akin to the seventeenth-century belief that it is possible
to represent all knowledge with one hierarchical structure (see pp. 311–315).
What we need to do, said the rationalist philosophers, is depict knowledge in
the form of concepts within concepts. The simplest concepts will function as
terminal elements (the building blocks of the knowledge structure), while the
most complex concepts will form the high levels. Everything that can be known
will be represented, thus, in a kind of classification: a giant hierarchy of
concepts, neatly related through their characteristics.

It is the principle of abstraction that makes a hierarchical classification
possible: at each level, a concept retains only those characteristics common to

the first delusion 637chapter 7

all the concepts that make up the next lower level. This relationship is clearly
seen in a tree diagram: the branches that connect several elements to form a
higher-level element signify the operation that extracts the characteristics
shared by those elements; then another operation relates the new element
to others from the same level, forming an element of the next higher level,
and so on.

Similarly, we believe that it is possible (in principle, at least) to design a
giant hierarchy of all software entities. This hierarchy would be, in effect, a
classification of those parts of human knowledge that we want to represent in
software – a subset, as it were, of the hierarchy envisaged by the seventeenth-
century philosophers. This idea, whether or not explicitly stated, forms
the foundation of the object-oriented paradigm. For, only if we succeed
in relating all software entities through one hierarchical structure can the
benefits promised by this paradigm emerge. The benefits, we recall, include the
possibility of formal, mechanistic methods for reusing and extending software
entities.

No hierarchy has ever been found that represents all knowledge. This is
because the concepts that make up knowledge are related, not through one, but
through many hierarchies. Similarly, no hierarchy can represent all software,
because the software entities that make up our applications are related through
many hierarchies. So these theories fail, not because we cannot find a hierarchy,
but because we can find many, and it is only this system of hierarchies, with
their interactions, that can represent the world.

The mechanists are encouraged by the ease with which they discover one or
another of these hierarchies, and are convinced that, with some enhancements,
that hierarchy will eventually mirror the world. Any one hierarchy, however,
can only relate concepts or software entities in one particular manner – based
on one attribute, or perhaps on a small set of attributes. So one hierarchy, no
matter how large or involved, can only represent one aspect of the world.

The theory of object-oriented programming was refuted, thus, even before
it was developed. The theorists, however, misinterpreted the difficulty of
relating all existing software entities through one giant hierarchy as a problem
of management: it is impossible for one organization to create the whole
hierarchy, and it is impractical to coordinate the work of thousands of individ-
uals from different organizations. We must simplify the task, therefore, by
dividing that hypothetical software hierarchy into many small ones. And this
is quite easy to do, since any hierarchical structure can be broken down into
smaller structures. For example, if we sever all the branches that connect a
particular element to the elements at the lower level, that element will become
a terminal element in the current structure, and each lower-level element will
become the top element of a new, separate structure.

638 object-oriented programming chapter 7

Thus, concluded the theorists, even if every one of us creates our own,
smaller structures, rather than all of us adding elements to one giant structure,
the totality of software entities will continue to form one giant structure. So the
promise of object-oriented programming remains valid.

To save their theory, the advocates of object-oriented programming rejected
the evidence that the idea of a giant software hierarchy is a delusion, and in so
doing they succumbed to a second delusion.

The Second Delusion

The Second Delusion

If the first delusion is that it is possible to classify all existing software in one
hierarchy, the second delusion – which emerged when this idea failed – is that
it is not necessary, after all, to restrict ourselves to one classification: we can
also create applications formally, as strict hierarchies of software entities, by
combining many small, independent, specialized classifications. But this idea
is even sillier than the first one. For, could we combine these structures, we
would not have had to separate them in the first place. Let us analyze this
problem.

The object-oriented theory assumes that each application is a hierarchy of
software entities, and that this hierarchy is part of the larger hierarchy that is
the classification of all existing software entities. In reality, just like the totality
of existing software, each application is a system of interacting hierarchies. An
application is indeed part of all existing software, but in an indeterministic way;
namely, in the way a complex structure is part of a larger complex one, not
in the way a simple structure is part of a larger simple one. There are no
mechanistic means – no precise, completely specifiable methods – to derive an
application from the system of entities that is the classification of all software.
And this is why the idea of a formal classification of software entities, and a
formal method of software reuse, is fundamentally mistaken.

The second delusion can also be described as the belief that there is a way
around the problems created by the first delusion. But it is no easier to create
an application by combining several smaller hierarchies, than it is to create one
by extracting portions of a larger hierarchy. The difficulty that prevents us from
building one hierarchical classification of all software – the need to relate
software entities through many hierarchies, not one – is also the difficulty that
prevents us from building individual applications as single hierarchies.

Let us see how this problem manifests itself in practice. Let us assume
that we already have a large number of separate classifications, each one
representing an isolated aspect of software applications: display functions,

the second delusion 639chapter 7

database functions, one type or another of accounting functions, one style or
another of reporting, and the like. But it is impossible to create applications
simply by combining these hierarchies; that is, by building a large hierarchy
that incorporates somehow the individual ones. For, the only way to combine
hierarchies in an object-oriented environment is mechanistically, as one within
another. This is true because the only way for an element to possess attributes
from both element A of one hierarchy and element B of another hierarchy is
through inheritance: we make A a lower-level element in the latter hierarchy,
thereby allowing it to inherit attributes from B.

A particular application may require, for example, display, database, and
accounting operations. But even if the three separate hierarchies embodying
these operations are complete and correct, even if they include all the details
that we are likely to need, they are useless for generating serious accounting
applications. The reason is that, in an application, the display operations are
not always performed within the database or accounting operations; nor
are the accounting operations performed within the display or database
operations, or the database operations within the display or accounting opera-
tions. What we need is software entities that can invoke the three types of
operations freely; and we cannot create such entities if restricted to hierarchical
combinations. To put this differently, the hierarchical combinations represent
only a fraction of all possible relations between the elements of the three
structures. Missing are those combinations we would see in a system of
interacting structures – the kind of system that is impossible to create through
object-oriented programming.

We must also bear in mind that it is more than three hierarchies that we
have to combine when creating an application. We may be able to represent
with one hierarchy such functions as display or database, which are artificial
and restricted by our mechanistic computing means in any case. But it is
impossible to represent with one hierarchy all our accounting processes, for
instance. These processes reflect business, social, and personal affairs, which
can only be represented as interacting structures of entities. To create a serious
accounting application, therefore, we must combine hundreds of different
hierarchies, not three; and few of these combinations can be depicted as one
hierarchy within another.

Another thing to bear in mind is that it doesn’t matter whether we start
with hierarchies that embody separately the three types of operations –
display, database, and accounting – or with hierarchies that are already a
combination of these operations. The best approach may well be to have whole
accounting hierarchies, each one embodying a certain aspect of accounting.
Each hierarchy would include, therefore, not just accounting operations, but
also the associated display and database operations. Even then, however, to

640 object-oriented programming chapter 7

create an application we would have to combine these hierarchies by non-
mechanistic means, because the various aspects of accounting do not exist as
one within another.

The Third Delusion

The Third Delusion

We saw that the idea of combining several class hierarchies into one is a fallacy.
Only very simple applications can be created in this fashion: those for which
we can restrict ourselves to hierarchical combinations of elements. This idea,
we recall, was thought to be a solution to the failure of the original object-
oriented idea – which idea was to represent with one hierarchy all software, not
just individual applications. (And the original idea is, in fact, the only way to
derive the benefits promised by the object-oriented paradigm.)

Thus, to deal with the problems created by the first delusion, the theorists
felt justified to modify the object-oriented concept; but the new idea is as
fallacious as the first, so it became the second delusion. Just as they failed to
recognize the first delusion as a falsification of the object-oriented concept,
they failed to recognize the second one as a new falsification. And, just
as they modified the theory in response to the first delusion, they now
introduced additional modifications, to deal with the problems created by
the second one.

Because it is impossible to relate software entities freely through one
hierarchy, the theorists had to provide the means to build systems of interacting
hierarchies. All the modifications, then, have one purpose: to enable us to
relate software entities through several hierarchies at the same time; in other
words, to bypass the restriction to one hierarchy. Faithful to the pseudoscien-
tific tradition, these modifications – which are, in fact, blatant violations of the
object-oriented principles – are described as new features, or enhancements.
Here we will discuss only the simplest enhancement, the use of traditional
programming languages; then, under the fourth and fifth delusions, we will
study the others.

The traditional languages do provide, of course, the means to relate software
entities freely. Here is how: Each element in the application is affected by
various processes (calling certain subroutines, using certain memory variables
and database fields, being part of certain practices). Each element is related,
therefore, to the other elements affected by the same processes. And we
can design these relations – which become ultimately a system of interacting
structures – in any way we like. (Software processes were introduced in
chapter 4; see pp. 345–346.)

the third delusion 641chapter 7

So the simplest way to combine hierarchies is by creating modules, blocks
of statements, conditional constructs, and the like, by means of a traditional
language, and then picking whatever classes we need from the various hierar-
chies. We use the class hierarchies, thus, not as originally intended – as a formal
representation of the whole application – but in the manner of subroutine
libraries. In this way, any element in the application can inherit attributes from
several hierarchies, simply by invoking several classes. So, by using classes as
we use subroutines, any element can possess any combination of attributes we
need: we are no longer restricted to combining attributes hierarchically, one
within another, as stipulated by the object-oriented principle of inheritance.

Recall the earlier problem: combining classes from three hierarchies –
display, database, and accounting operations – but not as one within another.
While impossible under the object-oriented paradigm, this requirement is
easily implemented once we extend the use of classes so as to invoke them
freely: directly rather than hierarchically, wherever needed, just as we invoke
subroutines.

The first modification, then, was to turn the object-oriented concept
from a formal, autonomous programming method, supported by special
programming languages, into a mere extension to the traditional methods and
languages. And this was accomplished by adding object-oriented capabilities
to some of the popular languages (C and COBOL, for instance). The enhanced
variants are known as hybrid languages. (The reverse is also true: special
languages like Simula and Smalltalk, originally intended as pure object-
oriented environments, were later enhanced with traditional capabilities.)

Thus, there are no strict object-oriented languages in existence, simply
because one adhering to the object-oriented principles would be totally
impractical. The theorists invented a new term to describe what is in reality not
a new feature, but the reinstatement of old, well-established concepts: “hybrid”
sounds as if these languages added a new quality to the object-oriented
principles, when in fact they are a reversal of these principles. No one wondered
why, if object-oriented programming is the revolutionary concept the experts
say it is, we still need to rely on the old languages. The experts praise the power
of the object-oriented paradigm, even as everyone can see that this paradigm
is useless, and that its power derives from the freedom we regain when
reverting to the traditional concepts.

In the end, no application was ever based on the true object-oriented
principles. Programmers believe that they are practising object-oriented pro-
gramming, when what they are practising in reality is traditional programming
– supplemented here and there, when not too inconvenient, with some object-
oriented concepts.

642 object-oriented programming chapter 7

The Fourth Delusion

The Fourth Delusion
1 1
The most important “features” and “improvements” added to the object-
oriented theory are those that alter the very nature of a hierarchical structure.
We saw that the theory had to be modified in order to give us the means to
combine class hierarchies, and that using class hierarchies from within a
traditional language is the simplest way to accomplish this. But if we had to rely
on this method alone to combine hierarchies, we would find little use for the
actual object-oriented features. All we would have then is some class libraries
that, apart from providing perhaps better hierarchical links, are identical to the
traditional subroutine libraries.

In order to permit us to relate class hierarchies freely within the object-
oriented paradigm, the very notion of a class hierarchy had to be modified. In
the end, the theory of object-oriented programming was rescued by annulling
its most celebrated principle – the restriction to classes related hierarchically
through inherited attributes.

Inheritance, we recall, is that property of hierarchical structures whereby an
element derives some of its attributes from the higher levels. Thus, in the case
of software class hierarchies, each element, in addition to possessing its own
attributes, inherits the attributes of the higher-level class – the class to which it
is directly subordinate. And, since the latter inherits the attributes of the class
to which it is subordinate, and so on, each element will possess the attributes
of all the classes above it.

This property is not new to the object-oriented theory, but common to all
hierarchical systems. This is so obvious, in fact, that inheritance is rarely
mentioned as a hierarchical feature. It is the property of abstraction that is
usually described as the distinguishing quality of hierarchical structures.
Abstraction means that, as we move from low to high levels, an element at a
given level retains only those attributes that are common to all the elements of
the next lower level. Inheritance, therefore, is not a separate quality, but merely
the process of abstraction observed in reverse. We can reverse the last sentence,
for instance, and say that all the elements at a given level inherit the attributes
possessed by the element of the next higher level. Both statements describe the
same relationship.

The object-oriented theory, though, presents the property of inheritance as
an important and powerful feature. We are left with the impression that this
feature is somehow additional to the hierarchical relations between software
classes. And, once inheritance is perceived as a separate feature, it is only
natural to try to enhance it. But this idea is absurd. The property of inheritance

the fourth delusion 643chapter 7

cannot be enhanced; like abstraction, it is implicit in the notion of a hierarchy,
a reflection of the relations between the structure’s elements. One cannot have
a hierarchy where the concept of inheritance is different in any way from its
original meaning.

�

The first modification was to allow a class to change, and even to omit, an
inherited attribute. The capability to add its own, unique attributes remains,
but the class no longer needs to possess all the attributes possessed by the class
of the next higher level. In other words, the attributes of a class, and hence its
relations with the other classes, are no longer determined by its position in the
class hierarchy. If what we need is indeed a hierarchical relationship with the
higher-level classes, we let it inherit all their attributes, as before; but if what we
need is a different relationship, we can change or omit some of these attributes.

The attributes of a class are its data types and operations. So what this
modification means is that each class in the application can now have any data
types and operations we like, not necessarily those inherited from the classes
above it.

Attributes, as we know, relate entities by grouping them into hierarchical
structures (see “Software Structures” in chapter 4). In a software application,
each attribute generates a different structure by relating in a particular way the
entities that make up the application. Clearly, then, what has been achieved
with the new feature is to eliminate the restriction to one hierarchy. Since
classes can now possess any attributes, they can be related in any way we want,
so they can form many structures at the same time. The structure we started
with – the class hierarchy – is no longer the only structure in the application.
When we study this structure alone, the application’s classes still appear to be
related through a neat hierarchy. But if the relations that define the class
hierarchy are now optional, if each class can also be related to the others
through different attributes, the application is no longer a simple structure; it
is a complex structure, and the class hierarchy is just one of the structures that
make it up.

�

We can also appreciate the significance of the new feature by imagining that we
had to implement the additional relations without the ability to change and
omit attributes. Thus, for each inherited attribute that we were going to change
or omit in a particular class, we would have to go up in the hierarchy, to the
level just above the class where that attribute is defined. We would create there

644 object-oriented programming chapter 7

a new class, at the same level as the first one, and identical to it in all respects
except for that attribute; in its stead, we would define the changed attribute (or
we would omit the attribute). We would then duplicate, below the new class,
the entire section of the hierarchy that lies below the first class. All the lower-
level classes here would be identical to those in the original section, but they
would inherit the new attribute instead of the original one (or no attribute, if
omitted). The application would now be a larger hierarchy, consisting of both
the original and the new sections. And in the new section, the counterpart of
our original, low-level class would indeed possess the changed attribute (or no
attribute), just as we wanted.

With this method, then, we can create classes with changed or omitted
attributes but without the benefit of the new feature; that is, without modifying
the concept of inheritance. We would have to repeat this procedure, however,
for each attribute that must be changed or omitted. So the hierarchy would
grow exponentially, because for most attributes we would have to duplicate a
section of the hierarchy that is already the result of previous duplications.

It is not the impracticality of this method that concerns us here, though, but
the repetition of attributes. Every time we duplicate a section, along with
the classes defined in that section we must also duplicate their attributes.
Moreover, some of the duplicated attributes will be duplicated again for the
next attribute (when we duplicate a section of the new, larger hierarchy), and
so on. And we already know that if we repeat attributes, we are creating an
incorrect hierarchy: this repetition gives rise to relations that are additional
to the strict hierarchical relations, and indicates that we are attempting to
represent with one hierarchy a complex structure (see pp. 98–102, 358–360).

What we were trying to accomplish in this imaginary project was to
implement through the original inheritance concept the kind of relations that
we can so easily implement through the modified concept, by changing or
omitting inherited attributes. Thus, if one method gives rise to a complex
structure, the conclusion must be that the other method does too. The non-
hierarchical relations may not be obvious when implemented by modifying the
concept of inheritance, but we are only deluding ourselves if we believe that the
class hierarchy is still the only structure. After all, the very reason for changing
and omitting attributes is that we cannot create applications while restricted to
one structure. The purpose of the new feature, thus, is to allow us to create
multiple, interacting structures.

�

But even allowing us to change and omit inherited attributes did not make
object-oriented programming a practical idea. A second feature had to be

the fourth delusion 645chapter 7

introduced – a second modification to the concept of inheritance. Through this
feature, a class can inherit attributes, not just from the higher levels of its
own hierarchy, but also from other hierarchies. Called multiple inheritance,
this feature is seen as an especially powerful enhancement. There are no
limitations, of course; a class is not restricted to inheriting only certain
attributes from certain hierarchies, or required to inherit all the attributes
above a certain level. We can now simply add, to any class we want, whichever
attributes we need, from any class, from any hierarchy. And this feature can be
combined with the first one; that is, after picking the attributes we need, we can
change them in any way we like.

Recall the problem we discussed under the second delusion – the need to
combine attributes from several hierarchies (database, display, and accounting,
for instance). Multiple inheritance is the answer, as we can now select attributes
from these hierarchies freely, and thereby create classes with any combination
of data types and operations. Without this feature, we saw, the only way to
combine attributes is by combining classes: we must employ a traditional
language and invoke – in the same module, in the manner of subroutines –
classes from several hierarchies.

�

In conclusion, modifying the concept of inheritance has downgraded it: from
a formal property of hierarchical structures, to the informal act of copying an
attribute from one class to another. And as a result, the relationship between
the application’s classes has been relaxed: from a strict hierarchy, to multiple
and unrestricted connections. If the attributes of a class can be unique, or can
be taken from the higher levels, or can be taken from higher levels but changed,
or can even be taken from other hierarchies, then what we have is simply
classes that can possess any attributes. The attributes of a class are no longer
determined by its position in the hierarchy, or by the attributes of the other
classes.

The theorists continue to use terms like “hierarchy” and “inheritance,”
but if a class can possess any attributes we like, these terms have lost their
original meaning. What they describe now is not a formal class hierarchy, but
software entities that possess whatever attributes we need, and are therefore
related in whatever ways we need, to implement a particular application.
What the modifications have accomplished, in other words, is to restore the
programming freedom we had before object-oriented programming – the
freedom that the new paradigm had attempted to eliminate in its quest for
formality and precision.

646 object-oriented programming chapter 7

2

2
We recognize in the modified concept of inheritance the pseudoscientific
stratagem of turning falsifications into features: the theory is saved from
refutation by expanding it – by incorporating, in the guise of new features,
capabilities that were explicitly excluded originally. The original claim was that
applications can be developed as strict hierarchies of software classes: either
classes that already exist, or classes that can be generated hierarchically from
existing ones. The only relations between the classes used in an application,
then, would be those established by a hierarchical structure. This restriction is
essential if we want to classify and extend software through exact principles,
and, ultimately, turn software development into a formal and predictable
activity.

The promise, thus, was to turn software development into an activity
resembling the design and manufacture of appliances. But this promise
can only be fulfilled if software applications, as well as their design and
implementation, are restricted to entities and processes that can be represented
with isolated hierarchical structures – as are indeed our appliances, and their
design and manufacture.

Software applications, though, cannot be developed in this fashion, so
the object-oriented theory was refuted. But instead of admitting that it has
no practical value, its supporters modified it: they added, in the guise of
enhancements, the means to create multiple structures – the very feature that
the original theory had prohibited. The need to relate software entities through
more than one hierarchy is a falsification of the object-oriented theory; but the
modifications are presented as new and powerful features of the theory. These
“features” make the theory practical, but they achieve this by contradicting its
original principles. It is absurd, therefore, to say that these features enhance the
theory, when their very purpose is to bypass the restrictions imposed by the
theory.

�

The fourth delusion, thus, is the belief that what we are practising now, after
these modifications, is still object-oriented programming; in other words,
the belief that the “power” we gained from the new features is due to the
object-oriented principles. In reality, the power derives from abolishing these
principles, from lifting their restrictions and permitting us to create complex
software structures again.

the fourth delusion 647chapter 7

While regaining this freedom, however, we lose the promised benefits. For,
those benefits can only emerge if we restrict ourselves to one hierarchy, or
perhaps multiple but independent hierarchies – as we do in manufacturing and
construction. The theorists praise the benefits of the hierarchical concept,
and claim that the object-oriented paradigm is turning programming into a
mechanistic activity, but at the same time they give us the means to bypass the
mechanistic restrictions. They believe that we can enjoy the promised benefits
– formal, exact programming methods – without the rigours demanded by the
original theory.

So what we are doing after the fourth delusion is merely a more complicated
version of what we were doing before the object-oriented paradigm. As was the
case with structured programming earlier, what started as an ambitious,
formal theory ended up as little more than a collection of programming tips.
We are again creating complex software structures, and what is left of the
object-oriented principles is just the exhortation to restrict software classes to
hierarchical relations, and to avoid other links between them, “as much as
possible.”

It is indeed a good idea to relate software entities hierarchically. But because
our applications consist of multiple, interacting hierarchies, this idea cannot
be more than an informal guideline; and, in any case, we can also create
hierarchical relations with traditional programming means.

In the end, since the idea of independent software structures is a fantasy, the
object-oriented theory makes programming more complicated and more
difficult, while offering us nothing that we did not already have. We are not
developing applications through exact, formal methods – the way the experts
had promised us. We are creating systems of interacting structures, just as
before; so we depend on the non-mechanistic capabilities of our mind, on
personal skills and experience, just as before. But by using terms like “objects,”
“classes,” and “inheritance,” we can delude ourselves that we are programming
under a new paradigm.

The Fifth Delusion

The Fifth Delusion
1 1
The most fantastic object-oriented delusion is undoubtedly the fifth one. The
fifth delusion is the belief that we no longer need to concern ourselves
with the application’s flow of execution: the important relations between
the application’s objects are those of the class hierarchy, so the relations
determining the sequence of their execution can be disregarded.

648 object-oriented programming chapter 7

The application’s flow of execution, we recall, was the chief preoccupation
of structured programming. The fallacy there was the belief that it is possible
to represent applications with one flow-control structure. The flow-control
structure, according to that theory, is the application’s nesting scheme: the
hierarchical arrangement of modules that makes up the application, plus
the hierarchical arrangement of flow-control constructs that makes up each
module. And the nesting scheme is depicted by the application’s flow diagram.
The theorists failed to see that the flow diagram depicts only one of the
nesting schemes; that the dynamic structures created by conditional and
iterative constructs at run time consist in fact of multiple, overlapping nesting
schemes, so the application’s flow-control structure is the complex structure
that comprises all these nesting schemes; and that, moreover, the application’s
elements are connected through many other types of structures – the structures
formed by the multitude of software processes that make up the application.
(Software processes were introduced in chapter 4; see pp. 345–346. The
dynamic structures were discussed under structured programming’s second
delusion; see pp. 542–546.)

The structured programming theory, thus, while mistaken, at least recog-
nized the importance of the flow of execution. The object-oriented theory,
on the other hand, ignores it completely. There are no flow diagrams in
object-oriented programming. We don’t find a single word about conditional
and iterative constructs, or about constructs with one entry and exit, or
about a restriction to standard constructs. All the problems that structured
programming attempted to solve are now neglected. And if an expert mentions
them at all, it is only in order to criticize them: It was wrong to represent
applications with flow diagrams and flow-control constructs, because these are
artificial concepts, designed to match the way computers work. These concepts
force us to view our affairs unnaturally, and hence develop software that is very
different, logically, from the way we deal with the actual issues. By replacing
the structured programming principles with the concept of class hierarchies,
the object-oriented paradigm helps us to build software structures that closely
match the real world. Unlike the relations between modules and between flow-
control constructs, the relations between software classes are very similar to
the way we normally view our affairs.

To verify this claim, let us first recall what are the objects of an application.
Each object is an instance of one of the classes defined in the class hierarchy;
so the static relationship between objects reflects indeed the hierarchical
relationship that links the classes. The sequence in which objects are executed,
however, is determined, not by the class hierarchy, but by the messages they
send and receive at run time. An object is executed only when receiving a
message from another object in the application. The various operations that an

the fifth delusion 649chapter 7

object is designed to perform are called methods, and the particular method
selected by the receiving object depends on the parameters accompanying the
message. While performing its operations, an object may send messages to
other objects, asking those objects to perform some of their operations, and so
on. Following each message, execution returns to the object and operation that
sent the message. Thus, messages, as well as the operations performed in
response to messages, are nested hierarchically. And it is this hierarchy of
messages and operations – which is different from the class hierarchy – that
constitutes the application’s flow of execution.

So, from the start, we note the same fallacy as in structured programming:
the belief that the dynamic structure that represents the application’s run-
time performance can mirror the static structure of software entities that
makes up the application (see pp. 532–533). The static structure – what was
the hierarchical flow diagram of modules and constructs in structured pro-
gramming – is now the hierarchy of classes; and the theorists believe that the
neat relations they see in this structure are the only important links between
objects. In structured programming, they failed to see the other types of
structures – those formed by business or software practices, by shared data,
and by shared operations; and they also failed to see the multiple dynamic
flow-control structures. In object-oriented programming, the theorists again
fail to see the many types of structures – they believe that each application, and
even the totality of existing software, can be represented with one class
hierarchy; and they fail to see the flow-control structures altogether, static or
dynamic.

It is true that the theorists eventually removed the restriction to one
hierarchy. They allowed interacting hierarchies, and they modified the concept
of inheritance to create even more interactions. But these ideas contradict the
object-oriented principles, negating therefore their benefits. To study the fifth
delusion, then, we must separate it from the previous ones: we must assume,
with the theorists, that even after modifying the object-oriented principles,
even after expanding them to allow complex structures, we can still enjoy the
promised benefits. In other words, we must forget that the object-oriented
theory has already been refuted. What I want to show here is that the fifth
delusion – the failure to deal with the application’s flow of execution, and,
moreover, the failure to note that it is the same as the flow of execution
generated with any other programming method, including structured pro-
gramming – would alone render the object-oriented theory worthless, even if
the previous delusions had not already done this.

650 object-oriented programming chapter 7

2

2
It is difficult to understand why the theorists ignore the application’s flow of
execution. For, even a simple analysis reveals that there are just as many devia-
tions from a sequential flow as there were under structured programming. If,
for example, we represented with a flow diagram all the conditions, iterations,
and object invocations, we would end up with a diagram that looks just like
the flow diagrams of structured programming. The theorists discuss the
operations performed within each object, and the transfer of control between
objects, but they don’t see all this as a flow of execution.É

Clearly, to perform a particular task the application’s elements must be
executed by the computer in a specific sequence, no matter what method we
use to develop that application. And, since the computer itself cannot be
expected to know this sequence, we must design it. Now, it ought to be obvious
that the relative sequence in which the objects are to be executed cannot be
determined solely by the hierarchical relations between classes. This is true
because class hierarchies are meant to be used in different applications, so the
same objects may have to be executed in a different sequence on different
occasions.Ê Thus, if the flow of execution is a critical part of the application’s
logic but is not determined by the class hierarchy, how are we designing it
under the object-oriented paradigm?

There are two parts to the object-oriented flow of execution: between
objects, and within objects. And, despite the new terminology, both parts are
practically identical to the flow of execution familiar from earlier forms of
programming – namely, between modules and within modules.

Between objects, the transfer of control is implemented by way of messages.
And, clearly, sending a message from one object to another is logically and

É A half-hearted attempt to deal with the flow of execution is found in the so-called state
transition diagrams, used by a few theorists to represent the effect of messages on individual
objects. But, like the flow diagrams of structured programming, these diagrams can only
depict the static aspects of the flow of execution. The dynamic aspects (the combined effect
of messages in the running application) constitute a complex phenomenon, so they cannot
be reduced to an exact, mechanistic representation.

Ê In fact, even if each application had its own class hierarchy, we would need more
than a simple hierarchical structure to represent its flow of execution. As we saw under
structured programming, if the sequence in which the application’s elements are executed
was determined solely by their relative position in the hierarchical nesting scheme, the
application would be useless, because it would always do the same thing (see p. 533).
Similarly now, the sequence in which the objects are executed must be determined by factors
other than their relative position in the hierarchical class structure.

the fifth delusion 651chapter 7

functionally identical to invoking a module or subroutine in traditional
programming. Within objects, we can distinguish between the jump performed
in order to select the so-called method (the object’s response to a particular
message) and the jumps performed by the operations that make up the
method. Selecting a method is in effect a conditional flow-control construct
(where the condition involves the values received as parameters with the
message). Thus, while object-oriented languages may well offer a specialized
construct, we could just as easily implement this selection with traditional
constructs like IF or CASE. As for the operations that make up the methods, they
are, of course, ordinary pieces of software: statements, blocks of statements,
conditions, and iterations. These operations, therefore, are as rich in flow-
control constructs as are the operations found in traditional languages.

But it is important to note that the messages themselves are, in effect,
operations within methods. This is true because a message may be sent
from within a conditional or iterative construct that is part of a method.
Consequently, the execution of objects in a running application is not one
nesting scheme but a system of nesting schemes. Just like the modules invoked
in structured programming, the nested invocations of objects would form a
simple hierarchical structure only if the methods included sequential con-
structs alone. Just as in structured programming, the purpose of conditional
and iterative constructs is to create multiple dynamic nesting schemes (see
pp. 541–544).

The role of the flow-control constructs, thus, is to create complex flow-
control structures not just within methods, but also between objects. So, when
disregarding the effect of the flow-control constructs on the operations within
methods, the theorists also disregard their effect on the flow of execution
between objects. In the end, not only are the application’s objects subject to a
flow of execution, but this execution forms a complex structure, just like the
execution of modules in structured programming.

To conclude, the flow of execution in an application created through object-
oriented programming is identical, for all practical purposes, to the one
implemented through structured programming. And the latter, we recall, after
annulling the restriction to standard flow-control constructs, was identical to
the flow of execution implemented through any other programming method.Ë

Ë The object-oriented flow of execution is, in fact, even more complex than the one in
structured programming (because a message may be sent to several objects simultaneously,
an object may continue execution while waiting for the reply to a message, etc.). So the
number of flow-control structures that we must deal with in our mind is even greater.
Moreover, we must remember that the so-called hybrid languages (employed, actually, in all
object-oriented systems) provide also the traditional concept of modules and subroutines,
thereby adding to the number of flow-control structures.

652 object-oriented programming chapter 7

�

Both structured programming and object-oriented programming promised to
revolutionize software development by restricting applications to a simple
hierarchical structure. And when this idea turned out to be a fantasy, both
theories were expanded so as to provide the means to create complex software
structures again; in particular, complex flow-control structures. Thus, like all
pseudoscientific theories, they ended up restoring the very features they had
excluded in the beginning, and on the exclusion of which they had based their
claims. So what we have in the end, after all the “enhancements,” is some
complicated programming concepts that offer us exactly what we had, in a
much simpler form, before the theory. Still, no one sees this reversal as a failure
of the theory. The promised benefits, possible only if applications are restricted
to a simple structure, are now lost. The theory, nevertheless, continues to be
promoted with the original claims.

The fifth delusion, thus, is similar to the previous ones: we believe that
we can enjoy the benefits promised by the object-oriented paradigm even
after annulling the object-oriented principles and reinstating the means to
create complex structures. What we are creating now is complex flow-control
structures. First, by introducing the concept of messages into object-oriented
programming, we provide the means to link the application’s objects through
relations that are different from their relations in the class hierarchy. In
other words, the sequence in which the objects are executed by the computer
– the hierarchical nesting scheme that is the flow of execution – need not
depend on their relative position in the class hierarchy. The application’s
objects, then, will belong to two different structures at the same time: a class
hierarchy and a flow-control hierarchy. Second, by allowing messages to be
controlled by conditional and iterative constructs, we turn the flow-control
hierarchy itself into a complex structure: not one nesting scheme, but a system
of nesting schemes.

3

3
Although we are discussing flow-control structures, we must not forget that
objects, like their counterpart, subroutines, also give rise to a different type
of structures. If an object is invoked from several other objects in the applica-
tion, it necessarily links those objects logically. So, like subroutines, objects
constitute a special case of shared operations (see pp. 351–354). For each object,
we can represent with a hierarchical structure the unique way in which the
application’s other objects are affected by it. And the relations created by these

the fifth delusion 653chapter 7

structures will be different from those created by the flow-control structures
or by the class hierarchies.

It is the concept of messages that makes all the additional structures
possible. Without messages, the application’s objects would be related only
through class hierarchies, the way it was originally intended. So the concept of
messages, described as an important object-oriented feature, was introduced
specifically in order to override the limitations of the original principles. The
theorists ignore completely the relations engendered by messages. They give us
the means to link the application’s objects through additional structures, but
they continue to present the object-oriented concept as if the objects were
linked only through class hierarchies. What is the point in designing strict class
hierarchies if we are going to relate the same objects in many other ways, by
means of messages, while the application is running?

In structured programming, the dream was to reduce the flow of execution
to one structure, as this would permit us to represent the running application
mathematically. And this idea failed because it was too restrictive, because
applications must have multiple flow-control structures if they are to represent
the world accurately. The object-oriented model is said to be more powerful.
But when we examine this power, we find that it derives simply from lifting the
restrictions introduced by structured programming; it derives from allowing
us to link objects in any way we want, and in particular, to link them from the
perspective of the flow of execution in any way we want. (Some of these
restrictions had been lifted even under structured programming, when the
theorists allowed us to use non-standard constructs and GOTO.)

By disregarding the effect of conditions and iterations, by refusing to
draw flow diagrams, and by giving old concepts new names, the software
experts managed to persuade us that the application’s elements are related only
through class hierarchies, so we no longer need to concern ourselves with the
sequence of their execution. But, in the end, to create applications we are doing
what we had been doing all along. The only real change is calling subroutines
“objects,” their invocation “messages,” and their internal operations “methods.”

So the power said to inhere in the object-oriented paradigm does not
derive from the new programming concepts, but simply from having more
opportunities to create complex software structures. What the theorists did was
merely restore some of the programming freedom we had before structured
programming, and invent some new terminology. The claim that this freedom
is due to the object-oriented paradigm is a fraud. The freedom to connect the
application’s elements in any way we like is a freedom we always had, through
any programming language – and, besides, without having to depend on
complicated development environments.

654 object-oriented programming chapter 7

The Final Degradation

The Final Degradation
1 1
We saw how, through several delusions, the idea of object-oriented program-
ming was degraded from a strict theory to a set of informal concepts. These
concepts, moreover, are practically identical to those we had before the theory.
But the degradation did not end with those delusions. In addition to the
traditional concepts, a number of new features and principles were added
over the years to the object-oriented idea. Totally unrelated to the original
theory, these enhancements were inspired by various concepts that were being
introduced into programming languages in the same period. In other words,
any concept found useful was labeled “object-oriented,” and was incorporated
into this theory too. Thus, the notion of object-oriented programming became
increasingly vague, and the terms “object” and “object-oriented” were applied
to almost any feature and principle.

The final degradation, then, was the degradation in expectations: from the
original idea of finding a formal way to reuse software, to a preoccupation with
isolated programming concepts. If the theory was promoted at first with
the claim that it would revolutionize programming, in the end, when the
revolution did not materialize, the same theory was promoted by praising
merely its features and principles. Thus, the benefits of individual program-
ming concepts replaced the benefits originally claimed for the theory, as the
ultimate goal of object-oriented programming. Let us briefly study some of
these fallacies.

�

I have already mentioned that the concept of hierarchies, and the related
concepts of inheritance and abstraction, were known and appreciated long
before the object-oriented theory. The concept of abstraction, in particular, is
praised now as if the only way to benefit from it were with classes and objects.
We are told, for example, that the object-oriented paradigm allows us to define
abstract software entities, and then create actual instances of these entities by
adding some lower-level attributes. The instances will differ from one another
in their details, while sharing the broader attributes of the original entities.

Abstraction, however, is not peculiar to the object-oriented theory. It is, in
fact, a fundamental programming principle. We make use of abstraction in any
programming language, and in any programming task. The very essence of
programming is to create data and operations of different levels of abstraction.
Thus, merely calling subroutines hierarchically, and passing data by means of

the final degradation 655chapter 7

parameters, creates in effect levels of abstraction; and merely using variables
and fields, which hold entities that differ in value while sharing certain
attributes, is, again, a form of abstraction. It would be impossible to program
serious applications if we restricted ourselves to software entities that cannot
be altered, or extended, or grouped, or used in different contexts; in other
words, if we did not make use of the concept of abstraction. Structured
programming too, although criticized now, was based on abstraction: the flow-
control constructs perform the same function at different levels of nesting.

Another object-oriented concept that is in reality a fundamental program-
ming principle is information hiding, or encapsulation. We are told that the new
paradigm allows us to hide inside an object the details of its operations, so that
the other objects may know its capabilities without having to know how they
are implemented. One of the benefits of this principle is that if we later modify
an object, we won’t have to modify also the objects that communicate with it.
Object-oriented textbooks praise this principle and show us examples of
situations where extensive modifications are avoided through object-oriented
programming, alleging that this is the first time we can benefit from it. But the
principle is a well-known one, and is found in every programming language
(for example, in the use of subroutines and local variables). Experienced
programmers always strive to keep software entities independent. Only the
terms “information hiding” and “encapsulation” are new.

Along with encapsulation, we are told that keeping the data and the opera-
tions that act on it together, as one entity, is a new concept. This, we are told, is
more natural than the traditional methods, which treated data and operations
as separate entities. Actually, we always designed software in this fashion, when
appropriate. And we didn’t need a special development environment to do it:
we simply ensured that a module uses local variables, or is the only one to use
certain global variables. It is absurd to call this well-known programming style
a new concept.

The very fact that notions like abstraction and encapsulation, understood
and appreciated since the 1950s, are seen as a revolution and a new paradigm
demonstrates the ignorance that the theorists and the practitioners suffer from.
All that the object-oriented environments do is formalize these notions; that is,
provide them in the form of built-in features, forcing us to depend on them.
But, as we saw, this idea failed. It failed because, no matter how useful the
hierarchical model is, we cannot restrict ourselves to hierarchical relations. So,
in the end, the means to use and relate software entities freely – what we had
been doing through traditional programming – had to be restored.

Other claims are even sillier. Polymorphism is the principle of implementing
an operation in several different ways while providing a common interface.
For example, different objects could be designed to print different types of

656 object-oriented programming chapter 7

documents, but this fact would be hidden from the rest of the application; we
would always invoke one object, called “print,” and the appropriate printing
object would be invoked automatically, depending on the type of document to
be printed. This is indeed a good programming technique, but what has it to
do with the object-oriented theory? Polymorphism is described as one of the
most important object-oriented principles, while being in reality a simple and
common programming method, easily implemented in any language by
means of subroutines and conditional constructs. And even if the concept of
classes and objects simplifies sometimes its implementation, this is hardly a
programming revolution. The object-oriented propaganda, though, presents
this simple principle as if without classes and objects we would have to
duplicate pieces of software all over the application every time we had to select
one of several alternatives in a given operation.

Overloading is another concept described as an object-oriented principle,
while being known, in fact, for a long time. Overloading allows us to redefine
the function of a symbol or a name, in order to use it in different ways on
different occasions. The operator plus, for example, is used with numbers; but
we could also use it with character strings, by redefining its function as string
concatenation. In a limited form, this feature is available in most program-
ming languages; and, in any case, it can be easily implemented by means of
subroutines and conditional constructs. Object-oriented languages do provide
greater flexibility, but, again, this is just a language feature, not a programming
revolution; and it has nothing to do with the object-oriented theory.

In conclusion, abstraction, information hiding, polymorphism, and the
rest, are just a collection of programming principles, which can also be added
to a traditional language. And if not directly available in a language, we can
implement these principles by adopting an appropriate programming style.
The software experts describe these principles as if they constituted the object-
oriented theory; but if in one form or another we always had them, in what
sense is this theory a new paradigm?

It is perhaps easier to implement some of these principles with an object-
oriented language (that is, if we overlook the fact that we must first agree to
depend on an enormously complex development environment). But this
quality is not what the experts had promised us as the benefits of the theory.
The promised benefits were not abstraction, encapsulation, or polymorphism,
but the “industrialization” of software: the prospect of creating software
applications the way we build appliances, through a process akin to the
assembly of prefabricated components. It was its promises, not its principles,
that made the object-oriented idea popular; the principles were merely the
means to attain the promised benefits. In any case, after all the delusions,
we no longer have the original theory; what we have now is just a more

the final degradation 657chapter 7

complicated way to program. So, since the promised benefits were lost with the
original theory, the principles alone are perceived now as the benefits of object-
oriented programming.

�

We saw earlier how structured programming underwent a process of degrada-
tion: it started as a formal theory, promising us error-free software; and
it ended as a preoccupation with trivial concepts like top-down design,
constructs with one entry and exit, and avoiding GOTO. Now we see that a
similar process of degradation, from an ambitious theory to a collection of
trivial concepts, also affected object-oriented programming.

It is easy to understand the reason for this degradation. When the benefits
promised by a theory are not forthcoming (we still don’t create applications
mathematically, or by assembling prefabricated software components), we can
either admit that the theory has failed, or attempt to rescue it. The only way to
rescue an invalid theory is by making it unfalsifiable; specifically, by expanding
it, so that events which would normally falsify it no longer do so. And this can
be accomplished by replacing the original principles with broader and simpler
ones, which can be easily implemented. Thus, if we redefine structured
programming or object-oriented programming to mean just a collection of
programming principles, and if some of these principles are useful, then the
redefined theory is indeed valid.

Both structured programming and object-oriented programming became
in the end unfalsifiable, and hence pseudoscientific. Thanks to the various
“enhancements,” and to their degradation from a formal theory to a collection
of principles, they became impossible to refute. Had they retained their
original, exact definition, it would be obvious that they failed, simply because
we are still not enjoying the claimed benefits. But by reducing them to an
assortment of simple and well-known principles, they appear to work even if
the claimed benefits never materialize. Indenting statements, expressing
requirements hierarchically, information hiding, and the like, are indeed
excellent principles; so, if this is what the theories are now, it is impossible to
criticize them.

2

2
The degradation of the object-oriented idea can also be seen in the degradation
of the terms “object” and “object-oriented.” We saw earlier how the term
“structured” was applied to almost any flow-control construct, and to almost

658 object-oriented programming chapter 7

any software-related activity. For example, the theorists allowed into structured
programming any construct that was useful – simply because, after drawing
around it a rectangular box with one entry and one exit, it looked like a
structured construct. This trick worked so well for structured programming
that the theorists repeated it with objects.

In the original theory, objects were formal, precisely defined entities. But
the idea of an object has been degraded to such an extent that the term “object”
can now be used to designate any piece of software. Such entities as data
records, display screens, menus, subroutines, and utilities are called objects –
simply because, like objects, they can be invoked, or possess attributes, or
perform actions. In other words, we can take any software entity, draw a box
around it, and call the result an object.

Even entire programs can be called, if we want, objects. For example,
through a procedure called wrapping, an old application, or part of an applica-
tion, written in a traditional language, can instantly become an object.É The
application itself remains unchanged; but, by “wrapping” it (that is, adding a
little software around it so that it can be invoked in a new fashion), it can
become part of an object-oriented environment: “Wrapper technology . . .
provides an object-oriented interface to legacy code. The wrapped piece of
legacy code behaves as an object.”Ê

Along with the idea of an object, the object-oriented principles themselves
were degraded. Thus, any programming feature, method, or technique that
involves hierarchies, or abstraction, or encapsulation, and any development
system that includes some of these principles, is called “object-oriented.”
We can see this degradation in books, articles, and advertising. And, since
the use of these terms is perceived as evidence of expertise and modernity,
ignorant academics, programmers, and managers employ them liberally in
conversation. Thus, “object” and “object-oriented” are now little more than
slogans, not unlike “technology,” “power,” and “solution.”

In the end, the definition of object-oriented programming was degraded to
the point where the original promises were forgotten altogether, and the
criterion of success became merely whether an application can be developed at
all through object-oriented concepts (or, rather, through what was left of these
concepts after all the delusions). Thus, the success stories we see in the media
are not about companies that achieved a spectacular reuse of existing software
classes, or managed to reduce formally all their business requirements to a class

É See, for example, Daniel Tkach and Richard Puttick, Object Technology in Application
Development (Redwood City, CA: Benjamin/Cummings, 1994), pp. 113–115.

Ê Ibid., p. 148. Note, again, the slogan “technology”: what is in fact a simple programming
concept (code wrapping) is presented as something important enough to name a whole
domain of technology after it.

the final degradation 659chapter 7

hierarchy, but about companies that are merely using a system, language, or
methodology said to be object-oriented.

An example of this type of promotion is Objects in Action.Ë This book
includes nineteen case studies of object-oriented development projects, from
all over the world. For each project, those involved in its implementation
describe in some detail the requirements and the work performed. These
projects were selected, needless to say, because they were exceptional.Ì But,
while presented as object-oriented successes, there is nothing in these descrip-
tions to demonstrate the benefits of object-oriented programming. The only
known fact is that certain developers implemented certain applications using
certain object-oriented systems. There is no attempt to prove, for instance, that
some other developers, experienced in traditional programming, could not
have achieved the same results. Nor is there an attempt to understand why
thousands of other object-oriented projects were not successful. In the end,
there is nothing in these descriptions to exclude the possibility that the
successes had nothing to do with the object-oriented principles, and were due
to other factors (the type of applications, the particular companies where they
were developed, unusual programming skills, etc.).

It is when encountering this kind of promotion that we get to appreciate the
importance of Popper’s idea; namely, that it is not the confirmations of a
theory that we must study, but its falsifications (see “Popper’s Principles of
Demarcation” in chapter 3). As we just saw, if what we want to know is how
useful the object-oriented principles really are, those success stories can tell us
nothing. Promoters use success stories as evidence precisely because such
stories can always be found and are so effective in fooling people. For, few of
us understand why confirmations are worthless. The programming theories,
in particular, are always promoted by pointing to isolated successes and
ignoring the many failures. Thus, the very fact that the elites rely on this type
of evidence demonstrates their dishonesty and the pseudoscientific nature of
their theories.

3

3
The previous theory, structured programming, was promoted with the claim
that it provides certain benefits; and we saw that, in fact, these benefits
can be attained simply through good programming. In other words, those
structured programming principles that are indeed useful can be implemented

Ë Paul Harmon and David A. Taylor, Objects in Action: Commercial Applications of
Object-Oriented Technologies (Reading, MA: Addison-Wesley, 1993).

Ì This is acknowledged in the book: ibid., p. vii.

660 object-oriented programming chapter 7

without the restrictions imposed by this theory. The motivation for structured
programming, therefore, was not a desire to improve programming practices,
but the belief that it is possible to get inexperienced programmers to perform
tasks that demand expertise. What was promoted as an effort to turn program-
ming into an exact activity was in reality an attempt to raise the level of
abstraction in this work, so as to remove both the need and the possibility for
programmers to make important decisions.

The software theorists assumed that the skills acquired after a year or two
of practice represent the highest level that a typical programmer can attain.
Thus, since these programmers create bad software, the conclusion was that
the only way to improve their performance is by reducing programming to
a routine activity. Anyone capable of acquiring mechanistic knowledge –
capable, that is, of following rules and methods – would then create good
software.

And this corrupt ideology was also the motivation for object-oriented
programming. The true goal was, again, not to improve programming prac-
tices, but to raise the level of abstraction, in the hope of getting inexperienced
programmers to perform tasks that lie beyond their capabilities. As we saw,
those object-oriented principles that are indeed useful – abstraction, code
reuse, information hiding, and the like – were always observed by good
programmers. Those principles, moreover, can be implemented through any
programming language. Just as they do not have to avoid GOTO in order to
enjoy the benefits of hierarchical flow-control structures, good programmers
do not have to use an object-oriented environment in order to create software
that is easy to reuse, modify, and extend.

Ultimately, the object-oriented paradigm is merely another attempt to
incorporate certain programming principles into development systems and
methodologies, so as to allow programmers who are incapable of understand-
ing these principles to benefit from them nonetheless. Just as the operator of a
machine can use it to fabricate intricate parts without having to understand
engineering principles, the new systems and methodologies would enable a
programmer to fabricate software parts without having to understand the
principles behind good programming.

Thus, like structured programming before it, object-oriented programming
was not an attempt to turn bad programmers into good ones, but to eliminate
the need for good ones. Each theory claimed to be the revolution that would
turn programmers from craftsmen into modern engineers; but, in reality,
programmers had neither the skills of the old craftsmen before the theory, nor
the skills of engineers after it.

All that mechanistic theories can hope to accomplish is to turn ignorant
programmers into ignorant operators of software devices. But we can only

the final degradation 661chapter 7

incorporate in devices mechanistic principles, while our applications must
mirror non-mechanistic phenomena. So, to permit programmers to create
useful applications, the theories must abandon in the end their restriction to
mechanistic principles. They restore in roundabout and complicated ways the
low levels of abstraction, and the means to link software structures, thereby
bringing back the most challenging aspect of programming – the need to
manage complex structures. Thus, not only do these theories fail to eliminate
the need for non-mechanistic knowledge, but, by forcing programmers to
depend on complicated concepts and systems, they make software develop-
ment even more difficult than before.

Each time they get to depend on a mechanistic theory instead of simply
practising, programmers forgo the only opportunity they have to improve their
skills. Their performance remains at novice levels, and they believe that
the only way to make progress is by adopting the next mechanistic theory.
Professional programming, the elites keep telling them, means being familiar
with the latest concepts and development systems.

Both structured programming and object-oriented programming are an
expression of our mechanistic software ideology – an ideology promoted by
universities and by the software companies. It is in the interest of these elites
to prevent the evolution of a true programming profession. By redefining
programming expertise as the capability to follow methods and to operate
devices, the mechanistic ideology has reduced programmers to bureaucrats.

The Relational Database Model The Relational Database Model
The relational database model is the theoretical concept upon which the
relational database systems are founded. Database systems are environments
for data management, and among them the relational kind are the most
popular. In this section we will try to determine how much of this popularity
is due to their data management capabilities, and how much to our mechanistic
delusions. What we will find is that, like the other mechanistic software
theories, the relational database model is a pseudoscience; that it is worthless
as a programming concept; and that the relational systems became practical
only after annulling their relational features, and after reinstating – in a more
complicated form, and under new names – the traditional data management
principles.

The relational model belongs to the class of theories that promise us
higher levels of abstraction than those offered by the traditional programming

662 the relational database model chapter 7

languages. Based on these theories, elaborate development systems are created
and promoted. But instead of being abandoned when the idea of higher levels
proves to be a fantasy, these systems undergo a series of “improvements.” And
the improvements, it turns out, consist in the addition of low-level capabilities;
that is, precisely those features we had in the traditional languages, and which
these systems were meant to supersede. So, in the end, all we accomplish is
to replace efficient and straightforward languages with slow, complicated,
and expensive development systems. (See “The Delusion of High Levels” in
chapter 6; see also “The Quest for Higher Levels” in the previous section.)

The Promise

The Promise
1 1
The idea of a database management system emerged in the late 1960s, when it
was noticed that programmers had difficulty designing correct file relation-
ships. Individually, the file operations are quite simple: reading a particular
data record, writing a new record or modifying an existing one, and the like.
The difficulty, rather, lies in creating correct combinations of operations.
Applications need many files, and a file may have many records. Moreover,
through the data present in their fields, the records form intricate relationships,
and the file operations must exactly match these relationships if the application
is to run correctly. It is the programmer’s task to specify the iterations and
conditions through which the application will create and use the various
records at run time; and even a small error can have such consequences as
reading or deleting the wrong record, corrupting the data stored in a record,
or slowing down the application by performing unnecessary file operations.

The challenges that programmers face with file operations, thus, are similar
to those they face with any other aspect of the application. So, as is the case
with the other challenges, what they need is expertise: the knowledge and
skills one develops over the years by programming increasingly complex
applications. Programmers have difficulty designing correct and efficient file
operations because they lack this expertise, because our programming culture
prevents them from advancing past the level of novices.

The theories of structured programming and object-oriented programming,
we saw, were invented by the software elite in an effort to obviate the need for
programming expertise. Since programmers had difficulty creating correct
flow-control constructs, restricting them to a few, standard constructs was
seen as the answer; and since they had difficulty creating useful and modifiable
applications, restricting them to ready-made modules was seen as the answer.

the promise 663chapter 7

The solution to programming incompetence, in other words, was always
thought to lie, not in encouraging programmers to improve their skills, but in
discovering methods that would eliminate the need for skills; specifically,
methods that would permit inexperienced programmers to accomplish tasks
demanding expertise.

And it was the same ideology that prompted the invention of the relational
database model. If programmers have difficulty designing combinations of file
operations, let us provide these combinations in the form of built-in, high-level
operations. For example, simply by specifying a few parameters, programmers
would be able to read a set of logically related records. In contrast, to read the
same records with the basic file operations, programmers must scan the file
one record at a time, and control this process using iterative and conditional
constructs.

�

Historically, the first database systems (which were based on the so-called
hierarchical and network database models) were seen largely as management
tools: means to take away from programmers the responsibility of designing
and maintaining the application’s database. The software experts hoped that,
by keeping the most important database functions outside the application,
database systems would eliminate our dependence on the skills of program-
mers: the database would become the responsibility of managers or analysts,
and the programmers would simply be told, for each requirement, what
database operations to invoke.

Now, the general trend was already to break down the application into
smaller and smaller parts, in order to match the capabilities of inexperienced
programmers. The trend, in other words, was to prevent programmers from
designing software, and to reduce their work to little more than translating into
a programming language the instructions received from a superior. So what the
first database systems were promising was to reduce database programming to
the same type of work. For all practical purposes, programmers would no
longer need to know anything about the files used by the application, or about
the relations between files. All they would have to do is translate some simple
instructions into the equivalent database operations.

As was the case with the relational model later, attempting to simplify
programming by raising the level of abstraction only made it more compli-
cated. New software concepts, design methodologies, and languages (known
as data definition and data manipulation languages) had to be introduced to
support the hierarchical and network models; and in the end, the high-level
operations turned out to be more difficult than the traditional ones. Database

664 the relational database model chapter 7

systems, thus, were a fraud from the start: they complicated programming
instead of simplifying it, and did not provide any functions that could not
be implemented through the traditional file operations. (In fact, certain file
relationships, easily programmed using file operations, cannot be implemented
at all with the hierarchical and network models.)

When judged from within our corrupt software culture, however, the appeal
of the original promise is understandable. Once we accept the idea that the
highest programming skills we can expect are those attained by an average
person after a few months of practice, replacing programmers with software
devices seems logical. The complexity created by database systems is a small
price to pay, the software experts tell us, for what we gain: successful database
management regardless of the skills of the available personnel. Surely, we
cannot trust a programmer with the task of designing the complex relationships
that make up a database. Besides, with so many programmers working on
the same application, it is impractical to allow each one to modify the file
definitions. A specialist should design the database, and the best way to
separate this task from the programming tasks is with a database management
system.

In reality, the programmer is the best person to design the application’s
database, just as he is the best person to deal with every other aspect of the
application. However, this is true only of experienced, professional program-
mers. Everyone could see that the existing programmers were novices, not
professionals. But instead of giving them the time and opportunity to develop
their skills, the preferred solution was to employ hordes of these novices, and
to create several levels of management – bureaucrats with titles like systems
analyst and project manager – to supervise them.É

As I have already remarked, this ideology – the belief that programming
skills can be replaced with management skills – was already accepted when the
first database systems were being introduced. So the idea of transferring the
responsibility for the application’s database from programmers to managers,
although just as absurd as the attempt to replace the other programming skills,

É Most business applications can be developed and supported by one person. Thus,
working alone and only part-time, I designed, programmed, and maintained several
business systems over the years – the kind of systems for which companies normally employ
teams of programmers and analysts. Few people are aware of the immense inefficiency
created when a number of inexperienced individuals work together on one software
project. The resulting application can become, quite literally, hundreds of times larger than
necessary, and also far more involved. The combination of large teams, incompetence, and
the dependence on development environments and ready-made pieces of software gives rise
to an inefficiency that feeds on itself. In the end, these bureaucrats spend most of their time
solving specious problems, which they themselves keep creating, instead of genuine
software and business problems.

the promise 665chapter 7

appeared quite logical. (As it turned out, though, the complexity of the
database systems exceeded the capacity of existing management, and a new
type of software bureaucrat had to be invented – the database administrator.)

And so it is how, from a totally unnecessary tool, database systems became
one of the main preoccupations, and a major contribution to the astronomic
cost of data processing, in most computer installations.

2

2
Although all database models suffer from the same fallacies, it is the relational
model that concerns us, because it was beginning with this model that the
software experts presented the concept of database systems as a scientific
theory. If the earlier systems were promoted as management tools, the rela-
tional systems were also seen as a step in the formalization of application
development. Because the relational model is based on certain mathematical
concepts, the experts were now convinced that the benefits of database systems
had been proved. Accordingly, a manager who refused to adopt this model was
guilty of more than just resisting software progress; he was guilty of rejecting
science.

The relational model is much more ambitious than the earlier ones. What
we are promised is that, if we keep the data in a particular format, and if we
restrict ourselves to a particular type of operations, we will never again have to
deal with low-level entities (indexes, individual records and fields, and the
related iterative and conditional constructs). In addition, the relational model
will eliminate all data inconsistencies. The files are treated now simply as
tables with rows and columns, and all we have to do is select and combine
logical portions of these tables. Any database requirement, we are told, can
be implemented in this fashion – in the same way that any mathematical
expression is, ultimately, a combination of some basic operations.

As they did for the other mechanistic ideas, the software experts failed to
understand why the mathematical background of a theory does not guarantee
its usefulness for application development. Its exact nature only means that a
mechanistic model has been found for one aspect of the application. And
this is a trivial accomplishment: We know that complex phenomena can be
represented as systems of simple hierarchical structures; and we also know that
it is possible to extract any one of these structures and to represent it with a
mechanistic model. Software applications comprise many structures, so it is
not difficult to find exact models if all we want is to represent these structures
individually.

Thus, the theory of structured programming asked us to extract that

666 the relational database model chapter 7

aspect of the application that is its static flow diagram. Since it is possible
to reduce this one aspect to a perfect hierarchy, and hence to represent it
mathematically, the experts believed that the application as a whole can be
represented mathematically. The theory of object-oriented programming
asked us to identify the various aspects of our affairs, and to depict each one
with a hierarchical classification of software entities. The experts believed that
if each aspect is represented with a perfect hierarchy, whole applications can be
developed simply by combining these hierarchies. Finally, the relational
database theory asks us to extract that aspect of the application that is its
database, and to reduce to perfect hierarchies the file relationships. This will
permit us to represent mathematically the database structures, and hence the
database operations.

What a mechanistic software theory does, in the final analysis, is model
structures of a particular type, after separating them from the other structures
that make up the application. So, no matter how successful these theories are
in representing the individual structures, they are worthless as programming
theories, because we cannot develop the application by dealing with each
structure separately. The elements of these structures are the software entities
that make up the application. Thus, since they share their elements, the
structures interact, and we must deal with all of them at the same time. No
theory that represents individual structures can model the whole application
closely enough to be useful as a programming theory.

Like all mechanistic delusions, these theories are very naive. Since we
already know that simple hierarchical structures can be represented mathe-
matically, what these experts perceive as an important discovery is in reality
a predictable achievement. All they are doing is breaking down software
phenomena into smaller and smaller aspects, until they reach aspects that are
simple enough to model with a hierarchical structure; and at that point they
discover a mathematical theory for one of those aspects. But this is not
surprising. The mathematical nature of the theory is a quality possessed by
every hierarchical structure. We knew all along that they would find mathe-
matical theories for the individual aspects. The very reason they separated
the original, complex phenomenon into simpler phenomena is that simple
structures can be represented with mathematical models while complex ones
cannot.

Practitioners, though, must deal with whole applications, not isolated
software phenomena. So, for these theories to have any value, we also need
an exact theory for combining the various aspects – those neat hierarchical
structures – into actual applications. And no such theory exists. The structures
that represent the various aspects of an application are not related mechanisti-
cally, as one within another. They form complex structures.

the promise 667chapter 7

The only way to create an application, therefore, is by relying on the non-
mechanistic capabilities of our mind. But then, if we must have the expertise
to deal with complex structures, why do we need theories that break down
applications into simple structures in the first place? The software theorists are
naive, thus, because they underestimate the difficulty of combining the isolated
software structures into actual applications: they believe that we can combine
them mechanistically, when the very reason for separating them was the
impossibility of representing their totality mechanistically.

3

3
Like the other software theories, the delusion of the relational database model
stems from the mechanistic fallacies of reification and abstraction: the belief
that we can extract one aspect (the database structures, in this case) from the
complex phenomenon that is a software application, and the belief that we can
accomplish the same tasks by starting from high levels of abstraction as we can
when starting from the lower levels.

So, as was the case with the ideas of structured programming and object-
oriented programming, two great benefits are believed to emerge from the idea
of a relational database. First, by reducing the application to strict hierarchical
structures we will be able to represent software mathematically. Whether it
is the flow of execution, the representation of a business process, or the
database structures, we will deal with that aspect of the application formally,
and thereby attain perfect, error-free software. Second, when we have strict
hierarchical structures we can treat applications as systems of things within
things. As we do in manufacturing, then, we will be able to use prefabricated
software subassemblies, rather than depend on basic components. Application
development will be easier and faster, since we will start our software projects
from parts of a higher level of complexity – parts that already include other
parts within them.

In the case of the relational model, this is accomplished by moving the low-
level definitions and operations into the database system. All we need to do in
the application is specify a relational operation, and the system will generate a
database structure for us. In other words, not only do we have now a method
that guarantees the correctness of the database, but this method consists of just
a few simple, high-level operations. Instead of having to work with indexes and
individual records, and with iterative and conditional constructs, we only need
to understand now the concept of tables, of rows and columns: by extracting
and combining portions of tables, we can generate all the database structures
that we are likely to need in our applications.

668 the relational database model chapter 7

Like the other software theories, the relational database model was seen as
a critical step in the automation of programming. We only need to follow
certain methods, and to use certain software systems; and because these
methods and systems are based on mathematical concepts, we will end up with
provably correct applications. It is already possible, we are told, to turn pro-
gramming into a formal, routine activity. The concept of software engineering,
if rigorously applied, already offers us the means to create perfect applications
without depending on the skills or experience of individual programmers.
And soon our systems will be powerful enough to eliminate the need for
programmers altogether. Application development will then be completely
automated: by means of sophisticated, interactive environments, managers and
analysts will generate the application directly from the requirements.

�

We discussed the fallacy of high-level starting elements in chapter 6. We saw,
in particular, that even for a simple requirement like file maintenance we
must link the file operations to the other types of operations – display and
calculations, for instance. And consequently, if we want to be able to implement
any file maintenance functions, we must start with the basic file operations and
with the statements of a traditional programming language (see pp. 435–438).

Similarly, we can perhaps replace with a high-level operation the file
operations and the logic needed to read a set of related records, but only for
common requirements: comparing or totaling the values present in certain
fields, displaying or printing these values, specifying some criteria for record
selection or grouping, and the like. High-level operations are useless if what we
need is a combination of file operations and logic peculiar to a particular
requirement: displaying one field when a certain condition occurs and another
field otherwise, performing one calculation for some records and another for
other records, and so forth. Clearly, there is no limit to the number of situations
that may require a particular combination of file operations and business
requirements, so the idea of replacing the basic operations with high-level ones
is absurd.

High-level database operations are useful, thus, if provided in addition to
the basic file operations; that is, if we retain the means to create our own
combinations of file operations, and use the high-level operations only when
they are indeed more effective. But this is not how the relational database
systems are presented. The concept of a database environment is promoted as
a replacement of the basic file operations. We are told that these operations are
no longer necessary, and that we must depend exclusively on the high-level
relational ones.

the promise 669chapter 7

It is easy to tell when starting from higher levels is indeed a practical
alternative: the resulting operations are simple and beneficial. A good example
is the idea of a mathematical function library: a collection of subroutines that
evaluate for us, through built-in algorithms, various mathematical functions.
Thus, simply by calling one of these subroutines, we can determine in the
application such values as the logarithm or the sine of a variable. Because we
seldom need to link the operations that make up these algorithms with the
operations performed in the application, the calculations can be extracted
from the rest of the application and replaced with independent modules –
modules that interact with the application only through their input and output.
And we notice the success of this idea in that the concept of a mathematical
function library has remained practically unchanged over the years. One of the
oldest programming concepts, the mathematical library is as simple and
effective today as it was when first implemented. We didn’t have to continually
“improve” and “enhance” this concept, as we do our database systems.

But the best example of a practical move to higher levels is provided by the
file operations themselves. The basic file operations are usually described as
“low-level,” but they are low-level only relative to the operations promised by
database systems. The basic operations are executed by a file management
system, and, relative to the operations performed internally by that system,
their level is quite high. (The terms “basic file operations” and “file manage-
ment system” will be discussed in greater detail in the next subsection; see
pp. 672–673.) Thus, a simple statement that reads, writes, or deletes a record in
the application becomes, when executed by the file management system, a
complex set of operations involving indexes, buffers, search algorithms, and
disk accesses. But because there are no links between these operations and the
various operations performed by the application, they can be separated from
the application and invoked by means of simple statements.

So, relative to the operations performed internally by the file management
system, the basic file operations constitute in effect a library of file manage-
ment functions, as do the mathematical functions relative to their internal
operations. And, like the mathematical functions, the success of this concept
is seen in the fact that it has remained practically unchanged since the 1960s,
when it was introduced. But, just because we moved successfully from the low
level of buffers and direct disk access to a level where all we need to do is read,
write, and delete data records, it doesn’t follow that we can move to an even
higher level.

It is precisely because no higher levels are possible that the relational
database systems evolved into such complicated environments. Were high-
level database operations a practical idea, their use would be as straightforward
as is the use of mathematical functions or basic file operations. The reason

670 the relational database model chapter 7

these systems became increasingly large and complicated is that, in order to
make them practical, their designers had to add more and more “features.”
These features are perceived as enhancements of the relational concept, but
their real function is to counteract the falsifications of this concept. They may
have new and fancy names, but these are features we always had – in our
programming languages.

Thus, in order to save the relational theory from refutation, the software
pseudoscientists had to incorporate into database systems programming
features: means to define integrity and security checks, to access individual
records, to deal with run-time errors, and so forth. These, obviously, are the
low-level, application-related processes which they had originally hoped to
eliminate through high-level database operations.

So the relational database systems became in the end a fraud: instead of
admitting that the idea of high-level database operations had failed, the
theorists reinstated the low-level capabilities of the traditional programming
languages while making them look like features of a database system. Entire
new languages had to be invented, in order to let programmers perform within
the database system those operations they had been performing all along,
through traditional programming languages, within the application.

The reason for the complexity of the relational systems, thus, is that they
ended up incorporating concepts which belong in the application. Program-
ming problems that are quite easy to solve as part of the application become
awkward and complicated when separated from the application and moved
into a database environment. Besides, the new languages are not as versatile as
the traditional, general-purpose ones: they provide only some of the low-level
elements we need, and only as artificial extensions to the high-level features.
So our work is complicated also by having to solve low-level programming
problems in a high-level environment. Like other development environments,
the relational systems have reversed a basic programming principle: instead
of freely creating high-level elements by combining low-level ones, we are
forced to start with high-level elements, and to treat the low-level ones as
extensions.

The idea of a database system emerged, we recall, not because of any
requirements that could not be implemented with the basic file operations, but
as an answer to the lack of programmers who could use these operations
correctly. So, if what programmers must do now is even more difficult than is
the use of file operations, how can the database systems help them? High-level
database operations cannot replace programming expertise any more than
could the idea of structured programming, or the idea of object-oriented
programming.

the promise 671chapter 7

The Basic File Operations

The Basic File Operations
1 1
To appreciate the inanity of the relational model, we must start by examining
the basic file operations; that is, those operations which the relational systems
are attempting to supplant. What I want to show is that these operations
are both necessary and sufficient for implementing database management
requirements, particularly in business applications. Thus, once we recognize
the importance of the basic file operations, we will be in a better position to
understand why the relational systems are fraudulent. For, as we will see, the
only way to make them useful was by enhancing them with precisely those
capabilities provided by the basic file operations; in other words, by restoring
the very features that the database experts had claimed to be unnecessary.

Also, it is important to remember that the basic file operations have been
available to programmers from the start, ever since mass storage devices with
random access became popular. (They are sometimes called ISAM, Indexed
Sequential Access Method.) For example, they have been available through
COBOL (a language specifically designed for business applications) since
about 1970. So these operations have always been well known: COBOL was
always a public language, was implemented on all major computers, and was
adopted by most companies. Thus, in addition to being an introduction to the
basic file operations, this discussion serves to support my claim that the only
motivation for database systems in general, and for the relational systems in
particular, was to find a substitute for the knowledge required of programmers
to use these operations correctly.

�

Before examining the basic file operations, we must take a moment to clarify
this term and the related terms “file operations” and “database operations.”
The basic file operations are a basic set of file management functions. They
formed in the past an integral part of every major operating system, and
were accessible through programming languages. These operations deal with
indexed data files – the most versatile form of data storage; and, in conjunction
with the features provided by the languages themselves, they allow us to use
and to relate these files in any way we like.

“File operations” is a more general term. It refers to the basic file operations,
but also to the various ways in which we combine them, using the flow-
control constructs of a programming language, in order to implement file
management requirements. “Database operations” is an even more general

672 the relational database model chapter 7

term. It refers to the file operations, but in the context of the whole application,
so it usually means combinations of file operations; in particular, combinations
involving several files. The terms “traditional file operations” and “low-level
file operations” refer to any one of the operations defined above.

The term “database” refers to a set of related files; typically, the files used by
a particular application. Hence, the term “database system” ought to mean
any software system that helps us to manage a database.É Through their
propaganda, though, the software elites have created in our minds a strong
association between terms like “database,” “database system,” and “database
management system” (or DBMS) and high-level database operations. And as a
result, most people believe that the only way to manage a database is through
high-level operations; that the current database systems provide indispensable
features; and that it is impossible to implement a serious application without
depending on such a system.

But we must not allow the software charlatans to control our language and
our minds. Since we can implement any database functions through the basic
file operations and a programming language, systems that provide high-level
operations are not at all essential for database management. So we can continue
to use the terms “database” and “database operations” even while rejecting the
notion of a system that restricts us to high-level operations.

Strictly speaking, since the basic file operations permit us to manage a
database, they too form a database system. But it would be confusing to use this
term for the basic operations, now that it is associated with the high-level
operations. Thus, I call the systems that provide basic file operations “file
management systems,” or “file systems” for short. This term is quite appropri-
ate, in fact, seeing that these systems are limited to operations involving
single files; it is we who implement the actual database management, by
combining the operations provided by the file system with those provided by
a programming language.

So I use the term “database,” and terms like “database operations” and
“database management,” to refer to any set of related files – regardless of
whether the files and relations are managed through the high-level operations
of a database system, or through the basic operations of a file system.

The term “database structures” refers to the various hierarchical structures
created by the files that make up the database: related files can be seen as the
levels of a structure, and their records as the elements that make up these levels
(see p. 688). In most applications, the totality of database structures is a
complex structure.

É The term “database system” is used by everyone as an abbreviation of “database
management system.” It is somewhat misleading, though, since it sounds as if it refers to the
database itself.

the basic file operations 673chapter 7

2

2
Two types of files make up the database structures of an application: data files
and index files. The data files contain the actual data, organized as records; the
index files (or indexes, for short) contain the pointers that permit us to access
these records.

The record is the unit that the application typically reads from the file, or
writes to the file. But within each record the data is broken down into fields,
and it is the values present in the individual fields that we normally use in the
application. For example, if each record in the file has 100 bytes, the first field
may take the first 6 bytes, the second one the next 24 bytes, and so on. This is
how the fields reside on disk, and in memory when the record is read from
disk, but in most cases their relative order within the record is immaterial. For,
in the application we assign names to these fields, and we refer to them simply
by their names. Thus, once a record is read into memory, we treat database
fields, for all practical purposes, as we do memory variables.

The records and fields of a data file reflect the structure and type of the
information stored in the file. In an employee file, for example, there is a record
for each employee, and each record contains such fields as employee number,
name, salary, and year-to-date earnings and deductions; in a sales history file
there is a record for each line in a sales order, with such fields as the customer
and order numbers, date, price, and quantity sold. While in simple cases the
required fields are self-evident, generally it takes some experience to design the
most effective database for a given set of requirements. We must decide what
information should be processed by the application, how to represent this
information, how to distribute it among files, how to index the files, and how to
relate them. Needless to say, it is impossible to predict all future requirements,
so we must be prepared to alter the application’s database structure later: we
may need to add or delete fields, move fields from one file to another, and
create new files or indexes.

We don’t normally access data records directly, but through an index.
Indexes, thus, are service files, means to access the data files. Indexes fulfil two
essential functions: they allow us to identify a specific record, and to scan a
series of records in a specific sequence. It is through keys that indexes perform
these tasks. The key is one of the fields that make up the record, or a set of
several fields. Clearly, if the combination of values present in these fields is
different for each record in the file, each record can be uniquely identified. In
addition, key uniqueness allows us to scan the records in a particular sequence
– the sequence that reflects the current key values – regardless of their actual,

674 the relational database model chapter 7

physical sequence on disk. When the key is one field, the value present in the
field is the value of the key. When the key consists of several fields, the value
of the key is the combination of the field values, in the order in which they
make up the key. The records are scanned, in effect, in a sorted sequence.
For example, if the key is defined as the set of three fields, A, B, and C, the
sorting sequence can be expressed as either “by A by B by C” or “by C within
B within A.”

Note that if we permit duplicate keys – if, that is, some combinations of
values in the key fields are not unique – we will be unable to identify the
individual records within a set of duplicates. Such an index is still useful,
however, if all we need is to scan those records. The scanning sequence within
a set of duplicate records is usually the order in which they were added to the
file. Thus, for scanning too, if we want better control we must ensure key
uniqueness.

An especially useful feature is the capability to create several indexes for the
same data file. This permits us to access the same records in different ways –
scan the file in one sequence or another, or read a record through one key or
another. For example, we may scan a sales history file either by order number
or by product number; or, we may search for a particular sales record through
a key consisting of the customer number and order number, or through a key
consisting of the product number and order date.

Another useful indexing feature is the option of descending keys. The
normal scanning sequence is ascending, from low to high key values; but some
file systems also allow indexes that scan records from high to low key values.
Any one field, or all the fields in the key, can then be either ascending or
descending. Simply by scanning the data file through such an index we can list,
for instance, orders in ascending sequence by customer number, but within
each customer those orders with a higher amount first; or we can list the
sales history by ascending product number, but within each product by
descending date (so those sold most recently come first), and within each date
by ascending customer number. A related indexing feature, useful in its own
right but also as an alternative to descending keys, is the capability to scan
records backward.

In addition to indexed data files, most file management systems support
two other types of files, relative and sequential. These files provide simpler
record access, and are useful for data that does not require an elaborate
indexing scheme. In relative data files, we access a record by specifying its
relative position in the file (first, second, third, etc.). These files are useful,
therefore, in situations where the individual records cannot, or need not, be
identified by the values present in their fields (to store the entries of a large
table, for instance). Sequential data files are organized as a series of consecutive

the basic file operations 675chapter 7

records, which can only be accessed sequentially, starting from the beginning.
These files are useful in situations where we don’t need to access individual
records directly, and where we normally read the whole file anyway (to store
data that has no specific structure, for instance). Text data, too, is usually stored
in sequential files. I will not discuss further the relative and sequential files. It
is the indexed data files that interest us, because it is only their operations that
the relational database systems are attempting to replace with high-level
operations.

�

File systems provide at least two types of fields, alphanumeric (or alpha, for
short) and numeric. And, since these types are the same as the memory
variables supported by most high-level languages (COBOL, in particular),
database fields and memory variables can be used together, and in the same
manner, in the application. In alphanumeric fields, data is stored as character
symbols, so these fields are useful for names, addresses, descriptions, notes,
identifiers, and the like. When these fields are part of an indexing key, the
scanning sequence is alphabetical. In numeric fields, the data is stored as
numeric values, so these fields can be used directly in calculations. Numeric
fields are useful for any data that can be expressed as a numeric value:
quantities, dollar amounts, codes, and the like. When these fields are part of an
indexing key, the scanning sequence is determined by the numeric value.

Some file systems provide additional field types. Date fields, for instance,
are useful for storing dates. In the absence of date fields, we must store dates in
numeric fields, as six- or eight-digit values representing the combination of the
month, day, and year; alternatively, we can store dates as values representing
the number of days elapsed since some arbitrary, distant date in the past. (The
latter method is preferable, as it simplifies date calculations, comparisons, and
indexing.) Another field type is the binary field, used to store such data as text,
graphics, and sound; that is, data which can be in any format whatsoever
(hence “binary,” or raw), and which may require many thousands of bytes.
(Because of its large size, this data is stored in separate files, and only pointers
to it are kept in the field itself.)

3

3
Now that we have examined the structure of indexed data files, let us review
the basic file operations. Six operations, combined with the iterative and
conditional constructs of high-level languages, are all we need in order to use

676 the relational database model chapter 7

indexed data files. I will first describe these operations, and then show how
they are combined with language features to implement various requirements.
The names I use for the basic operations are taken from COBOL. (There may
be some small variations in the way these operations are implemented in a
particular file system, or in a particular version of COBOL; for example, in the
way multiple indexes or duplicate keys are supported.)

The following terms are used in the description of the file operations: The
current index is the index file specified in the operation. File is a data file;
although the file actually specified in the operation is an index file, the record
read or written belongs to the data file (we always access a data file through one
of its indexes). Record area is a storage area – the portion of memory where the
fields that make up the record are specified; each file has its own record area,
and this area is accessed by both the file system and the application (the
application treats the fields as ordinary memory variables). Key is the field or
set of fields, within the record area, that was defined as the key of a particular
index; the current key is the key that was defined for the current index. The
record pointer is an indicator maintained by the file system to identify the next
record in the scanning sequence established by a particular index; each index
has its own pointer, and the current pointer is the pointer corresponding to the
current index.

WRITE: A new record is added to the file. Typically, the data in this record
consists of the values previously placed by the application into the fields that
make up the file’s record area. The values present in the fields that make up the
current key will become the new record’s key in the current index. If the file
has additional indexes, the values in their respective key fields will become
the keys in those indexes. All indexes are updated together: following this
operation, the new record can be accessed either through the current index or
through another index. If one of the file’s indexes does not permit duplicate
keys and the new record would cause such a condition, the operation is
aborted and the system returns an error code (so that the application can take
appropriate action).

REWRITE: The data in the record area replaces the data in the record cur-
rently in the file. Typically, the application read previously the record into the
record area through the current index, and modified some of the fields. The
record is identified by the current key, so the fields that make up this key
should not be modified. If there are other indexes, the fields that make up their
keys may be modified, and REWRITE will update those indexes to reflect the
change. REWRITE, however, can also be used without first reading the existing
record: the application must place some values in all the fields, and REWRITE

functions then like WRITE, except that it replaces an existing record. In either
case, if no record is found with the current key, or if one of the file’s indexes

the basic file operations 677chapter 7

does not permit duplicate keys and the modified record would cause such a
condition, the operation is aborted and the system returns an error code.

DELETE: The record identified by the current key is removed from the
file. Only the values present in the current key fields are important for the
operation; the rest of the record area is ignored. The application, therefore, can
delete a record either by reading it first into the record area (through any one of
its indexes) or just by placing the appropriate values into the current key fields.
If no record is found with the current key, the system returns an error code.

READ: The record identified by the current key is read into the record area.
The current index can be any one of the file’s indexes, and only the values
present in the current key fields are important for the operation. Following this
operation, the fields in the record area contain the values present in that record
in the file. If no record is found with the current key, the system returns an
error code.

START: The current pointer is positioned at the record identified by the
current key. The current index can be any one of the file’s indexes, and only
the values present in the current key fields are important for the operation. The
specification for the operation includes a relation like equal, greater, or greater
or equal, so the application need not indicate a valid key; the record identified
is simply the first one, in the scanning sequence of the current index, whose
key satisfies the condition specified (for example, the first one whose key is
greater than the values present in the current key fields). If no record in the file
satisfies that condition, the system returns an error code.

READ NEXT: The record identified by the current pointer is read into the
record area. This operation, in conjunction with START, makes the file scanning
feature available to the application. The application must first perform a START

for the current index, in order to set the current pointer at the first record in
the series of records to be scanned. (To indicate the first record in the file, null
values are typically placed in the key fields, and the condition greater is
specified.) READ NEXT will then read that record and advance the pointer to the
next record in the scanning sequence of the current index. The subsequent
READ NEXT will read the record indicated by the pointer’s new position and
advance the pointer to the next record, and so on. Through this process, then,
the application can read a series of consecutive records without having to know
their keys.Ê Typically, READ NEXT is part of a loop, and the application knows
when the last record in the series is reached by checking a certain condition
(for example, whether the key exceeds a particular value). If the pointer was
already positioned past the last record in the file (the end-of-file condition), the

Ê Since no search is involved, it is not only simpler but also faster to read a record in this
fashion, than by specifying its key. Thus, even when the keys are known, it is more efficient
to read consecutive records with READ NEXT than with READ.

678 the relational database model chapter 7

system returns an error code. (Simply checking for this code after each READ

NEXT is how applications typically handle the situation where the last record in
the series is also the last one in the file.)

�

These six operations form the minimal practical set of file operations: the set
of operations that are both necessary and sufficient for using indexed data files
in serious applications.Ë I will demonstrate now, with a few examples, how the
basic file operations are used in conjunction with other types of operations to
implement typical requirements. Again, I am describing COBOL constructs
and statements, but the implementation would be very similar in other high-
level languages.

A common requirement involves the display of data from a particular
record: the user identifies the record by entering the value of its key (customer
number, part number, invoice number, and the like), and the application
responds by retrieving that record and displaying some of its fields. When the
key consists of several fields, the user must enter several values. To implement
this operation in the application, all we need is a READ: we place the values
entered by the user into the current key fields, perform the READ, and then
display for the user various fields from the record area. If, however, the system
returns an error code, we display a message such as “record not found.”

If the user wants to modify some of the fields in a particular record, we start
by performing a READ and displaying the current values, as before; but then we
allow the user to enter the new values, place them in the appropriate fields in
the record area, and perform a REWRITE. And if what the user wants is to delete
a particular record, we usually start with a READ, display some of the fields to
allow the user to confirm it is the right record, and then perform a DELETE.

Lastly, to add a record, we display blank fields and allow the user to enter
their actual values. (In a new record, some fields may have null values, or some
default values; so these fields may be left out, or just displayed, or displayed
with the option to modify them.) The user must also enter the value of the
key fields, to identify the new record. We then perform a WRITE, and the
system will add this record to the file. If, however, it returns an error code, we
display a message such as “duplicate key” to tell the user why the record
could not be added.

Ë I will not discuss here the various support operations – opening and closing files,
locking and unlocking records in multiuser applications, and the like. Since there is little
difference between these operations in file systems and in database systems, they have no
bearing on my argument. Many of these operations can be performed automatically, in fact,
in both types of systems.

the basic file operations 679chapter 7

Examples of this type of record access are found in the file maintenance
operations – those operations that permit the user to add, delete, and modify
records in the database. And, clearly, any maintenance requirement can be
implemented through the basic file operations: any file, record, and field in the
database can be read, displayed, or modified. If we must restrict this freedom
(permit only a range of values for a certain field, permit the addition or
deletion of a record only under certain conditions, etc.), all we have to do is add
appropriate checks; then, if the checks fail, we bypass the file operation and
display a message.

So far I have discussed the interactive access of individual records, but the
basic file operations are used in the same way when the user is not directly
involved. Thus, if we need to know at some point in the application the
quantity on hand for a certain part, we place the part number in the key field,
perform a READ, and then get the value from the quantity field; if we want to
add a new transaction to the sales history file, we place the appropriate values
in the key fields (customer number, invoice number, etc.) and in the non-key
fields (date, price, quantity, etc.), and perform a WRITE; if we want to update a
customer’s balance, we place the customer number in the key field, perform a
READ, calculate the new value, place it in the balance field, and then perform
a REWRITE. Again, any conceivable requirement can be implemented through
the basic file operations.

�

Accessing individual records, as described above, is one way of using indexed
data files. The other way is by scanning records, an operation accomplished
with an iterative construct based on START and READ NEXT. This construct,
which may be called the basic file scanning loop, is used every time we read a
series of records sequentially through an index. The best way to illustrate this
loop is with a simple example (see figure 7-13). The loop here is designed to
read the PART file in ascending part number sequence. The indexing key, P-KEY,
consists of one field, P-NUM (part number). START positions the record pointer
so that the first record read has a part number no less than P1, and the

Figure 7-13

 MOVE P1 TO P−NUM START PART KEY>=P−KEY INVALID GO TO L4.

L3. READ PART NEXT END GO TO L4. IF P−NUM>P2 GO TO L4.

 IF P−QTY<Q1 GO TO L3.

 [various operations]
 GO TO L3.

L4.

680 the relational database model chapter 7

condition >P2 terminates the loop at the first record with a part number
greater than P2. The loop will read, therefore, only the range of records, P1

through P2, inclusive.Ì In addition, within this range, the loop selects only
those records where the quantity field, P-QTY, is no less than a certain value, Q1.
The operations following the selection conditions will be performed for every
record that satisfies these conditions. The labels L3 and L4 delimit the loop.Í

We rarely perform the same operations with all the records in a file, so the
selection of records is a common requirement in file scanning. The previous
example illustrates the two selection methods – based on key fields, and on
non-key fields. The method based on key fields is preferable when what we
select is a range of records, as the records left out don’t even have to be read.
This can greatly reduce the processing time, especially if the file is large and the
range selected is relatively small. In contrast, when the selection is based on
non-key fields, each record in the file must be read. This is true because the
value of non-key fields is unrelated to the record’s position in the scanning
sequence, so the only way to know what the values are is by reading the
record. The two methods are often combined in the same loop, as illustrated
in the example.

It should be obvious that these two selection methods are completely
general, and can satisfy any requirement. For example, if the range must
include all the records in the file, we specify null values for the key fields in
START and omit the test for the end of the range. The loop also deals correctly
with the case where no records should be selected (because there are none in
the specified range, or because the selection based on non-key fields excludes
all those in the range). It must be noted that the selection conditions can be as
complex as we need: they can involve several fields, or fields from other files
(by reading in the loop records from those files), or a combination of fields,
memory variables, and constants. A complex condition can be formulated
either as one complex IF statement or as several consecutive IF statements. And,

Ì Note the END clause in READ NEXT, specifying the action to take if the end of the file is
reached before P2. (INVALID and END are the abbreviated forms of the COBOL keywords
INVALID KEY and AT END. Similarly, GO TO can be abbreviated in COBOL as GO.)

Í It is evident from this example that the most effective way to implement the basic file
scanning loop in COBOL is with GO TO jumps. This demonstrates again the absurdity of
the claim that GOTO is harmful and must be avoided (the delusion we discussed under
structured programming). Modifying this loop to avoid the GOTOs renders the simple
operations of file scanning and record selection complicated and abstruse; yet this is exactly
what the experts have been advocating since 1970. It is quite likely that the complexity
engendered by the delusions of structured programming contributed to the difficulty
programmers had in using file operations, and was a factor in the evolution of database
systems: because they tried to avoid the complications created by one pseudoscience,
programmers must now deal with the greater complications created by another.

the basic file operations 681chapter 7

in addition to the conditions that affect all the operations in the loop, we can
have conditions within the loop; any portion of the loop, therefore, can be
restricted to certain records.

Let us see now how the basic file scanning loop is used to implement various
file operations. In a typical file listing, or query, or report, the scanning
sequence and the record selection criteria specified by the user become the
index and the selection conditions for the scanning loop. And within the loop,
for each record selected, we show certain fields and perhaps accumulate their
values. Typically, one line is printed or displayed for each record, and the totals
are shown at the end. When the indexing key consists of several fields, their
value will change hierarchically, one within another, in the sorting sequence of
the index; thus, we can have various levels of subtotals by noting within the
loop when the value of these fields changes. In an orders file, for instance, if
the key consists of order number within customer number, and if we need the
quantity and amount subtotals for the orders belonging to each customer, we
must show and then clear these subtotals every time the customer number
changes.

Another use of the scanning loop is for modifying records. The reading and
selection are performed as before, but here we modify the value stored in
certain fields; then we perform a REWRITE (at the end of the loop, typically).
This is useful when we must modify a series of records according to some
common logic. Not all the selected records need to be modified, of course; we
can perform some calculations and display the results for all the records in a
given range, for instance, but modify only those where the fields satisfy a
certain condition. Rather than modify records, we can use the scanning loop
to delete certain records; in this case we perform a DELETE at the end of the loop.

An interesting use of indexed data files is for sorting. If, for instance, we
need a listing of certain values in a particular scanning sequence (values
derived from files or from calculations), we create a temporary data file where
the indexing key is the combination of fields for that scanning sequence, while
the non-key fields are the other values to be listed. All we have to do then is
perform a WRITE to add a record to the temporary file for each entry required
in the listing. The system will build for us the appropriate index, and, once
complete, we can scan the temporary file in the usual manner. Similarly, if we
need to scan a portion of a data file in a certain sequence, but only occasionally,
then instead of having a permanent index for that sequence we create a
temporary data file that is a subset of the main data file: we read the main data
file in a loop through one of its indexes, and for each selected record we copy
the required fields to the record of the temporary file and perform a WRITE.

If we want to analyze certain fields in a data file according to the value
present in some other fields (total the quantity by territory, total various

682 the relational database model chapter 7

amounts by the combination of territory and category, etc.), we must create a
temporary data file where the indexing key is the field or combination of
fields by which we want to group the records (the analysis fields in the main
data file), while the non-key fields are the values to be totaled (the analyzed
fields). We read the main file in a loop, and, for each record, we copy the
analysis values and the analyzed values to the respective fields in the record of
the temporary file. We then perform a WRITE for this file and check the return
code. If the system indicates that the record already exists, it means this
is not the first time that combination of key values was encountered; the
response then is to perform a READ, add the analyzed values to the respective
fields, and perform a REWRITE. In other words, we create a new record in the
temporary file only the first time a particular combination of analysis values is
encountered, and update that record on subsequent occasions. At the end, the
temporary file will contain one record for each unique combination of analysis
values. This concept is illustrated in figure 7-14.

In this example, a certain quantity in the CUSTOMER file is analyzed by
territory for the customers in the range C1 through C2. SORTFL is the temporary
file, and SR-RECORD is its record area. The simplicity of this operation is due to
the fact that much of the logic is implicit in the READ, WRITE, and REWRITE.

4

4
One of the most important uses of the file scanning loop is to relate files.
If we nest the scanning loop of one file within that of another, a logical
relationship is created between the two files. From a programming standpoint,
the nesting of file scanning loops is no different from the nesting of any
iterative constructs: the whole series of iterations through the inner loop is
repeated for every iteration through the outer loop. In the inner loop we can
use fields from both files; any operation, therefore, including the record
selection conditions, can depend on the record currently read in the outer loop.

Figure 7-14

 MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

 MOVE C−TER TO SR−TER MOVE C−QTY TO SR−QTY.

 WRITE SR−RECORD INVALID READ SORTFL

 ADD C−QTY TO SR−QTY REWRITE SR−RECORD.

 GO TO L3.

L4.

the basic file operations 683chapter 7

Figure 7-15 illustrates this concept. The outer loop scans the CUSTOMER file
and selects the range of customer numbers C1 through C2. The indexing key,
C-KEY, consists of one field, C-NUM (customer number). Within this loop, in
addition to any other operations performed for each customer record, we
include a loop that scans the ORDERS file. The indexing key here, O-KEY, consists
of two fields, O-CUS (customer number) and O-ORD (order number), in this
sorting sequence. Thus, to restrict the inner loop to the orders belonging to one
customer, we select only the range of records where the customer number
equals the one currently read in the outer loop, while allowing the order
number to be any value. (Note that the terminating condition, “IF O-CUS

NOT=C-NUM,” could be replaced with “IF O-CUS>C-NUM,” since the first O-CUS read
that is not equal to C-NUM is necessarily greater than it.) The inner loop here
selects all the orders for the customer read in the outer loop; but we could have
additional selection conditions, based on non-key fields, as in figure 7-13 (for
example, to select only orders in a certain date range, or over a certain amount).

Although most file relations involve only two files, the idea of loop nesting
can be used to relate hierarchically any number of files, simply by increasing
the number of nesting levels. Thus, by nesting a third loop within the second
one and using the same logic, the third file will be related to the second in
the same way that the second is related to the first. With two files, we saw, the
second file’s key consists of two fields, and the range selected includes the
records where the first field equals the first file’s key. With three files, the third
file’s key must have three fields, and the range will include the records where
the first two fields equal the second file’s key. (The keys may have additional
fields; two and three are the minimum needed to implement this logic.)

To illustrate this concept, figure 7-16 adds to the previous example a loop to
scan the LINES file (the individual item lines associated with each order).

Figure 7-15

 MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

 [various operations]
 MOVE C−NUM TO O−CUS MOVE 0 TO O−ORD.

 START ORDERS KEY>O−KEY INVALID GO TO L34.

L33. READ ORDERS NEXT END GO TO L34. IF O−CUS NOT=C−NUM GO TO L34.

 [various operations]
 GO TO L33.

L34.

 [various operations]
 GO TO L3.

L4.

684 the relational database model chapter 7

If ORDERS has fields like customer number, order number, date, and total
amount, which apply to the whole order, LINES has fields like item number,
quantity, and price, which are different for each line. Its indexing key consists
of customer number, order number, and line number, in this sorting sequence.
And the third loop isolates the lines belonging to a particular order by selecting
the range of records where the customer and order numbers equal those of the
order currently read in the second loop, while the line number is any value.
Another example of a third nesting level is a transaction file, where each record
is an invoice, payment, or adjustment pertaining to an order, and the indexing
key consists of customer number, order number, and transaction number.Î

Î Note, in figures 7-13 to 7-16, the numbering system used for labels in order to make the
jumps self-explanatory (as discussed under the GO TO delusion, pp. 621–624).

Note that in the sections marked “various operations” we can access fields
from all the currently read records: in the outer loop, fields from the current
CUSTOMER record; in the second loop, fields from the current CUSTOMER and
ORDERS records; and in the inner loop, fields from the current CUSTOMER,
ORDERS, and LINES records.

Note also that the sections marked “various operations” may contain
additional file scanning loops; in other words, we can have more than one

Figure 7-16

 MOVE C1 TO C−NUM START CUSTOMER KEY>=C−KEY INVALID GO TO L4.

L3. READ CUSTOMER NEXT END GO TO L4. IF C−NUM>C2 GO TO L4.

 [various operations]
 MOVE C−NUM TO O−CUS MOVE 0 TO O−ORD.

 START ORDERS KEY>O−KEY INVALID GO TO L34.

L33. READ ORDERS NEXT END GO TO L34. IF O−CUS NOT=C−NUM GO TO L34.

 [various operations]
 MOVE O−CUS TO L−CUS MOVE O−ORD TO L−ORD MOVE 0 TO L−LINE.

 START LINES KEY>L−KEY INVALID GO TO L334.

L333. READ LINES NEXT END GO TO L334.

 IF NOT(L−CUS=O−CUS AND L−ORD=O−ORD) GO TO L334.

 [various operations]
 GO TO L333.

L334.

 [various operations]
 GO TO L33.

L34.

 [various operations]
 GO TO L3.

L4.

the basic file operations 685chapter 7

scanning loop at a given nesting level. For instance, by creating two consecutive
third-level loops, we can scan first the lines and then the transactions of the
order read in the second-level loop.

The arrangement where the key used in the outer loop is part of the key
used in the inner loop, as in these examples, is the most common and the most
effective way to relate files, because it permits us to select records through their
key fields (and to read therefore only a range of records). We can also relate
files, though, by using non-key fields to select records (when it is practical to
read the entire file in the inner loop).

Lastly, another way to relate files is by reading within the loop of one file just
one record of another file, with no inner loop at all (or, as a special case,
reading just one record in both files, with no outer loop either). Imagine that
we are scanning an invoice file where the key is the invoice number and one of
the key or non-key fields is the customer number, and that we need some data
from the customer record – the name and address fields, for instance. (This
kind of data is normally stored only in the customer record because, even
though required in many operations, it is the same for all the transactions
pertaining to a particular customer.) So, to get this data, we place the customer
number from the currently read invoice record into the customer key field, and
perform a READ. All the customer fields are then available within the loop, along
with the current invoice fields.

�

The relationship just described, where several records from one file point to
the same record in another file, is called many-to-one relationship. And the
relationship we discussed previously, where one record from the first file
points to several records in the second file (because several records are read in
the inner loop for each record read in the outer loop) is called one-to-many
relationship. These two types of file relationships are the most common, but
the other two, one-to-one and many-to-many, are also important.

We have a one-to-one relationship when the same field is used as a key in
two files. For example, if in addition to the customer file we create a second file
where the indexing key is the customer number (in order to store some of the
customer data separately), then each record in one file corresponds to one
record in the other. And we have a many-to-many relationship when one
record in the first file points to several records in the second one, and at the
same time one record in the second file points to several records in the first
one. (We will study the four types of file relationships in greater detail later; see
pp. 738–741.)

To understand the many-to-many relationship, imagine a factory where a

686 the relational database model chapter 7

number of different products are being built by assembling various parts from
a common inventory. Thus, each product is made from a number of different
parts, and at the same time a part may be used in different products. The
product file has one record for each product, and the key is the product
number. And the part file has one record for each part, and the key is the
part number. We can use these files separately in the usual manner, but to
implement the many-to-many relationship between products and parts we
need an additional file – a service file for storing the cross-references. This file
is a dummy data file that consists of key fields only. It has two indexes: in the
first one the key is the product number and the part number, and in the second
one it is the part number and the product number, in these sorting sequences.
In the service file, therefore, there will be one record for each pair of product
and part that are related in the manufacturing process (far more records,
probably, than there are either products or parts). Now we can scan the product
file in the outer loop, and the service file, through its first index, in the inner
loop; or, we can scan the part file in the outer loop, and the service file, through
its second index, in the inner loop. Then, by selecting in the inner loop a range
of records in the usual manner, we will read in the first case the parts used by
a particular product, and in the second case the products that use a particular
part. What is left is to perform a READ in the inner loop using the part or
product number, respectively, in order to read the actual records.

The Lost Integration

The Lost Integration

The preceding discussion was not meant to be an exhaustive study of indexed
data files. My main intent was to show that any conceivable database require-
ment can be implemented with file operations, and that this is a fairly easy
programming challenge: every one of the examples we examined takes just a
few statements in COBOL. We only need to understand the two ways of using
indexes (reading individual records or scanning a range of records) and the
two ways of selecting records (through key fields or non-key fields). Then,
simply by combining the basic file operations with the other operations
available in a programming language, we can access and relate the files in the
database in any way we like.

So the difficulties encountered by programmers are not caused by the
basic file operations, nor by the selection of records, nor by the file scanning
loops. The difficulties emerge, rather, when we combine file operations, and
when we combine them with the other types of operations required by the
application. The difficulties, in other words, are due to the need to deal with

the lost integration 687chapter 7

interacting software structures. Two kinds of structures, and hence two kinds
of interactions, are generated: one through the file relationships we discussed
earlier (one-to-many, many-to-many, etc.), the other through the links created
between the application’s elements by the file operations.

Regarding the first kind of structures, the file relationships are easy to
understand individually, because we can view them as simple hierarchical
structures. If we depict the nesting of files as a structure, each file can be seen
as a different level of the structure, and its records as the various elements
which make up that level. The relationship between files is then the rela-
tionship between the elements of one level and the next. But, even though
each relationship is hierarchical, most files take part in several relationships,
through different fields. In other words, a record in a certain file can be an
element in several structures at the same time, so these structures interact. The
totality of file relationships in the database is a complex structure.

As for the second kind of structures, we already know that the file opera-
tions give rise to processes based on shared data (see pp. 349–351). So they link
the application’s elements through many structures – one structure for each
field, record, or file that is accessed by several elements. Thus, in addition to
the interactions due to the file relationships, we must cope with the interactions
between the structures generated by file operations. And we must also cope
with the interactions between these structures and the structures formed by
the other types of processes – practices, subroutines, memory variables, etc.
To implement database requirements we must deal with complex software
structures.

When replacing the basic file operations with higher-level operations, what
are the database experts trying to accomplish? All that a database system can
do is replace with a built-in process the two or three statements that constitute
the use of a basic file operation. The experts misinterpret the difficulty that
programmers have in implementing file operations as the problem of dealing
with the relatively low levels. But, as we saw, the difficulty is not due to the
individual file operations, nor to the individual relationships. The difficulty
emerges when we deal with interacting operations and relationships, and with
their interaction with the rest of the application. And these interactions cannot
be eliminated; we must have them in a database system too, if the application
is to do what we want it to do. Even with a database system, then, the difficult
part of database programming remains. The database systems can perhaps
replace the easy challenges – the individual operations; but they cannot
eliminate the difficult part – the need to deal with interacting structures.

What is worse, database systems make the interactions even more complex,
because some of the operations are now in the application while others are in
the database system. The original idea was to have database functions akin to

688 the relational database model chapter 7

the functions provided by a mathematical library; that is, entities of a high level
of abstraction, which interact with the application only through their input and
output. But this is impossible, because database operations must interact with
the rest of the application at a lower level – at the level of fields, variables, and
conditions. Thus, the level of abstraction that a database system can provide
while remaining a practical system is not as high as the one provided by a
mathematical library. We cannot extract, for example, a complete file scanning
loop, with all the operations in the loop, and turn it into a high-level database
function – not if we want to retain the freedom of implementing any scanning
loops and operations.

�

All we needed before was the six basic file operations. The database operations,
and their interaction with the rest of the application, could then be imple-
mented with the same programming languages, and with the same methods
and principles, that we use for the other operations in the application. With a
database system, on the other hand, we need new and complicated principles,
languages, rules, and methods; we must deal with a new kind of operations in
the database system, plus a new kind of operations in the application, the latter
necessary in order to link the application to the database system. So, in the end,
the difficulties faced by programmers in implementing database operations are
even greater than before.

It is easy to see why the basic file operations are both necessary and
sufficient for implementing database operations: for most applications –
business applications, in particular – they are just the right level of abstraction.
The demands imposed by our applications rarely permit us to move to higher
levels, and we rarely need lower ones. An example of lower-level file operations
is the requirement for a kind of fields, indexes, or records that is different from
the one provided by the standard data files. And, in the rare situations where
such a requirement is important, we can implement it in a language like C.
Similarly, in those situations where we can indeed benefit from higher-level
operations, we can create them by means of subroutines in the same language
as the application itself: we design the appropriate combination of basic file
operations and flow-control constructs, store it as a separate module, and
invoke it whenever we need that particular combination.

For the vast majority of applications, however, we need neither lower nor
higher levels, since the level provided by the basic file operations is just right.
This level is similar to the level provided, for general programming require-
ments, by our high-level languages. With the features found in a language like
COBOL, for instance, we can implement any business application. Thus, it

the lost integration 689chapter 7

is no coincidence that, in conjunction with the operations provided by a
programming language, the basic file operations can be used quite naturally to
implement practically all database operations, and also to link these operations
to the other types of operations: iterative constructs are just right for scanning
a data file sequentially through one of its indexes; nested iterations are just
right for relating files hierarchically; conditional constructs are just right for
selecting records; and assignment constructs are just right for moving data
between fields, and between fields and memory variables. It is difficult to find
a single database operation that cannot be easily and naturally implemented
with the constructs found in the traditional languages.

This flexibility is due to the correct level of abstraction of both the basic file
operations and the traditional languages. This level is sufficiently low to make
all conceivable database operations possible, and at the same time sufficiently
high to make them simple and convenient – for an experienced programmer,
at least. We can so easily implement any database requirement using ordinary
features, available in most languages, that it is silly to search for higher-level
operations.

High-level database operations offer no benefits, therefore, for two reasons:
first, because we can so easily implement database requirements using the basic
file operations, and second, because it is impossible to have built-in operations
for all conceivable situations. No matter how many high-level operations we
are offered, and no matter how useful they are, we will always encounter
requirements that cannot be implemented with high-level operations alone.
We cannot give up the lower levels, thus, because we need them to implement
details, and because the links between database operations, and also between
database operations and the other types of operations, occur at the low level of
these details.

So the idea of higher levels is fallacious for database operations in the same
way it is fallacious for the other types of operations. This was also the idea
behind the so-called fourth-generation languages (see pp. 452–453). And, like
the 4GL systems, the relational systems became in the end a fraud.

The theorists start by promising us higher levels. Then, when it becomes
clear that the restriction to high levels is impractical, they restore – in the guise
of enhancements – the low levels. Thus, with 4GL systems we still use such
concepts as conditions, iterations, and assigning values to variables; in other
words, concepts of the same level of abstraction as those found in a traditional
language. It is true that these systems provide some higher-level operations (in
user interface, for instance), but they do not eliminate the lower levels. In any
case, even in those situations where operations of a higher level are indeed
useful, we don’t need these systems; for, we can always provide the higher levels
ourselves, in any language, through subroutines. Similarly, we will see in the

690 the relational database model chapter 7

present section, the relational database systems became practical only after
restoring the low levels; that is, the traditional file management concepts.

In conclusion, the software elites promote ideas like 4GL and relational
databases, not on the basis of any real benefits, but in order to deprive us of the
programming freedom conferred by the traditional languages. Their real
motive is to force us to depend on expensive and complicated development
systems, which they control.

�

I want to stress again that remarkable quality found in the basic file operations,
the fact that they are at the same level of abstraction as the operations provided
by the traditional programming languages. This is why we can so easily link
these operations and implement database requirements. One of the most
successful of all software concepts, this simple feature greatly simplifies both
programming and the resulting applications.

There is a seamless integration of the database and the rest of the application,
for both data and operations. The fields, the record area, and the record keys
function as both database entities and memory variables at the same time.
Database fields can be mixed freely with memory variables in assignments,
calculations, or comparisons. Transferring data between disk and memory is a
logical extension of the data transfers performed in memory. Most statements,
constructs, and methods we use in programming have the same form and
meaning for file operations as they have for the other types of operations;
iterative and conditional constructs, for example, are used in the same way to
scan and select records from a file as they are to scan and select items from an
array or table stored in memory.

Just by learning to use the six basic file operations, then, a programmer
gains the means to design and control databases of any size and complexity.
The most difficult part of this work is handled by the file management system,
and what is left to the programmer is not very different from the challenges he
faces when dealing with any other aspect of the application.

The seamless integration of the database and the application is such an
important feature that, had we not already had it in the traditional file
operations, we could have rightly called its introduction today a breakthrough
in programming techniques. The ignorance of the academics and the practi-
tioners is betrayed, thus, by their lack of appreciation of a feature that has been
widely available (through COBOL, for instance) since the 1960s. Instead of
studying it and learning how to make the most of it, the software experts have
been promoting the relational model, whose express purpose is to eliminate the
integration. In their attempt to simplify programming, they restrict the links

the lost integration 691chapter 7

between files, and between files and the rest of the application, to high levels of
abstraction. But this is an absurd idea, as we saw, because serious applications
require low-level links too.

Then, instead of admitting that the relational model had failed, the experts
proceeded to reestablish the low-level links. For, in order to make the relational
model practical, they had to restore the integration – the very quality that the
relational model had tried to eliminate. But the only way to provide the low
levels and the integration now, as part of a database system, is through a series
of artificial enhancements. When examined, the new features turn out to be
nothing but particular instances of the important quality of integration:
they are means to link the database to the rest of the application in specific
situations. What is the very nature of the traditional file operations, and in
effect just one simple feature, is now being restored by annulling the relational
principles and replacing them with a multitude of complicated features. Each
new feature is, in reality, a substitute for a particular high-level software
element (a particular database function) that can no longer be implemented
naturally, by combining lower-level elements.

Like all development systems that promise a higher level of abstraction, the
relational systems became increasingly large and complicated because they
attempted to replace with built-in operations the infinity of alternatives that we
need at high levels but can no longer create by starting from low levels. Recall
the analogy of software with language: If we had to express ourselves through
ready-made sentences, instead of creating our own starting with words, we
would end up depending on systems that become increasingly large and
complicated as they attempt to provide all necessary sentences. But even with
thousands of sentences, we would be unable to express all possible ideas. So we
would spend more and more time trying to communicate through these
systems, even while being restricted to a fraction of the ideas that can be
expressed by combining words.

Thus, the endless problems engendered by relational database systems, and
the astronomic cost of using them, are due to the ongoing effort to overcome
the restrictions imposed by the relational model. They are due, in the end,
to the software experts, who not only failed to understand why this model is
worthless, but continued to promote it while its claims were being falsified.

The relational model became a pseudoscience when the experts decided to
“enhance” it, which they did by turning its falsifications into features (see
“Popper’s Principles of Demarcation” in chapter 3); specifically, by restoring the
traditional data management concepts. It is impossible, however, to restore
the seamless integration we had before. So all we have in the end is some
complicated and inefficient database systems that are struggling to emulate the
simple, straightforward file systems.

692 the relational database model chapter 7

The Theory

The Theory
1 1
To understand the relational delusions, we must start with a brief review of
formal logic – that branch of mathematics upon which the relational model is
said to be founded.

Formal logic is treated as a branch of mathematics because its exact princi-
ples and its deductive methods are similar to those of traditional mathematics.
For this reason, it is also called mathematical logic. But, whereas algebra and
calculus deal with numerical values, and geometry with lines and planes, logic
deals with truth values: assertions that can be either True or False. As in other
branches of mathematics, the elements and formulas of logic are expressed
as variables – abstract entities that stand for a large number of particular
instances. Thus, we normally use symbols like x and y, rather than actual
assertions. This is why formal logic is also known as symbolic logic.

The oldest system of formal logic is syllogistics. Created by Aristotle in the
fourth century BC, and further developed over time, syllogistic logic is based
on propositions of the form “all S are P,” “no S is P,” “some S are P,” and “some
S are not P.” (Examples: all fishes are swimmers, some buildings are tall, some
people are not nice.) These propositions consist of two terms (the subject S and
the predicate P) and a quantifier (all, some, none). The propositions assert,
therefore, that a certain thing, or a class of things, possess a certain attribute.
Additional flexibility is attained by permitting negative terms: “all S are not-P,”
“some not-S are P,” and so on. A syllogism consists of three such propositions:
two are premises, and the third one is the conclusion. The premises are related
through one of their terms, and the conclusion uses the other two terms.
(Example: Some A are B, all A are C, therefore some C are B.)

Clearly, many combinations of propositions are possible, but not all consti-
tute valid syllogisms. A syllogism is valid if the conclusion follows by logical
necessity from the two premises, as in the classic inference “All men are
mortal, Socrates is a man, therefore Socrates is mortal.” An example of invalid
syllogisms is “Some dogs are vicious, this animal is not a dog, therefore this
animal is not vicious” (even if the two premises are true, the conclusion can be
either true or false).É

The study of syllogisms involves the classification of the various combina-
tions of propositions, their logical relationships and transformations, and the
methods for determining their validity. It should be obvious that, if we can

É In syllogisms, a reference to an individual entity is interpreted as a class of things that
comprises only one element, and therefore implies the quantifier all.

the theory 693chapter 7

reduce an argument to a structure of propositions consisting of subjects
and predicates, syllogistic logic allows us to determine formally whether a
particular statement can or cannot be inferred from certain premises. In
other words, if we know that the two premises are true, we can determine
whether the conclusion is true or false strictly from the structure of the three
propositions; we don’t have to concern ourselves with the meaning of the terms
that make them up.

Syllogistic logic is seen today as only one of the many systems comprising
the field of formal logic. Modern logic, born in the nineteenth century,
attempts to extend beyond the capabilities of syllogistics the range of discourse
and the types of phenomena that can be represented formally. The benefits of
a formal representation are well known: as with traditional mathematics, it
allows us to build increasingly large and complex entities that are guaranteed
to be valid – simply by combining hierarchically, level after level, entities whose
validity is already established. Conversely, if confronted with an expression too
complex to understand directly, we can determine its validity by reducing it to
simpler entities, one level at a time, until we reach entities known to be valid.
Formal logic, thus, permits us to apply the deductive methods of mathematics
to any type of phenomena.

We also know what are the limitations of formal logic. We can reduce a phe-
nomenon to an exact representation only when its links to other phenomena
are weak enough to be ignored. If we recall the concept of simple and complex
structures, logic systems allow us to create only simple structures; so they are
useful only for phenomena that can be studied in isolation. While common in
the natural sciences, this is rare for phenomena involving human minds and
societies. In chapter 4, for example, we saw the attempts made by scientists to
represent knowledge by means of logic systems. These attempts fail because the
entities that make up knowledge are connected in many ways, not just through
the hierarchical relations recognized by a particular logic system. These
entities can only be represented, therefore, with a complex structure. To this
day, few scientists are ready to admit that most human phenomena cannot be
reduced to an exact, formal model. So they keep inventing one mechanistic
theory after another, hoping to represent mathematically such phenomena as
intelligence, language, and software.

�

Although differing in complexity and versatility, the modern systems of logic
have a lot in common. To create a system of logic, we start by defining its
basic entities – those entities that act as starting elements in the hierarchical
structures created with that system: objects, propositions, etc. Logical variables

694 the relational database model chapter 7

(single letters, usually) are used to represent these entities in definitions and
expressions. Next, we define a set of logical operations – the means of creating
the elements of one level by combining those from the lower level. We also
need some rules of inference – principles that justify the various transformations
performed when moving from one level to the next. These rules serve, in effect,
to restrict the use of operations to those cases where the new element can be
derived from the others only through logical deduction. (For example, the rule
known as modus ponens states that, if we know that whenever p is true q is also
true, then if p is found to be true we must conclude that q is true.) Lastly, we
agree on a number of axioms. Axioms are assumptions taken to be valid by
convention, and which can be employed therefore in logical expressions just as
we do premises. (A common axiom, for example, is the assertion that any
entity is identical to the negation of its negation.) The theorems of a logic
system are the various assertions that can be proved deductively within the
system by manipulating expressions. Clearly, increasingly complex expressions
and theorems can be constructed by combining elements hierarchically, on
higher and higher levels of abstraction.Ê

Despite their formality, there is considerable freedom in designing a logic
system. For example, what is a rule in one system may be an axiom in another,
and what is a theorem may be a rule. What matters is only that the system be
consistent. A system is consistent when no contradictions can arise between the
expressions derived by means of its operations, rules, and axioms. That is, if we
can show that a certain expression or theorem is true, we should not be able to
show in the same system, through a different deduction, that it is false. Another
quality found in a correct logic system is that of independence: every one of its
axioms and rules is necessary, and none can be derived from the others. To put
this differently, if any one of them were omitted, we would no longer be able to
determine the truth or falsity of some expressions or theorems.

The chief difference between logic systems, then, is in their basic entities,
and in the way these entities are combined to create correct expressions
(what is known as well-formed formulas). And, once we reach a hierarchical
level where expressions can only yield truth values, True or False, the same
operations can be used to manipulate them in any logic system. The starting
elements themselves may be entities restricted to truth values, but many
systems have starting elements of other types. In syllogistic logic, we saw, the

Ê Note that, when used with the simple structures created with logic systems, the
term “complexity” is employed here (as it always is when discussing simple structures)
to indicate the shift to a higher level within a structure, or to a structure with more
levels. (The levels of complexity in a simple structure are its levels of abstraction.) So
don’t confuse this complexity with the complexity of complex structures, which is due
to the interaction of structures.

the theory 695chapter 7

starting elements are subjects and predicates (things and attributes), and only
their combinations are propositions that can be true or false.

The most common logical operations, thus, are those that manipulate truth
values. And among them, the best known are conjunction, disjunction, and
negation (AND, OR, and NOT). Only conjunction and negation are usually
defined as basic operations, though, since disjunction can be expressed in
terms of them: A OR B is equivalent to NOT(NOT A AND NOT B). Additional
operations (equivalence, implication, etc.) can be similarly defined in terms of
conjunction and negation, or by combining previously defined operations.
A truth function is an expression involving operands that have truth values, so
its result is also a truth value. This result can then act as operand in other
expressions.

One way of determining the result of a truth function is with truth tables.
A truth table has a column for each operand used by the function, and a
row for each possible combination of truth values (hence, two rows for one
operand, four for two operands, eight for three operands, etc.). A final column
depicts the truth value of the result, and there may be additional columns for
intermediate results. (Figure 4-2, p. 330, illustrates the concept of truth tables.)

Another characteristic common to all logic systems is that the validity
of their low-level elements, and of their axioms and premises, cannot be
determined from within the system. A logic system only guarantees that, if
certain expressions are known to be true or false, then the truth or falsity of
other expressions – derived from the original ones strictly through the rules
and operations permitted by the system – can be determined with certainty. It
cannot verify for us whether the expressions we start with are true or not.

For example, a premise like “A is larger than B” could be used with numbers
in one application and with animals in another. In either case, it would be
true in some instances and false in others. But within the logic system, this
statement appears simply as a symbol, say, S; and it is handled the same way
regardless of what A and B stand for, or whether the statement is false while
believed to be true. It is our responsibility to ensure that it is true – by means
external to the system – before using it as premise in a particular application.

Logic systems, then, are only concerned with the form and structure of
elements and expressions, not with their interpretation. Needless to say,
though, both aspects are important in actual applications. If all we want is that
the conclusion be sound logically, its correct deduction from premises is
indeed sufficient. But for the system to be of practical value, the deduction and
the premises must be correct.

Thus, along with their limitation to simple, isolated phenomena, their
dependence on what is usually just an informal verification of premises and
starting elements reduces considerably the usefulness of formal logic systems

696 the relational database model chapter 7

in real-world applications. The delusions of the relational database model, for
instance, stem from overlooking the severity of these limitations, as we will
soon see.

�

The simplest system of logic is the one known as propositional calculus. The
basic elements in this system are whole propositions, and expressions are
formed by combining propositions through logical operations, as described
earlier. Although expressions of any complexity can be formed in this manner,
this system is handicapped by its inability to analyze the individual proposi-
tions. For example, if two propositions comprise subject and predicate, as
in syllogisms, the system cannot distinguish between the case where the
propositions share their subject or predicate, and the case where they are
unrelated. The chief quality of propositional calculus is its simplicity, so it is the
system of choice in applications where the elements can be treated as either
atomic entities or logical expressions built from these entities. The Boolean
logic system, upon which digital circuits and many software concepts are
founded, is a type of propositional calculus.

A more versatile system of logic, and the one that served as inspiration for
the relational database model, is predicate calculus. The basic elements in this
system are subjects and predicates, as in syllogistic logic, but a predicate can be
shared by several subjects in one proposition. A predicate, in other words, is
seen as an attribute that can be possessed by one, two, three, or generally n
different elements. And when possessed by more than one, it serves not only
as attribute, but also to relate them. Each set of n elements related through a
predicate is known as an n-tuple (or tuple, for short).

An expression like P(x,y,z) – which says that the elements x, y, and z are
related and form a 3-tuple through the predicate P – is a basic proposition in
predicate calculus. Since the elements are represented with variables, the
expression stands for any number of such tuples. Each element has its own
domain of permissible values, and when we substitute actual values for the
three variables, the relationship will generally hold for some combinations of
values but not for others. So the expression will be true for some tuples and
false for others. The totality of tuples that share a particular predicate (or,
usually, just those for which the expression is true) is called a relation.

An example of a relation is the sets of three integers, a, b, and c, each one
selected perhaps from a different range of values, and fulfilling the condition
that a is greater than b and b is greater than c. An expression like G(a,b,c),
representing this relationship, is then true for some sets of values and false for
others. Another example is the sets of five men, p, c, b, n, and g, who could

the theory 697chapter 7

have been selected from various domains to act as crews in WWII B-25
bombers: pilot, co-pilot, bombardier, navigator, and gunner. An expression
like B(p,c,b,n,g), representing this relationship, is true only for those sets of men
that formed actual crews.

Basic propositions can be combined by means of logical operations, in
the usual manner, to form more complex propositions. Thus, we can form
relations that are a logical function of other relations. Take, for example, these
two relations: P(x,y) as the sets of two elements, x and y, related through P; and
Q(y,z) as the sets of two elements, y and z, related through Q. The expression
P(x,y) AND Q(y,z) may then be defined to mean, depending on the application,
either the sets of two elements common to P and Q, or the sets of three
elements, x, y, and z, for which both relations hold. Similarly, the expression
P(x,y) OR Q(y,z) may be defined to mean either the sets of two elements that
exist in either relation (excluding duplicates), or the sets of three elements for
which either relation holds.

Additional flexibility can be achieved in expressions by binding each
variable with the universal quantifier ∀ (which says that the relation holds for
all instances of that variable) or with the existential quantifier ∃ (which says
that the relation holds at least for some instances of that variable). These
quantifiers become then part of the expression, and participate in operations
and transformations, much like operators. Thus, if ∀ is applied to both x and
y in the expression R(x,y), the expression is true only if the relation R holds
for all possible pairs of values of x and y; but if ∃ is applied to x and y, the
expression is true even if the relation holds for just one pair of values.

�

This brief review will suffice for our purpose, to assess the mathematical merits
of the relational database model. It is worth mentioning, though, that many
other systems of logic have been designed. The system we have just examined,
for example, is called first-order predicate calculus, and is only the simplest of
the predicate calculi. (In higher-order systems, the quantified variables and
the predicates can themselves be logical expressions.) Some logic systems
include special axioms, rules, and operations to deal with such imprecise
concepts as necessity, possibility, and contingency, which lie outside the
scope of propositional and predicate calculi. Other systems attempt to deal
with propositions whose truth value changes over time, and some systems
even attempt to reduce to logic such moral issues as belief, obligation, and
responsibility.

As I have already stated, the motivation for these systems is to bring
phenomena involving minds and societies into the range of phenomena that

698 the relational database model chapter 7

can be represented with formal, mechanistic methods. And they have had very
little success, because few human phenomena are simple enough to be reduced
to a mechanistic representation.

Programming phenomena are largely human phenomena. So the relational
model is, ultimately, an example of the attempts to find a mechanistic model
for phenomena that are, in fact, too complex to represent mechanistically.
Thus, apart from our interest in the theories of software engineering as
pseudosciences in their own right, their analysis complements our study of
mechanistic delusions, and serves to remind us of the degradation of the idea
of research. We saw in chapters 3 and 4 the childish attempts made by some of
our most famous scientists to represent behaviour, intelligence, and language
with diagrams, or formulas, or logic. And the same fallacy is committed with
software theories: the mechanists discover a model that explains isolated
aspects of a complex phenomenon, and they interpret this trivial success as
evidence that their theory is valid, and hence worth pursuing.

So, by invoking the official definition of science – which is simply the
pursuit of mechanistic ideas, whether useful or not – academics can now spend
their entire career developing worthless theories. Merely because mechanism
works in fields like physics or chemistry, they feel justified to seek mechanistic
explanations in psychology, or sociology, or linguistics, or economics, or
programming. Then, because of our mechanistic culture, we admire and
respect them, and regard their activities as serious research – even as we see
that their theories never work, and that they resort to deception in order to
defend them.

2

2
Let us see now how predicate calculus was adapted for database work. The
inventor of the relational model is E. F. Codd, who presented his ideas in a
series of papers starting in 1969.Ë We are not concerned here with the evolution
of the model in the first few years, or with the specific contributions made by
individual researchers, but only with the relational database ideas in general.
And, in fact, apart from a few refinements, the theory presented by Codd in
his original papers depicts quite accurately what became in the end the formal
relational model. In 1981, Codd received the prestigious Turing award for his
invention.

Ë The first paper was published in 1969 (as an IBM document), but it was only the second
one, published the following year, that was widely read: E. F. Codd, “A Relational Model of
Data for Large Shared Data Banks,” Communications of the ACM 13, no. 6 (1970): 377–387.

the theory 699chapter 7

Recall the organization of data files as records, and fields within records. To
represent a file by means of predicate calculus, the fields are seen as the basic
elements of a logic system, and the records as tuples – sets of n elements, where
n is the number of fields in a record. Each field can possess a value from a
domain of permissible values. Thus, if the field is a part number, the domain
is all valid part numbers; if a vendor name, the names of all possible vendors;
if a quantity, all numeric values that are valid quantities; and so on. Generally,
some combinations of values exist as actual records in the file, and others do
not; and, by convention, the relationship that links these fields holds only for
those combinations that exist. In other words, an expression representing this
relationship is deemed to yield the value True when the tuple actually exists in
the file, and the value False otherwise. As in logic, the totality of tuples (i.e.,
records) in the file is called a relation.

To define an employee file with four fields, for instance, we would use a
logical expression like E(a,b,c,d), where a is the employee number, b the name,
c the hourly rate, and d the number of hours worked. E stands then for the
predicate that relates the four fields. E says, in effect, that each set of four
values, taken from the respective domains of permissible values (all possible
employee numbers, names, rates, and hours), are related in such a way that they
represent a potential employee. The expression is true for the sets that actually
exist in the file, and false for the others.

To this basic system, which matches the system of predicate calculus, a
number of features were added in order to make the relational model suitable
for database work. One feature is the idea of field names. In predicate calculus,
the elements are identified by their relative position within the tuple, but this
is impractical for database fields. Fields, therefore, are given names (QUANTITY,
VENDOR-NO, INVOICE-DATE, etc.); we can then refer to them by their name, so
their relative position within the physical record (as they are stored on disk, for
example) is immaterial. These names are sometimes described as a special
tuple that exists in every file but does not take part in operations; its function
is similar to the top row in a typical table – the row that contains the column
headers.

Another feature is the idea of a key: one field in the record is designated as
key, and its value in each record must be unique within the file; alternatively,
the key can consist of several fields, and then their combined values must be
unique. The key, therefore, can be used to identify a specific record within the
file, or to order the records in a logical sequence (so the actual sequence of
records, as they are stored on disk or as they were added to the file, is irrelevant
to the application). It is often useful to have several keys for the same record;
in this case, one is designated as the primary key, and the others are called
candidate keys. Lastly, in order to relate files, a field (or a group of fields) can

700 the relational database model chapter 7

be designated as a foreign key. This type of key is used to identify the records
of another file, where that field usually functions as the primary key. The
customer number in an invoice file, for example, is a foreign key that relates
the invoice file to the customer file, where the customer number is the primary
key. The values stored in a foreign key need not be unique in each record; thus,
we can have several invoices with the same customer number.

�

It should be obvious, if you recall our discussion of indexed data files and the
basic file operations, that the relational concepts we have examined so far are
identical to the traditional data file concepts. The only difference is in the use
of terms like “relation” and “tuple” instead of the terms traditionally associated
with data files. The relational theory is rich in new terminology. Thus, in
addition to the concepts and terms taken from logic, we are told that files are
best perceived as tables: the rows of these tables are then the records, and the
columns are the fields. Also, the term attribute is often used for columns. So
the accepted relational terms are tables and relations, rows and tuples, columns
and attributes.Ì

While tables still resemble the traditional data files, the way we access them
is entirely different. The traditional file operations are based on indexes, and
are used through the flow-control constructs of a programming language. The
relational operations, on the other hand, are defined in the manner of logical
operations. In predicate calculus, we saw, operations like AND and OR take
relations as operands and produce a new relation; similarly, the relational
operations take tables as operands and produce a new table.

In predicate calculus, the tuples in the resulting relation consist of variables
that were elements in the tuples of the original relations. When the same values
that made up the tuples of the original relations are substituted for the variables
of the new tuples, the expression that represents the new relation may be true
for some combinations and false for others; and the new relation is defined as
those tuples for which the expression is true.

Similarly, the operations in the relational model are defined in such a
manner that the columns of the resulting table are selected from among the
columns of the original tables. Then, depending on the operation and the
values present in the rows of the original tables, only some of the rows are
retained in the new table. In other words, each operation has its own definition

Ì Generally, tables, rows, and columns are considered informal terms, while relations,
tuples, and attributes are the formal ones. Since the entities described by these terms are
identical to the traditional files, records, and fields, I am using both the new and the
traditional terms in the discussion of relational databases.

the theory 701chapter 7

of truth and falsity, and if we represent the rows with a logical expression, the
new table is defined as those rows containing combinations of values for
which the expression is true. For example, if we represent a customer table as
C(a,b,c,d) and an orders table as O(a,e,f) (where the lower-case letters stand for
columns, and a is the customer number), a particular operation could be
defined as follows: create a new table R(a,b,e), whose rows are those pairs of
rows from the customer and orders tables where a has the same value in both.
The expression R(a,b,e) is said in this case to be true for these rows (i.e., where
the customer matches the invoice) and false for the others. This expression –
that is, the new table – can then be combined with others in further operations.

There are five basic operations: The UNION of tables A and B is a table
containing the rows present in either A or B or both (A and B must have the
same number of columns, and rows common to A and B appear only once in
the new table). The DIFFERENCE of tables A and B is a table containing those
rows present in A but not in B (A and B must have the same number of
columns). SELECTION takes one table, A, and produces a new table containing
only those rows from A for which an expression involving one of the columns
is evaluated as true (for example, only those rows where the value in a given
column is greater than zero). PROJECTION takes one table, A, and produces a
new table containing all the rows from A, but only some of its columns. The
PRODUCT of tables A and B is a table whose columns are the columns of A plus
those of B, and whose rows are every combination of rows from A and B; each
row, thus, is built by taking a row from A and extending it with a row from B
(so, for example, if A has 10 rows and B has 20 rows, the new table will have
200 rows).

Additional operations may be necessary in practice, but they can always be
expressed as a combination of the five basic ones. For example, to reduce a
table to only some of its rows and columns, we perform first a SELECTION to
retain the specified rows, and then a PROJECTION on the resulting table to retain
the specified columns. (Note that the order in which we perform these two
operations is immaterial.) Most database systems, in line with their promise to
give us higher levels of abstraction, provide some of the most common
combinations in the form of built-in operations.

PRODUCT, in particular, is rarely useful on its own, and is normally employed
as just the first step in a series of operations. JOIN, for instance, consists of
PRODUCT followed by SELECTION and then by PROJECTION. JOIN selects from all
the combinations of rows in tables A and B those rows where a particular
column in A stands in a certain relationship to a particular column in B. Most
often, JOIN is used to combine two tables on the basis of equality of values. For
example, the JOIN of a customer table and an invoice table based on the
customer number (present in both) will result in a table that has the combined

702 the relational database model chapter 7

customer and invoice columns, but (through SELECTION) only the rows where
the customer number was the same in both tables. JOIN, thus, will match
invoices and customers: it will have one row for each invoice, and each row will
include the customer columns in addition to the invoice columns. (The
PROJECTION in the last step serves to eliminate one of the two columns contain-
ing the customer number, since they are identical.) JOIN can be performed on
key columns as well as non-key columns, and its chief use is to relate files.

For most operations and combinations of operations, we can understand
intuitively how the resulting table is derived from the original ones. It is
possible, though, to define these operations formally, as transformations
based on the operations of formal logic. There are several ways to do it: the
relational algebra describes them as operations on tables, as we just saw;
the relational calculus – of which there are two versions, tuple calculus and
domain calculus – describes them with logical expressions similar to those
used in predicate calculus. The operations are the same; only the way they
are described differs.

The value of the relational model is due to expressing the data in the
resulting table as a logical expression of the data in the original tables. Thus, if
the original data is correct, the final data will also be correct. When permitted
to combine records and fields at will – with the traditional file operations, for
instance – a programmer may make mistakes and generate files that do not
reflect correctly the original data, or generate files containing inconsistent
data. This cannot happen with a relational database. Because we are restricted
to operations on whole tables, and because the relational operations introduce
no spurious dependencies between fields, we can be certain that the final
table will express the same data and relationships as the tables we start
with. In a database query, for instance, no matter how many operations and
combinations of tables are involved, the final entities are guaranteed to be the
same as the original ones – only arranged differently. It is impossible, in fact,
to generate wrong or inconsistent data if we restrict ourselves to the relational
operations.

The relational model permits us to implement any database requirements
that we are likely to encounter in applications. The restriction to whole tables
is not really a handicap, because any portion of a table – any subset of rows and
columns – is itself, in effect, a table. We can even isolate a single row (with
appropriate SELECTIONs), and that row is treated as a table and can be used in
further operations. Even one column of that row can be isolated (with a
PROJECTION), and that single element still is, as far as the relational operations
are concerned, a table.

Note that the resulting table need not be a real entity. When using SELECTION
to answer a query, for example, the database system may simply display the

the theory 703chapter 7

selected rows, without actually creating a table. Generally, to perform a series
of operations, the system may create some intermediate tables or use only the
original ones, and may employ indexes or other expedients. But we don’t
have to concern ourselves with these details, because a good system will
automatically discover the most effective alternative. All we need to do is
specify, through the relational algebra or calculus, the original tables and the
desired operations.

What we gain with the restriction to tables, then, is simplicity and accuracy:
all we need now is a few operations, which are founded on formal logic and
can be safely combined into more complex ones. Just as importantly, these
operations permit us to view the data from a higher level of abstraction: we no
longer need to access individual records, as in the traditional file systems; nor
do we need file scanning loops, or intricate conditions to select records and to
relate files. Whether our requirements involve single tables, or combinations
of tables, or portions of tables, or just one row or column, all we need now is
the high-level relational operations. Thus, a relational database is said to be
“tables and nothing but tables.”

3

3
It is not enough for the database operations to conform to a logic system. The
relational theory also requires that the data be stored in a logical format.
Specifically, the fields that make up the individual tuples must be simple,
indivisible entities, with no unnecessary dependency between them. Tables
that adhere to this format are said to be normalized, and the process of
bringing them to this format is called normalization. There are several levels of
normalization, each one a more stringent enforcement of these principles. The
levels are known as first normal form, second normal form, third normal form,
etc., and are abbreviated as 1NF, 2NF, 3NF, etc.

The fundamental requirement is 1NF. For a table to be in first normal form,
each field must be a simple entity – a single, atomic value. In traditional data
files, a field may consist of a series of values, or a multidimensional array of
values, or a hierarchical structure of values. A twelve-month transaction
history, for example, can be stored in one field of a customer record as an array
of twelve rows by three columns – month, quantity, and amount. The relational
model prohibits this format: data that comprises a set of related values must be
stored in a separate table, where each value has its own column. Thus, to reduce
the customer table just described to 1NF, we must create a separate table for the
transaction history. The columns in this table will be the customer number,
month, quantity, and amount, and the key will be the combination of customer

704 the relational database model chapter 7

number and month. For each row in the customer table there will be twelve
rows in the transaction history table.

It should be obvious why the first normal form is so important. The
relational operations expect to find tuples, and cannot process multiple values
– data stored, in effect, as tuples within tuples. To deal with this format we need
a more complex database model, and operations that can process more than
just rows and columns.

The other normal forms deal with the problem of field dependency; specifi-
cally, the dependency of one field on another within a tuple. Since such a
relationship is likely to cause data redundancy and inconsistencies, the only
type of relationship permitted between fields within a tuple is the obvious
dependency of the tuple’s fields on the tuple’s unique key. All other field
relationships must be implemented by moving the fields to other tables and
linking the tables logically.

An example of misplaced dependency is a customer orders table where the
key is the combination of customer number and order number, and the other
fields are the customer name and address, and the order date, quantity, and
amount. All these fields depend on the customer number; but, whereas order-
specific data like quantity and amount must indeed be included in each
order, fixed customer data like name and address must not. This design is
wrong because, while a customer’s name and address are the same for all his
orders, we repeat them in every order. The faulty design, thus, will cause data
redundancy. Worse still, it will cause various inconsistencies (“anomalies,” in
relational terminology) when we run the application: first, if a customer’s name
or address changes, we may have to update not one but several rows – all his
outstanding orders; second, we can store a customer’s name and address in the
database only if that customer has at least one outstanding order.

The solution, of course, is to store the name and address in a separate table,
where the key is the customer number and there is only one row per customer.
From the order rows we can then access the appropriate name and address by
using the customer number as link. The process of normalization, thus,
consists in creating two tables from one. In general, we eliminate a misplaced
dependency by increasing the number of tables: we extract the fields with
repeated values and place them in a separate table, where we discard the
duplicate rows; then we choose a field (or a combination of fields) with unique
values to act as a key for the new table and as a link to the original one.

The redundancy and inconsistencies were caused, obviously, by an incorrect
design – a design that did not match the application’s requirements: the name
and address are the same for all orders, and yet we repeated them in every
order. With the fields in a separate table, the design matches the requirements,
and consequently there is no redundancy or inconsistency.

the theory 705chapter 7

The normalization theory, however, describes the problem of incorrect
design as a problem of misplaced dependency: the name and address depended
on only a portion of the key (the customer number), instead of depending on
the whole key (the combination of customer and order numbers), as do the
order date, quantity, and amount. And we correct this dependency by placing
the name and address in a separate table – a table where the customer number
is the whole key. Clearly, what we do is the same as before, match the design to
the requirements; but the normalization theory describes this process as the
elimination of misplaced dependencies.

Few people would design a database with the kind of redundancy we have
just examined. The theorists, nevertheless, treat the subject of normalization
very seriously. Various types of field dependencies are defined and studied in
great detail, along with the steps required to eliminate them. Thus, five types
were discovered, each one more rare and more subtle. Tables, we saw, are
already in first normal form when their fields are single elements. Then, after
eliminating one type of dependency, they are in second normal form (2NF).
After eliminating a second type, they are in third normal form (3NF). This
is followed by a level known as Boyce/Codd normal form (BCNF), and
then by the fourth and fifth normal forms (4NF and 5NF). When in fifth
normal form, tables are in the ultimate relational format, devoid of any
misplaced dependencies. Very few databases, however, require all five levels of
normalization. If an application is not complicated, tables will likely be in their
highest possible normal form after just one or two levels, simply because there
are no other dependencies. In any case, many experts consider 3NF or BCNF
adequate, and don’t even mention 4NF and 5NF.

The second and higher normal forms are in reality very similar, and their
differences need not concern us here. The reason for having several types of
normalization and a numbering system is largely historical: while the first
normal form was described by Codd in his original papers, the others were
incorporated into the relational theory later – as they were discovered, one by
one. (More specifically, the higher normal forms became necessary when
the relational model was expanded to include updating operations.) Thus, it
is worth noting that the theorists needed several years, and innumerable
papers and conferences, to discover what an experienced programmer could
have told them from the beginning. For, the problems caused by misplaced
dependencies, as well as their solutions, are identical in relational databases
and in databases created with traditional data files; only the attempt to treat
these problems formally is new. We will return to this subject later, in our
discussion of the relational delusions.

706 the relational database model chapter 7

The Contradictions

The Contradictions
1 1
To summarize, the relational model is an attempt to turn database program-
ming, as well as database use, into an exact, formal activity. Since data records
resemble the so-called tuples of predicate calculus, and since they can be
manipulated with operations resembling logical operations, the theorists
concluded that the rigour and exactness of mathematical logic can now be
attained in database work. All we have to do is restrict the files and records to
a certain format, and restrict the operations to a high level of abstraction; we
have then a mathematical guarantee that the answers to queries will reflect
accurately the data and relationships present in the database.

From the start, then, the relational theory was grounded on the curious
principle that only some aspects of the database need to be covered by the
formal, mathematical model; the others can remain informal. This principle is
sometimes expressed with the statement that certain aspects lie within the
scope of the formal model, while others are outside its scope. Thus, if we call
“relational model” the whole body of relational principles and features, the
“formal relational model” constitutes only a small part of it.

Within the scope of the formal model lie, as we just saw, the format of files
and records, the concept of queries, and the use of high-level query operations.
The theorists recognize, of course, that there is a lot more to databases and
applications. So, while asking us to treat these aspects formally, they expect
us to deal with the other aspects of the database informally: by relying on
traditional programming methods and on personal skills.

In particular, operations that update the database – adding and deleting
records, modifying the data in fields, creating and deleting files – cannot be
treated formally, and therefore lie outside the scope of the formal model. Note
that this is a necessary consequence of the model’s mathematical foundation:
predicate calculus is concerned with the logical expressions that use the tuples
of a given relation, not with the way the tuples became part of that relation, or
with the way the elements of these tuples acquired their current value. Thus, if
the updating of tuples and relations lies outside the scope of predicate calculus,
it must also be left out of the formal relational model.

Data normalization, too, is largely informal. Only the first normal form,
which deals with the record format, is part of the formal model. The second
and higher normal forms are only needed in order to prevent redundancy
and inconsistencies when updating the files; thus, if the updating operations
are informal, so must be the normalization. In any case, the process of
normalization entails an interpretation of the application’s requirements:

the contradictions 707chapter 7

whether or not a certain field depends on another can be determined only from
the way we intend to use them in the application, something that no formal
system can know.

Another aspect of the database that cannot be formalized concerns data
integrity – the countless rules that ensure the validity of the updating operations
within the context of a particular application. Again, what is valid in one case
may be invalid in another, and only we can decide how to interpret the result
of a certain operation.

Lastly, the formal model does not include the means we use to specify the
query and updating operations. These means – a set of commands, or a
database language – can only be used informally. As is the case with any
programming language, we can define with precision the commands or
statements themselves, but not their effect when combined to perform a
particular task in a given application.

In conclusion, the updating operations, the normalization process, the
integrity rules, and the database language, even though needed in any applica-
tion that uses relational databases, lie outside the scope of the formal relational
model. So they can be no more formal or exact than they are in applications
using traditional data files.

What, then, is the meaning of the relational model? What is the point,
for instance, of including in the formal model the query operations while
excluding the updating operations? Clearly, the two types of operations
are equally important in an application. What is the value of a model that
guarantees correct answers to queries while being unable to guarantee the
correctness of the data upon which the queries are based?

The theorists acknowledge that the formal model is insufficient, that we
must depend on some informal operations too, but they fail to appreciate the
implication: if we must deal with certain aspects of the database by relying
largely on personal knowledge, the inexactness of this method will annul the
exactness of those aspects treated formally. The result of a process cannot be
more exact than the least exact of its parts. The answer to a query may well
be mathematically derivable from the original data, but this quality of the
relational model has little value if we cannot prove that the original data is
correct to begin with.

�

We just saw how, in order to attain a practical relational model, the theorists
were compelled to separate it into a formal and an informal part. But this is
not all. There is one aspect of the database that is considered to lie, not only
outside the scope of the formal model, but outside the scope of the relational

708 the relational database model chapter 7

model altogether: the actual, physical implementation of the database and
operations.

Like the logic system that inspired it, the relational model is a mathematical,
and hence abstract, concept. This limitation, however, is interpreted by the
theorists as a quality: thanks to its abstract nature, they say, we no longer need
to be concerned with such issues as the system’s performance (the time required
to execute the database operations). In general, the independence of the
logical database structures from their physical implementation permits us to
access the data from a higher level of abstraction. Here are some statements
expressing this view: “The ideas of the relational model apply at the external
and conceptual levels of the system, not the internal level. To put this another
way, the relational model represents a database system at a level of abstraction
that is somewhat removed from the details of the underlying machine.”É

“The eight relational operators express functionality without concern for
(or knowledge of) technical implementation. An obvious benefit is that
relational users apply relational operators without concern for storage and
access techniques.”Ê “The aim of the relational model is to represent logically
all relationships, and hence alleviate the user from physical implementation
details.”Ë “The relational data model removes the details of storage structure
and access strategy from the user interface.”Ì

The operations of a mathematical system are assumed to occur instantane-
ously; we don’t think of addition or multiplication, for instance, as physical
processes that may take some time. Similarly, the high-level operations of the
relational model – selection, projection, join, and the rest – are assumed to be
executed instantaneously by the database system. Incredibly, while presenting
the relational model as the foundation of practical database systems, the
theorists insisted that the subject of performance lies outside the scope of
the model. Everyone knew, of course, that the application’s performance is
limited by the speed of the computer’s processor, and that databases rely on
physical devices like disk drives, which impose additional speed limits on data
access. Nevertheless, the claim that it is possible to design real databases
without having to concern ourselves with their performance was received with
enthusiasm. All we need to do, promised the theorists, is specify the relational

É C. J. Date, An Introduction to Database Systems, 6th ed. (Reading, MA: Addison-
Wesley, 1995), p. 98.

Ê Candace C. Fleming and Barbara von Halle, Handbook of Relational Database Design
(Reading, MA: Addison-Wesley, 1989), p. 38.

Ë M. Papazoglou and W. Valder, Relational Database Management: A Systems Program-
ming Approach (Hemel Hempstead, UK: Prentice Hall, 1989), p. 30.

Ì Ken S. Brathwaite, Relational Databases: Concepts, Design, and Administration (New
York: McGraw-Hill, 1991), p. 26.

the contradictions 709chapter 7

operations, just as we do in mathematics. The database system will analyze the
request, determine the most efficient implementation, and then execute the
necessary low-level operations.

Separating the performance issue from the relational model is just as
illogical as separating the updating operations from the query operations. It
shouldn’t come as a surprise, therefore, that the relational database systems
have proved to be incurably slow, and that, in addition, their users have
remained as preoccupied with the performance issue as those who use the
traditional file operations.

It is absurd to expect the database system itself to know what is the
most efficient implementation of a high-level request. It is absurd because
most requests do not depend on database structures alone, but also on such
other structures (i.e., aspects) of the application as its various processes
(see pp. 345–346). To discover the most efficient implementation we must link,
therefore, the database structures with the other structures that make up the
application. These links, moreover, occur usually at the low level of database
fields, memory variables, and individual statements; so the only way to
implement them is through traditional programming means.

The inefficiency caused by the lack of low-level links, then, was the main
reason for the continued preoccupation with the performance issue. And this
inefficiency was also the reason for annulling, in the end, two fundamental
relational principles: the restriction to normalized files, and the restriction to
high-level operations.

�

We know, of course, why the theorists separated the relational model into
formal and informal aspects: because this is the only way to attain a precise,
mechanistic representation of the database and the database operations. If we
want to represent an indeterministic phenomenon with a deterministic theory,
we must exclude from the phenomenon those aspects that prevent such a
representation.

Thus, we can start with any phenomenon, no matter how complex, and
invent an exact theory – a mathematical model – that depicts what we wish
the phenomenon to be. Then, we match the phenomenon to the theory by
eliminating, one by one, those aspects that contradict the theory – by branding
them as “informal” parts of the phenomenon. If we eliminate enough aspects,
we are certain to reduce the phenomenon eventually to a version that is simple
enough to match the theory.

But this is a trivial accomplishment – we knew all along that it could be
done. It is impossible, in fact, to fail in this project, if we place no limit on the

710 the relational database model chapter 7

number of aspects that we are willing to eliminate. Mechanistic projects of this
nature are, therefore, intrinsically pseudoscientific. This is true because the
concept of separating the phenomenon into aspects that are, and aspects that
are not, within the scope of the model is unfalsifiable: since we are free at any
moment to exclude any number of additional aspects in order to make the
model work, there is no condition under which we can say that a mechanistic
model cannot be found.

The issue, then, is not whether we can find a mathematical model for
the phenomenon of a database, as this is always possible by simplifying the
phenomenon. Rather, the issue is whether, by the time we simplify the phe-
nomenon sufficiently to have an exact model, such a model is still meaningful.
It is quite easy to discover mathematical models for individual aspects of
software phenomena. The theorists happened to discover a database model
grounded on predicate calculus, but with a little imagination we could find
any number of other models. The real challenge, again, is not to discover a
mathematical model by simplifying the phenomenon, but to discover a useful
model for the original, complex phenomenon.

So, like all mechanistic delusions, the relational model failed because its
mathematical foundation is insignificant: we can represent mathematically
only a small fraction of the concepts involved in programming and using a
database. If we were to rely on the original relational model, we would perhaps
enjoy the promised benefits, but only with small and simple databases; we
would be unable to develop the kind of databases we need in real applications.

Having failed as a practical concept, the relational model was rescued by
expanding its informal aspects – precisely those aspects that had been excluded
from the formal, mathematical model. The early works discuss in detail the
formal model, including the various types of query operations, but mention
only briefly the informal aspects – the updating operations, the integrity
and performance problems, and the database language.Í These aspects are
presented merely as miscellaneous features needed to support the formal
model in actual applications. In the end, however, it is precisely these features
(the database language, in particular) that became the main concern of
relational database systems, while the formal model declined in importance
and became practically irrelevant.

Specifically, the restriction to normalized files and the restriction to high-
level operations were both lifted; and no one, of course, is using databases
through mathematical logic. Today’s relational systems are promoted by
praising the power of their programming language (usually SQL), the power of

Í See, for example, Codd’s original paper, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, no. 6 (1970): 377–387. The other informal
aspect (the second and higher normal forms) is not mentioned at all.

the contradictions 711chapter 7

certain features described as integrity functions (but whose true role is to
bypass the limitations of the high-level operations), and the power of a variety
of new data formats and low-level file operations. In other words, while the
power of the original model was said to derive from its formal, mathematical
foundation, the power of what is seen today as the relational model derives
entirely from informal concepts – concepts that are practically identical to the
traditional ones. We will analyze this degradation in “The Third Delusion.”

2

2
When studying the relational model and its evolution from a mechanistic
fantasy to a pseudoscience, we can distinguish three major delusions. These
delusions are summarized below; then, in the following subsections, we will
study them in detail.

The first delusion is the belief that the relational model’s mathematical
background is an important quality. It is true that the model is grounded upon
certain mathematical principles, and that these principles guarantee the
soundness of certain database operations. But this quality constitutes an
insignificant part of the phenomenon of a database: we can ground a database
on mathematics only after limiting the data to a certain format, after separating
the database from the rest of the application, and after restricting its use
to queries expressed through high-level operations. Important aspects –
the operations that modify the database, and the links to the rest of the
application’s logic – are not included in the mathematical model. Thus, we must
deal with the most difficult aspects of database programming informally, just
as we do when using the traditional file operations.

The second delusion is the belief that the principles of normalization are
an essential part of the relational theory. In reality, data normalization is a
totally useless concept, even within the relational model. It is a contrived
theory that attempts to eliminate data redundancy and inconsistencies by
identifying misplaced field dependencies. But misplaced dependencies occur
only in an incorrectly designed database. So, in order to justify the need
for normalization, the theorists ignore the application’s requirements and
deliberately create an incorrect database; then, they use normalization to
convert it into a correct one. The theorists also delude themselves when
claiming that they have turned database design into a formal, exact procedure.
All they do, in fact, is discuss formally their invention, the various types of field
dependencies; the design problem itself has remained as informal as before.

The third delusion emerged when the relational model was found to
be impractical. In order to reduce them to a mathematical representation,

712 the relational database model chapter 7

the database format, relationships, and operations were simplified so much
that very few actual requirements could be implemented. Consequently, the
theorists were compelled to “enhance” the model. And this consisted in
restoring, one by one, those features that had been eliminated in the first two
delusions in order to attain the exact, formal representation. By the time
the model was versatile enough to be practical, there was nothing left of the
preciseness of the original theory, not even in that narrow domain where the
database operations had indeed been mathematical. The third delusion, thus,
is in the belief that the original restrictions are not really necessary; in other
words, the belief that we can enjoy the benefits of an exact theory without
having to adhere to its principles.

Historically, the first two delusions can be said to make up the original idea,
while the third one emerged when trying to implement that idea. The first two
are a manifestation of the mechanistic fallacies; that is, attempting to represent
a complex phenomenon with simple structures. And the third one is the
consequence of this attempt. Since the only way to save a fallacious theory from
refutation is by making it a pseudoscience, the software experts rescued the
relational model by turning its falsifications into what they describe as new
relational features. But what they are doing is merely to restore those features
which they had eliminated previously in order to make the theory mechanistic.
So, if the first two delusions demonstrate the naivety of the software experts,
the third one demonstrates their dishonesty: they continue to praise the
benefits of the relational model even while annulling the relational concepts
and replacing them with the traditional ones.

�

The relational database theory is an excellent example of what I have called the
new pseudosciences. Even better than structured programming or object-
oriented programming, it can serve as a model of the modern mechanistic
delusions.

Recall how these delusions evolve. The scientists start by noticing one aspect
of a complex phenomenon; so they extract, from the system of structures that
make up the phenomenon, the structure depicting that one aspect. Then,
they enthusiastically announce a formal, mathematical theory based on this
structure alone – claiming, in effect, that a complex structure can be reduced
to a simple one. A further benefit of having only one structure, they say, is that
we can choose our starting elements from higher levels of abstraction – an
expedient that makes it even easier to represent the phenomenon.

But the theory does not represent the phenomenon accurately enough to be
useful. So, instead of trying to understand the reason for its failure, the

the contradictions 713chapter 7

scientists decide to “improve” it: they suppress the falsifications by reinstating,
in the guise of new features, the very features they had previously excluded –
features that must indeed be excluded if we seek a mechanistic theory. The
purpose of the new features, thus, is to restore some of the original structures,
and the links between them. In the end, the theory becomes useful only when
enough of the old features are reinstated to allow us to represent the entire
complex phenomenon again; that is, when we are allowed to represent it
informally, the way we always did. The scientists, though, continue to praise
the exact, mechanistic qualities of their theory – even as everyone can see that
what made the theory useful is the annulment of these qualities, and their
replacement with complex, indeterministic ones.

The First Delusion

The First Delusion
1 1
The first delusion is the belief in the mathematical merits of the relational
model. For more than thirty years, we have been hearing the claim that the
relational model is based on mathematical logic, and therefore relational
databases benefit from the rigour and precision of mathematics. Although few
people actually understand the connection between databases and mathemat-
ics, no one doubts this claim. After all, the mathematical benefits are being
praised, not just by the vendors of relational systems, but also by university
professors, database experts, and professional computer associations. In this
subsection I want to show, however, that the claim is a fraud: relational
databases do not benefit at all from mathematical logic.

�

Mathematical systems, which include logic systems, are artificial models
invented by us in order to represent with precision various aspects of the world.
It is not difficult to invent a mathematical system (see pp. 694–695). Essentially,
we define its basic elements, the operations that combine elements from
one level of complexity to the next, the rules that control the use of these
operations, and the axioms (those assumptions taken by convention to be
valid assertions). We can then build increasingly complex expressions and
theorems by combining elements on higher and higher levels. For the system
to be useful mathematically, it must be consistent: no contradictions should
be possible between the expressions or the theorems derived within the
system. The basic elements vary with the system: numerical values for the

714 the relational database model chapter 7

classical mathematical systems, or subjects, predicates, and propositions for
the logic systems.

The more elaborate the system, the more complex its elements and opera-
tions. Differential calculus, for example, is more complex than arithmetic or
algebra. Since mathematical systems are simple hierarchical structures, a
higher complexity means only that the system can have more levels, and more
intricate elements at the higher levels, within one structure. While still a simple
structure, though, a more elaborate system allows us to represent more difficult
phenomena.

To use a mathematical system as model, we start by translating the entities
and processes that constitute the phenomenon into the entities and operations
permitted by the system. Once this is accomplished, we can study the phe-
nomenon by working strictly with the mathematical concepts. We create
expressions and higher-level elements, manipulate them in various ways, and
finally translate the results back into real entities and processes. With this
method, we can explain and predict events that may be difficult or impossible
to study directly.

A classic example of a mathematical model is Newton’s theory of gravitation:
if we represent with mathematical entities and operations the bodies that make
up the solar system, their state at a given instant, and the natural laws that
govern their motion, we can determine with accuracy their position at any
other instant in the past or in the future. Clearly, it would be impossible to
accomplish this without a mathematical model.

Imagine now a trivial system, a small subset of traditional mathematics: the
basic elements in this system are integers, and the only operations are addition
and subtraction. Thus, since expressions are limited to these two operations,
the most complex elements possible are still integers. And, even though
the system permits any number of levels and hence increasingly complex
expressions, because of its simplicity it is unlikely that we will ever need more
than a few levels. Nevertheless, while simple, this system is not without
practical applications; we can employ it, for example, to create accounting
models (if we agree to use only whole dollars). The chief difference between it
and the mathematical systems of science and engineering is that the latter
reach much higher levels, and much more complex elements and operations.É

Turning now to the relational model, we find a modification of the logic
system known as predicate calculus. To this system, features like record keys
and field names were added in order to adapt it for database work. The simplest

É It is worth stressing again that the term “complexity,” when used with the simple
structures of mathematical and logic systems, refers to levels of complexity (also known as
levels of abstraction), and it must not be confused with the complexity of complex structures
(which is due to the interaction of several simple structures).

the first delusion 715chapter 7

elements in the relational model are the fields – called now columns, or
attributes. Fields are combined to form records – called now rows, or tuples;
and records are combined to form files – called now tables, or relations.
Relations can then be combined into expressions by means of standard logical
operations (AND, OR, and NOT) and some new, more complex operations (UNION,
DIFFERENCE, SELECTION, PROJECTION, and PRODUCT). Relations can be combined
in this manner to form increasingly high levels, but the result is still a relation.
Relations, thus, are the most complex elements in a relational system. Although
more intricate than our system of integers and two operations, it is still very
simple – far simpler than the mathematical systems employed in science and
engineering.

And herein lies the explanation for the first delusion, why the mathematical
background of the relational model is irrelevant. It is true that the relational
entities and operations can be defined rigorously, with the same methods
and notation we use in mathematics. But this preciseness is specious. The
relational definitions resemble perhaps the definitions found in the traditional
mathematical systems, but, because the relational model is such a simple
system, its formality is superfluous, even silly.

The operations of a mathematical system, and the rules that govern the use
of these operations, determine how the elements that make up one level are
combined to form the elements of the next level. These combinations become
the theorems and expressions possible in the system, and, ultimately, the
mathematical representation of a phenomenon when the system is used as
model. A formal definition of entities, operations, and rules is important in the
traditional systems, therefore, because this formality is our only guarantee that
the theorems and expressions remain valid as we move to higher levels of
complexity. But if in a relational system all we have is some simple elements
and operations – some simple transformations of one file into another, or of
two files into one – and if we rarely need more than a few levels, the formality
is hardly necessary. The concept of files, records, and fields is so simple that we
can accomplish the same tasks using nothing more than personal skills.

�

Let us divide the use of a mathematical system into two parts, translation
and manipulation. The translation is the work required to convert into a
mathematical representation the entities and processes that make up the
phenomenon, and to convert the mathematical entities back into real entities
and processes. The manipulation is the work performed within the system,
with the mathematical entities alone.

When praising the power of mathematics, it is the manipulation that we

716 the relational database model chapter 7

have in mind, not the translation. The translation – an effort to represent a
complex world with a neat, artificial system – is necessarily informal, and
cannot benefit from the exactness of the mathematical system itself. Thus,
there is no way to guarantee that we selected the right system and operations to
model a particular phenomenon, or represented the phenomenon accurately,
or interpreted the results correctly. All we have to guide us in the translation is
our skills.

To take a simple example, we can use mathematics to model the relationship
between the speed of a car and the distance traveled in a period of time. All we
need to do is represent these entities with appropriate values, perform the
operation of multiplication or division, and then translate the result back into
an actual entity. So, if we know the car’s speed, the mathematical model lets
us predict the distance it will travel in a given period of time, or the time
required to travel a given distance. But mathematics cannot verify for us that
we employ the formulas correctly. It cannot stop us, for instance, from using
an incorrect speed, or from measuring the speed in miles per hour and the
distance in kilometers. We praise the power of mathematics to predict the
distance or time, but, in reality, mathematics only guarantees that the higher-
level element (the result) is indeed the product or quotient of the two elements
we started with.

No mathematical system can also be a substitute for the expertise required
to use it. Although no less important than the system itself, the work involved
in using it – particularly the translation from real entities into mathematical
ones and back – is largely informal, and hence open to errors despite the
exactness of the system.

In relational systems, we saw earlier, this problem led to the separation
between the formal and the informal aspects – those aspects deemed to be
within, and those deemed to be outside, the scope of the formal model.
The formal aspects, we see now, correspond to the manipulation, while the
informal ones form the translation. The manipulation includes the definition
of fields and tuples, and the query operations. And the translation includes
everything else: the updating operations, the normalization, the integrity rules,
and the database language. This separation is artificial, of course, since all
aspects of the database are equally important. But it is inevitable if we want to
have a mathematical model: if we must exclude from the model any database
aspect that is too complex to treat formally, that aspect is bound to end up as
part of the translation, where we can deal with it informally.

This limitation – the need to treat the translation informally – is inherent
in all mathematical systems. No matter how rigorous and exact is the manip-
ulation, we depend largely on personal skills when selecting a particular
system for a given phenomenon, and when translating the real entities into

the first delusion 717chapter 7

mathematical ones. And the relational model is no different. What makes
it silly, then, is not this limitation, which is universal, but the fact that it
consists almost entirely of the informal translation. In the end, what is for the
traditional mathematical systems the ultimate purpose – the formal, exact
manipulation – plays in relational systems an insignificant part.

2

2
Recall the predicate calculus system, the logical foundation of the relational
model. A logical expression like P(x,y,z) describes the tuples of elements x, y,
and z related through predicate P. When we substitute actual values for the
three elements, the expression will be evaluated as True for some tuples and
False for others. We retain then, usually, the set of tuples for which the
expression is true (a relation); and, using logical operations, we combine it
with other sets, which are based on different predicates and elements. Such a
combination is an expression that describes a new set of tuples – a set that
relates in a different and perhaps more complex way the elements of the
original tuples. The new set may then be combined with others, and so on, to
create higher levels of complexity.

Like all logic systems, predicate calculus is concerned with the structure of
variables and expressions, not their meaning. All it can guarantee is that, if we
restrict ourselves to combinations based on the operations permitted by the
system, the result of each combination will be correct within the definition of
the system. Thus, if we know that the tuples in the original sets are true, we can
determine with certainty, level after level, whether those in the resulting sets
are true or false.Ê The system guarantees the validity of the manipulation, but
the translation remains our responsibility: it is up to us to determine – by
means external to the system – whether the tuples we start with are true or
false, and whether the expressions that define the tuples, along with the
operations that combine them from one level to the next, match the relations
between the entities we want to model in that system. A logic system, in the
end, is only a tool. It is up to us to judge whether it is the right tool in a given
situation, and to use it correctly.

The fallacy, thus, lies in the belief that if the database model resembles a
logic system, database work will become an exact, mathematical activity. In
reality, this new tool is inappropriate for database programming, because the

Ê Strictly speaking, it is not the tuples that are true or false, but the result of the logical
expression that defines the tuples; the more accurate description, though, would make these
sentences too complicated.

718 the relational database model chapter 7

database structures are closely linked to the other structures that make up the
application. Mathematical and logic systems can only model phenomena that
can be represented with a simple structure. So their ability to model database
structures has little value if these structures must interact with others.

Like the predicate calculus system, a relational system guarantees only that
the sets of tuples generated from the previous ones, as we move from one
level to the next, are correct within the system’s definition. The elements are
now fields, the tuples are records, the sets of tuples are files, and the logical
expressions depict combinations of files or portions of files. The database and
the relational operations can be represented, therefore, with the same formality
and preciseness we enjoy in predicate calculus. An expression like F(a,b,c)
defines a file by stating that the fields a, b, and c are related through the
predicate F. When actual values are stored in these fields, the expression will
be true for some tuples (i.e., records) and false for others; and the actual file
consists of those tuples that are true.

In other words, we use simply the existence of the tuple to determine the
truth or falsity of the expression that defines the tuple: a tuple is deemed “true”
if it currently exists as a record in the file, and “false” if it does not. Thus, the
definition of truth and falsity in a relational database is merely a convention.
The convention states in effect that the data in the original files is valid by
default, simply because the records present in the file are deemed to be
“true.” The absurdity of this convention is the root of the relational model’s
mathematical delusion, as we will see in a moment.

The relational operations are designed to create a new set of tuples from one
or two existing sets; that is, to create a new file by selecting and combining
records (or portions of records) from one or two existing files. So, if we
restrict ourselves to the relational operations, the validity of the existing data
guarantees the validity of the combinations: since the original records are true
by default, the records in the new file will also be true. The new file can then
be combined with others to create a higher level of complexity, and so on. No
matter how we use the relational operations, we can be sure that the final result
will reflect the data we started with. There can be no false records in the
resulting files, because there were no false records in the original ones.

�

It should now be obvious why logic systems are inappropriate as database
models. A logic system like predicate calculus cannot control the addition and
deletion of tuples in the original sets, nor the modification of their elements.
All it can do is create new sets of tuples from existing ones; that is, read the
original data. And if predicate calculus is limited to reading its data, so must

the first delusion 719chapter 7

be the relational model. With a database, the limitation to reading is, of course,
the limitation to queries. So the fact that the relational model is limited to
queries follows necessarily from its logical grounding. In general-purpose
applications, though, adding, deleting, and modifying records are as important
as queries. It is absurd, therefore, to ground a database system on predicate
calculus.

The great weakness of the relational model, then, is the need to ensure by
informal means that the original tuples are true. Since it is the truth or falsity
of each tuple that determines whether it can be a record in the file, what is
merely the truth value of a logical expression in predicate calculus becomes the
critical issue of data integrity in a relational system. This means that, before we
add a new record to a file, we must ensure somehow that the record is true;
similarly, when we modify the data in an existing record, we must ensure that
it continues to be true; and before we delete a record, we must ensure that it is
indeed false.

But the only way to perform these validity checks is by accessing the tuples
from outside the relational model, with traditional programming methods.
The software theorists underrate the significance of this weakness: they
casually say that the database modifications and the associated integrity issue
lie outside the scope of the formal model, as if this limitation were just a minor
implementation detail.

Clearly, what the model offers us – the assurance that the files resulting from
relational operations are correct if the original ones are – is meaningful only if
we can be sure that the data in the database is correct at all times. But the values
stored in database fields are not right or wrong in an absolute sense. Their
validity can only be assessed within the context of the running application; that
is, by performing certain operations that link the database structures with
some of the other structures that make up the application. The database is one
aspect of a complex structure, and the validation process cannot be represented
with a formal, mechanistic model.

So, if the validation is an informal, error-prone process, how can anyone
claim that the relational model guarantees the correctness of the resulting files?
All it can guarantee is that the data in the resulting files reflects accurately the
data in the original ones. Consequently, the validity of the resulting data can
be no more certain than the validity of the original data. And ascertaining that
validity is no different in a relational system than it is for traditional data files.
Thus, since the ultimate precision of a system is limited by its least precise part,
the belief that a relational database is more precise than a traditional one is a
delusion.

Here are some of the mistakes that can be committed in applications based
on a relational system – mistakes that would not be detected by the system:

720 the relational database model chapter 7

adding a new record that has invalid values in fields like address, phone
number, price, or part description; placing invalid values in the fields of an
existing record; retrieving a part record using the vendor number as part
number (record keys for parts, vendors, employees, customers, etc., may well
share a common range of values, so this mistake would not result in an invalid
key, and the wrong record would indeed be retrieved); adding the quantity
purchased to the quantity in stock of a part, instead of subtracting it; deleting
a record that must not, in fact, be deleted – and, generally, omitting a record
that should be in the file (the convention that the records present in the file are
true does not imply that all those not in the file are false, so the model cannot
determine which records are missing).

The reason a relational system does not prevent us from performing
such operations is that, within the relational model, these operations are
perfectly correct. The only way to discover the mistakes is by performing these
operations together with some other operations, which take into account both
the database structures and the other aspects of the application; in particular,
the business rules implemented in the application. In other words, we can only
discover the mistakes by checking the data from outside the model.

It is not surprising, therefore, that the relational model had to be “enhanced”
with informal means that allow us to discover such mistakes. We will study
these enhancements under the third delusion, but it is worth noting at this
point that, despite some new and impressive terminology, what we are doing
with the new features – linking the database structures with the other structures
of the application – is exactly what we had been doing all along, in a much
simpler way, with ordinary programming languages.

3

3
Let us return to the formal model. To explain the relational theory, textbooks
give us page after page of definitions and expressions in mathematical logic.
Yet, as we just saw, this formality and preciseness cannot stop us from commit-
ting outrageous mistakes. No matter how rigorous the relational model is from
a mathematical perspective, the only part that is formal and precise is the
definition of database entities and operations; specifically, how we combine
tuples into files, and files into other files, as we move from one level of
complexity to the next. And these entities and operations are so simple that we
can use them just as effectively without the formal definitions.

Recall the simple system that can handle only integers and two operations,
addition and subtraction. In this system, all that mathematics does is ensure
that the integer of the next level is indeed the sum or difference of the integers

the first delusion 721chapter 7

of the current level. Thus, the formal definitions in such a system offer very
little beyond what we can accomplish using just common sense. For, we can
also add and subtract integers correctly by replacing the formal definitions
with an informal method, and carefully following that method. Because this
system is so simple, the formal and the informal alternatives are equally
practical. Even more importantly, the formal system cannot prevent us from
committing such mistakes as using wrong values when translating an actual
phenomenon into integers, or adding two integers when in fact we ought to
subtract them. Whether we choose the formal system or an informal method,
we must deal with these problems informally.

And the same is true of the relational model. All that mathematics does is
assure us that each operation combines elements just as its definition says. It
assures us, for example, that the selection operation indeed selects the specified
records. Thus, an expression like G(a,b,c) = F(a,b,c) AND a>k defines a selection
operation by saying that the new file G includes those tuples (a,b,c) which
satisfy two conditions: they are true (i.e., are actual records) in file F, and the
element a is greater than a certain value k. This formal definition is very
impressive, but it is also very silly. Because record selection is such a simple
concept, we can easily perform this operation by relying on common sense
alone: we describe informally what we mean by record selection, and then
carefully implement this concept using the basic file operations and a pro-
gramming language (see figure 7-13, p. 680).

All mathematical systems appear silly, of course, if we study only the low
levels. The low-level elements and operations are usually simple enough to
understand intuitively, so the rigour and preciseness of their definition appear
superfluous. But there is a reason for this formality. In serious mathematical
systems there are many levels of complexity. We always start with simple
elements, but we combine them so many times that we end up with very
intricate ones at the higher levels. Since the elements and operations at these
levels can no longer be understood intuitively, the formal definitions are our
only assurance that the system functions correctly.

In a simple system, on the other hand, the elements do not increase in
complexity as we move to higher levels, so there is no benefit in combining
them more than a few times. With a simple system, therefore, we rarely create
more than a few levels, and we can only model simple phenomena. In the
system of integers and two operations, for instance, the sum or difference of
two integers is still an integer. And there aren’t many applications where all we
need is to add or subtract integers while repeating these operations endlessly,
level after level. Applications that require many levels also require an increase
in the complexity of elements and operations.

In the relational model, too, the same type of elements (tuples and files) and

722 the relational database model chapter 7

the same type of operations (SELECTION, UNION, PRODUCT, etc.) are found at both
the lowest and the highest levels. And as a result, there is no benefit in
combining elements more than a few times. Thus, few requirements involve
more than three or four files, or more than three or four operations, in the
creation of a new file. It is difficult to imagine a situation where we have
to perform a series of a dozen selections, products, and projections, each
operation starting with the result of the previous ones.

The software theorists claim that the relational model offers benefits similar
to those of the traditional mathematical systems, but this is not true. In science
and engineering we start with simple elements like integers, and simple
operations like addition, but after many levels we end up with such concepts as
calculus and analytic geometry. The complexity of the elements, as well as the
complexity of the operations, keeps increasing as we move to higher levels.
With the traditional mathematical systems, therefore, we derive important
benefits when adding levels; in particular, the higher complexity permits us to
model more complex phenomena. Evidence of these benefits is also found in
that the formality and preciseness are now critical: unlike the selection of
records in a database, we can hardly replace concepts like differential equations
with methods based on common sense alone.

In the relational model, it is the restriction to high-level operations that
prevents us from using more than a few levels. Software applications do have
many levels of complexity, starting with simple entities like statements and
database fields, and ending with the logic of a whole business system. But these
are not the levels of a simple structure. Unlike mathematical systems, which
can be represented with one structure, software applications comprise many
structures – structures that must share their elements if they are to model our
affairs accurately. And it is often low-level elements like statements and
database fields that must be shared.

Among these structures are also the database structures, but with a rela-
tional system the lowest-level elements that can be shared are the files. If we
take the fields, records, and files to be the three lowest levels of a database
structure, the relational operations only permit us to access files. Starting with
files we can then create even higher levels – that is, further files. But the
interactions with the other structures are not as versatile as those we could
create by starting with records and fields. Most interactions, in fact, are now
too awkward or inefficient to be practical.

Thus, we see no benefits in creating more than a few levels of relational
operations, not because we do not need higher levels, but because the restric-
tion to operations on whole files prevents us from creating the combinations
of software entities needed to attain those levels. This is why the original model
was useless, and why the features added later serve mainly to bypass the

the first delusion 723chapter 7

restriction to whole files: they restore the means to link the database structures
to the rest of the application through lower-level elements (through individual
records and fields), thus permitting more alternatives at the high levels.

4

4
With any mathematical system, we must perform the translation in order to
attain the precise format required for the manipulation. But in itself the
translation is a detriment: not only does it constitute additional work, but its
informality detracts from the exactness of the manipulation. We can justify the
use of a mathematical system, therefore, only if the manipulation confers
significant benefits; that is, if it permits us to perform some important and
difficult tasks. And this is indeed the case for the mathematical systems used
in science and engineering: the manipulation in these systems is very elaborate,
with many levels of complexity, while the translation may be as simple as
converting things like weight, voltage, or time into numerical values.

In a relational system, the opposite is true: the manipulation is trivial, and
it is the translation that ends up very elaborate. In order to have a mathematical
database model, the part that is the manipulation had to be restricted so much
that it involves in the end only trivial mathematics. The most difficult aspects
of database programming – updating operations, integrity rules, the second
and higher normal forms, the database language – were left out of the model
and became part of the translation. They were left out, not because they do not
entail manipulation, but because that manipulation cannot be represented
mathematically.

So the manipulation includes only queries, and the queries permit only
high-level operations on whole files. In any case, these queries are so simple
that they can be implemented without mathematics. The basic file operations,
we saw earlier, allow us to scan and relate files, and to select records and fields.
Thus, the operations permitted by the relational model – selection, union,
product, and the rest – can be easily programmed with ordinary iterative and
conditional constructs.

To deal with those aspects of the database that make up the translation,
and which were left out of the formal model, we need programming skills.
So in the end we use the power of mathematics for the relatively simple
manipulation, which hardly requires a formal system, while depending on
informal programming methods for the difficult tasks.

Unlike the mathematical systems used in science and engineering, then, the
relational model confers no benefits. In the traditional fields, mathematics
permits us to accomplish tasks that are impossible without a formal system; so

724 the relational database model chapter 7

the translation, with its drawbacks, is worthwhile. Relational mathematics,
on the other hand, is so simple that it can be replaced with a few lines of
programming; so the drawbacks of the translation exceed the benefits of the
manipulation. The idea behind the relational model is, therefore, senseless.
What is the point in seeking a formal system for the query operations, if all
the work required to prepare the database for these queries must remain
informal? Since we must continue to depend on programming for the difficult
translation, we may as well use programming also for the relatively simple
manipulation.

The theorists promote the relational model by pointing to its mathematics,
and implying that it provides the same benefits as the models of science and
engineering. But if the relational model uses only trivial mathematics, the
claim is a fraud. In reality, very little of the phenomenon of a database is
amenable to an exact, mechanistic representation. Mathematics is useful for
phenomena where changes are rare. Take the bodies in the solar system,
for instance: we can represent their motion mathematically because their
properties are fixed; so, with only a small investment in the translation, we gain
the great benefits of the manipulation. In the database phenomenon, however,
changes are very common. These changes include adding or deleting records,
and modifying the data stored in fields. Each change produces a slightly
different database – different data, and hence different relationships. No
mathematical system can accurately represent such a changeable phenomenon,
and it is for this reason that the theorists exclude the updating operations from
the formal model.

The relational idea is worthless because we have to leave too much out of
the manipulation in order to represent the database functions mathematically.
What we leave out is far more than what we leave out in the traditional uses of
mathematics. We must leave out of the formal model the database changes
and all the related issues; in particular, the integrity rules and most of the
normalization. These features are in reality as much part of the application as
are the queries. So, for the model to be truly useful, they would have to be
included in the manipulation. Only if we decide that databases are mainly
query systems can we treat issues like updating, integrity, and normalization as
part of the informal translation, rather than the formal manipulation. But
then we must no longer claim that the relational model is useful for general
applications.

�

The fact that so much had to be left out of their formal model ought to have
worried the theorists. This was an opportunity to realize that the relational

the first delusion 725chapter 7

concept is fallacious, that databases cannot be usefully represented with a
mathematical model. Instead, fascinated by the little that could be represented
mathematically, they saw in the relational concept the beginning of a new
science.

But an even greater deficiency than the separation of query operations from
updating operations is the separation of the query operations from the other
operations performed by the application. As we saw, the relational operations
are restricted to manipulating whole files, rather than individual records and
fields, like the traditional file operations. And, while in principle individual
records and fields can be treated as tiny files and accessed with the relational
operations, this method is far too awkward and inefficient to be practical. In
effect, then, the relational model does not permit us to manipulate freely the
low-level database entities. The immediate consequence of this limitation is
that it is impossible to link, at the level of records and fields, the structures
formed by database entities and operations with the structures formed by the
other aspects of the application. And no serious application can be developed
without these links.

Even for query systems, therefore, the relational model cannot be said to
work if the only queries that can be implemented are those possible through
operations on whole files. To be truly useful, a database system must allow us
to manipulate database entities in any conceivable way.

In conclusion, the relational model is indeed a revolution in database
concepts, in that it imparts to database programming the rigour and exactness
of mathematics; but only if we restrict ourselves to queries; and if we restrict
ourselves to queries that can be expressed through certain parameters (so
that the database can be separated from the application and accessed only
through operations performed on whole files); and if we restrict ourselves to
normalized files (although it is possible, in principle, to implement any queries
using normalized files, this is usually too complicated or too slow to be
practical); and if we can ensure that all the operations that modify the database
are performed correctly (so that the data upon which the queries are based is
valid at all times).

Note that these restrictions describe the original model; so this model,
absurd as it is, is in fact optimistic. As no practical uses were found for it,
means had to be provided eventually to link the database structures with the
other structures of the application. And the only way to do this was by
permitting low-level database operations, which bypass the original restric-
tions. But if those restrictions are essential in order to attain an exact model, if
we bypass them we will no longer enjoy the benefits of mathematics, not even
in a narrow range of applications. So those benefits, which were insignificant
in the original model already, were reduced in the end to zero.

726 the relational database model chapter 7

5

5
There is no better way to conclude our discussion of the first delusion than by
showing how the relational model is presented to the public. We just saw that
there are no mathematical benefits in using a relational database. The database
experts, however, promote the relational systems by praising precisely their
mathematical background. Here are some examples: “The mathematical
concept underlying the relational model is the set-theoretic relation.”Ë “The
relational model is founded on the mathematical disciplines of predicate
calculus and set theory.”Ì “The relational data model is based on the well
developed mathematical theory of relations. The rigorous method of designing
a data base (using normalization . . .) gives this model a solid foundation. This
kind of foundation does not exist for the other data models.”Í “The relational
approach is based on the mathematical theory of relations. . . . The results of
relational mathematics can be applied directly to relational data bases, and
hence operations on data can be described with precision.”Î “The relational
model is based on the mathematical notion of a relation. Codd and others have
extended the notion to apply to database design.”Ï “The solid theoretical
foundation guarantees that results of relational requests are well defined and,
therefore, predictable.”Ð “One of the benefits of working with the relational
approach to databases is that it can be couched within the formalism of first-
order predicate logic. As a result a mathematical foundation is available for
dealing with database issues when databases are all relational.”Ñ “The reason we
could define rigorous approaches to relational database design is that the
relational data model rests on a firm mathematical foundation.”ÉÈ “In the

Ë Jeffrey D. Ullman, Principles of Database Systems (Potomac, MD: Computer Science
Press, 1980), p. 73.

Ì Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1161.

Í Shaku Atre, Data Base: Structured Techniques for Design, Performance, and Manage-
ment, 2nd ed. (New York: John Wiley and Sons, 1988), p. 90.

Î James Martin, Computer Data-Base Organization, 2nd ed. (Englewood Cliffs, NJ:
Prentice Hall, 1977), p. 204.

Ï Catherine M. Ricardo, Database Systems: Principles, Design, and Implementation (New
York: Macmillan, 1990), p. 177.

Ð Candace C. Fleming and Barbara von Halle, Handbook of Relational Database Design
(Reading, MA: Addison-Wesley, 1989), p. 32.

Ñ Barry E. Jacobs, Applied Database Logic, vol. 1, Fundamental Database Issues (Engle-
wood Cliffs, NJ: Prentice Hall, 1985), p. 9.

ÉÈ Henry F. Korth and Abraham Silberschatz, Database System Concepts, 2nd ed. (New
York: McGraw-Hill, 1991), p. 209.

the first delusion 727chapter 7

formulation of relational data models, the mathematical theory of relations is
extended logically where required to meet data management objectives. The
mathematical foundation of relational data models permits elegant and concise
definition and deduction of their properties.”ÉÉ

As we saw, it is not difficult to show that the model’s mathematical founda-
tion is irrelevant. Yet no one in the academic world – not the mathematicians,
not the philosophers, not the engineers – ever challenged these claims. Nor did
anyone challenge the other software theories. The computer scientists can
invent any theories, thus, no matter how absurd, confident that the academic
community, the software practitioners, and the rest of society will accept them
unquestioningly.

Most people trust and respect the universities, without realizing that what
the academics are promoting is not ideas that are useful, but ideas that help
them maintain their privileged position even if useless; in particular, the idea
that science means simply the pursuit of mechanistic theories – whether sound
or not, whether useful or not.

Moreover, by fostering the mechanistic ideology, universities make it
possible for the software companies to promote fraudulent concepts. The
mechanistic ideology benefits incompetents and charlatans, therefore, by
making their activities look like serious research, or like legitimate business.

The Second Delusion

The Second Delusion
1 1
The second delusion is the idea of normalization: the belief that, within the
relational model, the problem of database design has been turned into a formal
theory. In reality, the principles of normalization do not constitute an exact
procedure, but one that can only be implemented informally. (The concept of
normalization was introduced earlier; see pp. 704–706.)

The delusion of normalization can be summarized by saying that it is an
attempt to replace the simple process of avoiding incorrect file relationships,
with the complicated process of eliminating them after allowing them into the
database. To justify the need for normalization, the theorists misrepresent the
design problem. Traditionally, we used methods that helped us to create
a correct database, and thereby avoided data inconsistencies. Now we are
expected to ignore those methods, deliberately create an incorrect database,

ÉÉ Dionysios C. Tsichritzis and Frederick H. Lochovsky, Data Models (Englewood Cliffs,
NJ: Prentice Hall, 1982), p. 93.

728 the relational database model chapter 7

discover the consequent problems, and then use normalization to convert the
incorrect database into a correct one.

In the end, it is only this contrived, absurd procedure that the theorists
managed to formalize, not the actual problem of database design. As we will
see presently, even under normalization the correct database structures can
only be discovered informally, by studying the application’s requirements – just
as we do when following the traditional design methods. The concept of
normalization, thus, is a fraud. By inventing pompous terms to describe what
are in fact senseless principles, and by discussing these principles with great
seriousness, the relational experts delude themselves that they have turned
database design into an exact theory.

�

Note that here, in the discussion of the second delusion, I am using the term
“normalization” to refer only to the second and higher normal forms; that is,
to the problem of field dependency. The first normal form (which restricts
fields to single values) is unrelated to the higher ones; it is part of the formal
relational model, and hence part of the first delusion.

Note also that, although the mathematical pretences of the second and
higher normal forms resemble the first delusion, these transformations are not
required at all by the formal model. A database, in other words, does not have
to be normalized in order to satisfy the mathematical restrictions of the formal
model (I will return to this point later). The higher normal forms are only
needed in order to prevent problems that arise when updating the database;
and the updating operations lie outside the scope of the formal model.

Thus, it would be wrong to treat the higher normal forms as part of the first
delusion. Their annulment (the process known as denormalization) does
constitute, however, the same kind of delusion as the annulment of the first
normal form, or the annulment of the other aspects of the relational model. All
annulments, therefore, are discussed under the third delusion.

�

Let us review the concept of normalization – how the relational theorists
present the problem of data inconsistencies, and its solution.

Each piece of information in the database should exist in only one place,
because data that is duplicated may cause various inconsistencies when
records are added, deleted, or modified. The relational theorists call these
inconsistencies “update anomalies.” The unnecessary repetition of data also
wastes storage space, but it is the anomalies that are the main reason for

the second delusion 729chapter 7

normalization. In fact, depending on the size of the duplicated fields and
the number of records involved, normalization sometimes increases storage
requirements. Still, the theorists say, the benefits are so important that we
should normalize our files even at the cost of increased storage space.

It must also be noted that there is always an alternative to normalization: the
inconsistencies can be avoided by performing additional operations in the
application (additional checks and, when required, additional updating).
Normalizing the files is generally a simpler and more efficient solution, but
sometimes those operations are the better alternative. In the relational model,
though, this too is unacceptable: we must always normalize our files.

Duplication, and hence redundancy, occurs when we store some data in
several records in a certain file while that data could be stored in only one
record in another file: repeating customer data like name or address in every
order belonging to that customer, repeating product data like description or
price in every order line with that product, and so on. Clearly, fixed data should
be stored in a separate file – a customer file or a product file, in this case. Only
data specific to an order should be stored in the orders file, and only data
specific to an order line in the order lines file. A field in the orders file will
contain the customer number, and a field in the order lines file will contain the
product number. These fields will serve as links to the customer and product
files. Thus, when processing an order, we can access the customer data by
reading the customer record; and when processing an order line, we can access
the product data by reading the product record. The same is true of an invoice
file, a transaction file, a sales history file, and any other file that needs customer
or product data.

With data separated in this manner, when there is a change in a customer’s
name or address, or in a product’s description or price, we only need to modify
the customer or product record, rather than all the orders for that customer, or
all the order lines with that product. If there were no customer and product
files, an anomaly would occur if we modified the customer data in an order, or
the product data in an order line: any other orders for that customer, or any
other lines with that product, would continue to have the old, and hence
wrong, values. Another anomaly would occur if we had to store data for a
customer that has no outstanding orders, or for a product that is not currently
on order: we would have to create a dummy order just so that we had a place
to store customer or product data.

Data redundancy can also be viewed as the result of a mistaken relationship
between two fields in the same record; specifically, a misplaced dependency of
one field on another. A field should depend only on the field or fields that
make up the record’s key. There is no need for other relationships within a
record; and if such a relationship exists, some data will be redundant. This is

730 the relational database model chapter 7

true because, if one field can be determined from another, its value will be
repeated unnecessarily in all the records where the other field has a particular
value. We only need to specify the dependency between the two fields in one
place. So the correct way to store this information is as a single record, in a
separate file.

Generally, to eliminate the redundancy associated with one misplaced
dependency (the dependency of one or several fields on a given field), we
must create one extra file in the database.É Each level of normalization – the
levels known as second, third, Boyce/Codd, fourth, and fifth normal forms –
is a more stringent implementation of this principle. Each level, that is,
will eliminate a more subtle type of dependency. These types – known as
functional dependency, transitive dependency, multivalued dependency, and
join dependency – differ in the types and combinations of fields that form the
misplaced dependency: a non-key field depending on only some of the fields
that make up the key (instead of depending on the whole key), or a non-key
field depending on another non-key field, or a key field depending on another
key field, or more than two fields depending on one another. The classification
of the normal forms is such that, in addition to being more subtle and more
rare, each level represents a broader category of misplaced dependencies – a
category that includes as a special case the one at the next lower level.

2

2
One aspect of the second delusion is the belief that, because the ideals of
normalization are discussed only with the relational model, they are exclusive
to relational databases. The theorists present the concept of normalization as if
no one had been aware of the problem of data redundancy and inconsistencies
before we had relational databases, and as if the relational model and the
normalization principles were the only way to deal with this problem. They
never mention the fact that this problem and its solution are identical to their
counterparts in databases created with the traditional file operations. And they
are identical because they are concerned with files, records, fields, and keys –
elements that are identical (despite the new terminology) in relational and in
traditional databases. With one type of database or the other, redundancy and
inconsistencies indicate a faulty design, a database that does not match the
application’s requirements. And the solution is to modify the design so as to
satisfy the requirements.

É Several extra files are required when the relationship involves three or more inter-
related fields (the kind of dependency resolved by the fifth normal form).

the second delusion 731chapter 7

The issue of normalization, then, is perceived as an important part of the
relational model while being, for all practical purposes, a separate theory.
It was tacked on to the relational model because it was invented by the
same theorists, but it could be applied to any database model that uses
files, records, fields, and keys. For, what we are asked is simply to replace
the traditional principle of designing a database so as to avoid redundancy
and inconsistencies, with the absurd principle that we must start with a
faulty design and then modify it so as to eliminate the redundancy and
inconsistencies. Thus, nothing stops us from employing this absurd principle
with a traditional database. All we have to do is deliberately create an incorrect
database, and then normalize it in order to eliminate the consequent problems.
The final, correct database would be identical to the one we create now simply
by following the traditional design principle.

It is also worth noting that we can attain the ideals sought by normalization
more effectively with traditional databases than we can with relational ones.
Ironically, while the relational theory makes the problem of redundancy and
inconsistencies look like a new discovery, insists on strict normalization, and
overwhelms us with formality and new terminology, its restriction to high-
level operations often prevents us from solving this problem. And it is with the
traditional file operations, where we don’t even use terms like “normal form,”
that we can more easily deal with it. This is true because those operations are
more versatile and more efficient than JOIN, the operation that combines files
in the relational model. Since the process of normalization separates fields by
creating additional files, we must read and combine more files and more
records later, when accessing the database. And it is when the performance
degradation caused by these additional operations becomes unacceptable
that we must leave some data unnormalized. Thus, since the traditional file
operations permit us to combine files and records more efficiently than does
JOIN, we can afford to separate more fields – and hence attain a higher level of
normalization – in a traditional database than in a relational one.

�

We can appreciate even better why the problem of redundancy and incon-
sistencies is not part of the relational theory by recalling the mathematical
foundation of the relational model, predicate calculus (see pp. 697–698). The
relation described by the logical expression P(x,y,z), for instance, consists
of those tuples of elements x, y, and z that are related through the predicate P.
Specifically, we substitute for the three elements certain values selected from
their respective domains of permissible values, and we retain those combina-
tions of values for which the expression yields True.

732 the relational database model chapter 7

Now, there is nothing in this definition of a relation to prevent two elements
in a tuple from forming an additional relationship. For example, if y depends
on x in such a way that we can always derive its value from that of x, y is in
effect redundant. But this redundancy is harmless; that is, if we combine this
expression with other expressions, the redundancy will be reflected perhaps in
the final result, but it will not cause a logical inconsistency.

The original, formal relational model is similar: even if mistaken, the
dependency of one field on another in a given file does not cause an inconsist-
ency when that file is combined with others through relational operations. The
formal model is concerned only with the structure and combination of files.
Thus, even if there is a misplaced dependency in that file, the consequent
redundancy is harmless. All that will happen is that some fields in the resulting
file will also be related through a misplaced dependency.

The reason we can have misplaced dependencies in predicate calculus and
in the formal relational model is that these systems do not include updating
operations. Predicate calculus is not concerned with the way tuples ended up
in the relation, or the way elements acquired their current value, but only with
the operations that use the tuples. And the formal relational model is not
concerned with the way records are created, deleted, or modified, but only with
the operations that read the records. Thus, since only updating operations can
cause inconsistencies, we need not worry about misplaced dependencies
when we restrict ourselves to the formal model. (The relational theorists
acknowledge this fact by calling the inconsistencies update anomalies.) To
put it differently, if we restrict ourselves to queries, and particularly to queries
expressed through the relational operations, we need not worry about mis-
placed field dependencies.

So the theory of normalization is irrelevant for applications restricted to
the formal model. It is only for the broader model, which includes various
informal aspects, that it has any significance. The original papers mentioned
only briefly the updating operations that would be required in an application,
and the language through which they would be specified.Ê It was assumed that
these operations, along with the problems they might cause and the checks
needed to avoid these problems, would be similar to those used in other
database systems. No one tried to extend the formal model by including, say, a
formal set of updating operations. It was assumed, in other words, that the
exact, formal model would provide all the important database operations. The
updating operations, as well as the operations needed to protect the database
from redundancy and inconsistencies, were seen as a minor issue; so the plan

Ê See, for example, E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM 13, no. 6 (1970): 377–387.

the second delusion 733chapter 7

was to implement them informally, just as they were implemented in other
systems. We find evidence for this interpretation in that the second and higher
normal forms are not mentioned at all in the original papers. The terms
“normal form” and “normalization” in these papers refer only to what is called
now the first normal form.

It was when the theorists turned the formal model – originally meant only
for queries – into the basis of general database systems, that the idea of
normalization had to be extended. By calling the new normal forms “second,”
“third,” etc., the theorists made them look like a natural extension of the first
one, although they are unrelated. While the first one is concerned with
eliminating data structures within fields, the higher ones are concerned with
eliminating misplaced dependencies between fields. The first one is needed in
order to base the formal model on predicate calculus, but the higher ones are
needed only if we perform updating operations. By making the latter look like
an extension of the first one, though, the theorists managed to mask the fact
that the relational model was changing from an exact theory into a collection
of informal concepts. While everyone thought that the precision of the formal
model was being extended to cover all aspects of database work, in reality the
exact opposite was taking place: what had been originally the informal aspects
of the model – the updating operations, the higher normalization, the integrity
rules, the database language – was becoming the actual model, and the formal
part was becoming irrelevant.

One wonders, if the updating operations constitute an informal aspect of
the relational model, why is it so important to formalize the normalization
process? Why do the theorists attempt to reduce the problem of redundancy
and inconsistencies to an exact model, if the problem only concerns the
updating operations, which are informal in any case? The answer is that the
theorists saw in the normalization principles an extension of the original,
formal model. The precision which that model offered for queries, they
thought, can now be extended to the design phase, and to the updating
operations; so we will soon have a mathematical model for the whole database
concept.

As we will see later, the formality of the normalization process is specious.
The theorists are indeed discussing the subject of dependencies in a formal
manner, but, ultimately, we can determine the relationship between two given
fields only by studying and interpreting the application’s requirements; that is,
informally. As is the case with all mechanistic pseudosciences, the relational
theorists noticed a few patterns and regularities (the normal forms and the
field dependencies), and jumped to the conclusion that an exact theory is
possible for the design of file relationships. The same naivety that led earlier to
the belief that the resemblance of records to the tuples of predicate calculus can

734 the relational database model chapter 7

be the basis of a practical database model, led now to the belief that a neat
classification of field dependencies can be the basis of a formal model for
database design.

3

3
When studying the problem of data redundancy and inconsistencies, we
notice a marked discrepancy between the way it is presented by the relational
theorists and its actual difficulty. The theorists discuss this subject with
great seriousness, the way one would discuss the most difficult problems a
programmer can encounter. In reality, this is one of the simplest programming
problems. And it is a problem that does not lend itself to formal treatment, so
an exact theory has no practical value in any case.

It is hard to think of anyone designing a database where the “anomalies” so
seriously discussed by the theorists could occur at all. Even a novice can
recognize the absurdity of storing fixed customer information only in the
invoice records, or repeating fixed product information in every order line
with that product. And if mistakes like these go undetected and end up in the
working application, it is hard to imagine a place where the programmers or
the users fail to understand why customer data is lost when an invoice is paid,
or why two order lines with the same product show different descriptions.
Then, once they understand the problem, it is hard to imagine them failing to
discover the solution; that is, keeping the fixed data in a separate file. To put
this differently, a person incapable of dealing with this simple problem would
be unable to deal with any other programming problem. His applications
wouldn’t work, and those anomalies would be the least of his worries. Thus, it
is highly unlikely that a place can exist at all where the theory of normalization
can confer any benefits.

And indeed, before it was brought into the limelight by the relational
experts, we treated the problem of redundancy and inconsistencies as we did
every other programming problem: we recognized its importance, but we
never tried to explain it with an exact theory, or to solve it with a formal
method. As evidence of its simplicity, we didn’t even think that the process of
solving it needed a special name; it is only for the relational theory that terms
like “normalization” and “normal form” had to be introduced. And for those
of us who have continued to use the traditional database design method, the
attempt to turn this subject into an exact theory has had no significance
whatever. We are treating the problem of redundancy and inconsistencies
exactly as we did thirty or forty years ago, simply because the theory of
normalization is irrelevant.

the second delusion 735chapter 7

Relational database books devote at least one chapter to the subject of
normalization. And the more thorough among them intimidate us with their
formal tone and lengthy explanations, the countless definitions and theorems,
and the new terms and symbols. Thus, if we ignore its content and judge
it solely by its style, the discussion of normalization in a database book
resembles the kind of discussions found in engineering books. Readers new
to the relational theory are impressed by this formality and expect to learn
some important facts. Invariably, though, they find the discussion hard to
follow. Then, when the book illustrates the theory with actual examples of
unnormalized files and their conversion to normalized ones, these readers
react by exclaiming, “But this is how I would have designed the database in the
first place!” So it is only through actual examples that we can comprehend the
theory of normalization at all, and at that point the reason for the earlier
difficulty becomes clear: since we would intuitively create the correct, normal-
ized files to begin with, we struggle to understand what is the problem that the
theory is trying to solve. To most of us it doesn’t even occur – until we read a
relational book – that anyone would design a database by repeating, say, the
customer address fields for each order, or the product description field for each
order line.

The difficulty, then, is not in understanding the principles of database
design, but in understanding the theory of normalization: the attempt to
reduce database design to formal and exact methods. We must make an effort
to understand the normalization problems and their solutions because we
normally don’t think in a way that can create these problems. The problems are
contrived, unreal. They were invented by the theorists, in order to have a reason
for seeking a formal solution.

Typically, the books start by showing us an incorrect design and its draw-
backs. They continue then by showing us how to convert it into a correct
design. But what is the point of this discussion if hardly anyone would even
consider the incorrect alternative? The theorists are defining, classifying, and
explaining in the style of mathematical analysis some implausible situations –
situations we never encounter in real life. With just common sense and a little
practice, we already know how to create correct databases. The normalization
theory, on the other hand, asks us to study some strange problems (the
difference between the second and third normal forms, why we have the so-
called Boyce/Codd normal form between the third and fourth, how to convert
a file from first to second or from second to third, etc.) and to assimilate an
endless list of strange concepts (superkey, dependency preservation, nonloss
decomposition, left-irreducible functional dependency, etc.).

It is the attempt to formalize the problem of field dependency, data redun-
dancy, and data inconsistencies, and the need to fit the incorrect designs into

736 the relational database model chapter 7

the classification of normal forms, that we find hard to understand – not the
actual principles of database design. And when we finally understand the new
concepts, we realize that in practice we never encounter these problems. When
we learn to program we don’t learn two things – how to design incorrect
databases, and how to convert incorrect databases into correct ones; we simply
learn how to design correct ones. Thus, since the problems studied by the
theory of normalization concern mostly the transition from bad to good
design, it is not surprising that the theory is, for all practical purposes,
irrelevant.

4

4
We saw earlier, in “The Basic File Operations,” that the concept of records,
fields, and keys allows us to implement any file relationships we need in our
applications. And we also saw that this concept is identical in traditional and
in relational databases. The difference lies mainly in the new terminology and
in the way the files are used. In traditional databases, we use the basic file
operations through the flow-control constructs of a programming language;
and we specify, through indexes, the individual records. In relational databases,
we use only the high-level relational operations; and, rather than individual
records, we specify whole files or logical portions of files. But in both cases we
must create the same files and fields, and the same relationships, in order to
implement a particular set of requirements.

Thus, although our earlier discussion concerned traditional databases, the
same design principles apply to relational ones. With one type of database
or the other, the traditional principles permit us to create correct – that
is, normalized – databases directly from the application’s requirements. To
appreciate the absurdity of the normalization theory, then, let us review the
traditional design concepts.

The decision we must make when designing a database is what files, fields,
and keys are needed; that is, what data to store in the database, how to
distribute it among files, and how to relate the files, in order to satisfy the
application’s requirements. Thus, since the files depend on the application’s
logic, we usually implement them together with the various parts of the
application. It is the file relationships that pose the greatest challenge. For, if all
we needed were isolated files (a customer file, a product file, a history file, etc.,
with no links between them), designing the database would be trivial, little
more than creating the respective fields.

Files are related through the values present in their fields. Typically, identifi-
ers and codes are used to relate files (product number, invoice number,

the second delusion 737chapter 7

category, etc.). A relationship is established when two files use such a field, and
some records in both files contain the same value in this field.Ë Depending on
how the relationship is used in the application, we may use either key fields or
non-key fields. Often, a combination of several fields, rather than a single field,
is needed to relate files.

And it is the correct choice of relationships that ultimately determines
whether or not there will be redundancy or inconsistencies in the database –
what the theory of normalization is concerned with. The various normal
forms, as we will see shortly, are nothing but a complicated way of expressing
these relationships. In reality, all we have to do is create a database that
correctly represents the application’s requirements; and if we do this, there will
be no redundancy or inconsistencies. In other words, if we understand the
application’s requirements, and if we implement them correctly, we don’t need
a theory of normalization (because we create “normalized” files from the start);
and if we don’t understand the requirements, or fail to implement them
correctly, no theory can help us.

�

Four types of file relationships are possible between two files: one-to-one, one-
to-many, many-to-one, and many-to-many. The terms “one” and “many” refer
to the number of records in the first and second file that are logically linked.

Two files are in a one-to-one relationship when one record in the first file is
related to no more than one record in the second file. Thus, the two files will
have the same number of records when each record in the first one has a
corresponding record in the second one, and they will have a different number
of records when some records in either file have no corresponding records in
the other. Files that are in a one-to-one relationship can always be combined
into a single file, where each record comprises the two corresponding records:
we simply merge their fields, and when there is no corresponding record we
assign null values or default values to the respective fields. For practical
reasons, though, it is sometimes preferable to have two files rather than one.
For example, if a file has many fields but some operations involve only a few,
we may decide to keep these fields in a separate, smaller record, in order to
improve the application’s performance.

An example of one-to-one relationship is an employee file and a special
functions file, with the condition that a function may be performed by only one

Ë Relations based on field equality are the most common, but, strictly speaking, any
values can be used to relate files. With a date field, for example, we can create a relationship
where a record containing a certain date in the first file is logically linked to those records
in the second file where a date is up to one year earlier.

738 the relational database model chapter 7

employee, and an employee may select no more than one function. At some
point in time we may have, say, 80 records in the employee file and 30 records
in the functions file, but only 20 functions actually selected; thus, 60 employees
will have no corresponding function, and 10 functions no corresponding
employee. The two files are linked by adding a function number field to the
employee record, or an employee number field to the function record (or both,
if we need two-way links).

The most common relationship is one-to-many. Two files are in a one-to-
many relationship when one record in the first file (the “one” file) is related to
one, several, or no records in the second file (the “many” file), while each
record in the second file is related to one or no records in the first file. Here are
some examples: customer file and customer orders file (one customer may
have one, several, or no outstanding orders, but each order belongs to one
customer); orders file and order lines file (one order may include one or several
order lines, but each line belongs to one order); employee file and payment
history file (each employee has one record in the history file for each pay
period, but each pay period record belongs to one employee). A one-to-many
relationship is also a many-to-one relationship, when seen from the perspective
of the second file: several orders are related to the same customer, several order
lines to the same order, several pay periods to the same employee.

The one-to-many relationship is implemented by making the “many” file’s
key a combination of both files’ identifying fields. For example, if we make the
key in the orders file the combination of customer number and order number,
we will be able to select for a given customer any one of the corresponding
records in the orders file, and for a given order the single, corresponding record
in the customer file. However, when the relationship is seen as many-to-one
and a direct link is not required from the “one” file to the “many” file, the “one”
file’s identifying field can be just a non-key field in the “many” file. Thus, the
key in the orders file would be just the order number, and we would access the
customer records by including the customer number as a non-key field.

Two files are in a many-to-many relationship when one record in the first
file is related to one, several, or no records in the second file, and at the same
time one record in the second file is related to one, several, or no records in the
first file. To implement such a relationship, we create a service file to act as a
link between the main files. The service file has only key fields, and its key is
simply the combination of the two main keys. For example, if some vendors
supply several products, and certain products are supplied by several vendors,
the vendor and product files form a many-to-many relationship. The key in the
service file is the combination of vendor and product numbers, and we
implement the two-way links between files (vendor to product, and product to
vendor) by providing both sorting sequences: products within vendors, and

the second delusion 739chapter 7

vendors within products. (If using traditional file operations, we accomplish
this by creating two indexes for the service file.) We can then select for a given
vendor the corresponding records in the product file, and for a given product
the corresponding records in the vendor file.

The four types of relationships can be combined to link more than two files.
Thus, a set of several files can form a one-to-one relationship, when any two
files in the set are in a one-to-one relationship. Also, a file can be in two many-
to-many relationships at the same time: with one file through one field, and
with another file through another field.

The most versatile relationship, however, is one-to-many. One way to
combine one-to-many relationships is by having several “many” files share the
“one” file, through the same field or through different fields. The customer file,
for example, can be related through the customer number to both the orders
and the sales history files. One-to-many relationships can also be combined to
form hierarchies of more than two levels, by using the “many” file of one
relationship as the “one” file of another. For example, for each order in the
orders file we can have several lines. We store then the line-related data in an
order lines file, and use the combination of customer, order, and line numbers
as the key. The order records will function, at the same time, as “many” in their
relationship with the customer records, and as “one” in their relationship with
the order lines records. Most applications require a mixture of combinations:
several levels, and several files on each level. Thus, several “many” files may
share the “one” file while acting at the same time as “one” files in other
relationships.

It is also possible for two “one” files to share the “many” file. For example, if
a customer purchases several products and a product is purchased by several
customers, there will be a set of records in the sales history file for each
customer record, and another set for each product record. But these sets will
overlap: each history record will be related at the same time to a certain
customer and to a certain product. Thus, in addition to being the “many” file
for both the customer and the product files, the history file serves to create a
many-to-many relationship between them. (The many-to-many relationship,
we see now, is merely a special case of two one-to-many relationships that
share the “many” file – the case where this file’s sole purpose is to link the
“one” files.)

�

Although the four types of relationships are usually described as file relation-
ships, they are also field relationships. When two files are related as one-to-
one, or one-to-many, or many-to-many, it is through their records that the

740 the relational database model chapter 7

relationship exists: one or several records in one file correspond to one or
several records in the other. But records are made up of fields, so the same
correspondence exists between fields: the relationship between files is reflected
in each pair of fields. Thus, when two files are related as one-to-one, each
field in the first file is in a one-to-one relationship with each field in the second
file; in addition, fields that belong to the same file are in effect in a one-to-one
relationship with one another. When two files are related as one-to-many, each
field in the first file is in a one-to-many relationship with each field in the
second file. And when two files are related as many-to-many, each field in
the first file is in a many-to-many relationship with each field in the second file.

For example, if the product and the orders files are related as one-to-many,
a field like the product description or price in the former will be related as one-
to-many to fields like the order date or quantity in the latter. What this means
in practice is that the same product description or price may be associated with
several order dates and quantities.

We can regard the four types of relationships, therefore, as either file or
field relationships. So, rather than saying that two files are related and the field
relationships reflect the file relationship, we can say that it is the fields that
must be related, and the file relationship will reflect the field relationships. We
design a database by creating relationships that match the requirements. In
some situations we think in terms of file relationships; and once we create the
files, it is obvious to which file each field must be assigned. In other situations
it is better to think in terms of field relationships; and we implement the files
and file links that will allow us to relate those fields as required.

�

Consider this example. We want to store some information about our products,
so we start with a file that contains just the key field, the product number. If
the requirements say that there may be several orders for each product, the
product number is related as one-to-many to the order number. The order
number must be, therefore, in a separate file, so we create an orders file with
two fields: the order number as the key, and the product number as the link to
the product file. Next, we need a product description field, which is always the
same for a given product; it is related as one-to-one, therefore, to the product
number, so we assign it to the product file. We then need an order date field,
which is always the same for a given order; it is related as one-to-one to the
order number, so we assign it to the orders file. (This also relates it as many-
to-one to the product number and description, which is what we want.) Next,
we need an order quantity field; like the date, it is related as one-to-one to the
order number, so we assign it to the orders file.

the second delusion 741chapter 7

This process, clearly, can be continued for each new field. And, since most
requirements reflect common needs, an experienced programmer will easily
design a correct database. Only in unusual situations do we have to analyze
carefully the requirements to determine how to treat a new field.

The foregoing example, while very simple, already demonstrates that it is
the application’s requirements, not some database principles, that determine
what is a correct database. Thus, if the requirements changed and the product
description were permitted to differ from one order to the next, the description
field would have to be in the orders file rather than the product file (because it
would now be related as one-to-one to the order number, date, and quantity,
and as many-to-one to the product number). Similarly, if the requirements
permitted several lines in an order, the product number and quantity would be
related as many-to-one to the order number. So they would be assigned to a
separate file, order lines, where the key is the combination of order number and
line number, and several records correspond to one order record. The order
date, though, would stay in the orders file, because it continues to be related as
one-to-one to the order number.

We know that relationships can be one-to-one, one-to-many (or many-to-
one, if seen in reverse), many-to-many, and combinations of these. So, if we
understand the role that a new field must play in the application, we already
know what relationship to create, and hence to which file to assign it. (Key
fields duplicated in another file in order to relate the two files are treated
differently, of course.) All we need in order to design a correct database is to
study the application’s requirements. Then, we use an appropriate combination
of relationships to represent these requirements. In other words, we create the
database that matches the requirements – one field at a time. Ultimately, if we
understand the requirements, we are bound to create a correct database.

And when we create a correct database, the problem of redundancy and
inconsistencies does not arise. (The only time we must deal with this problem
is when we deliberately introduce redundancy into the database; that is, when
avoiding it would make the application too slow.) This is true because in a
correct database all field relationships reflect actual requirements. Thus, in
the foregoing example we assigned the product description to the product
file because the requirements stated that it was the same for all orders. If
we assigned it to the orders file instead, we would end up with unwanted
duplication: a product’s description would be repeated unnecessarily in each
order that includes the product. The duplication can be explained by noting
that this relationship does not reflect the requirements: the description field
would be related as many-to-one to the fields in the product record, while
the requirements called for a one-to-one relationship. (Alternatively, the
error can be described as a one-to-one relationship with the fields in the

742 the relational database model chapter 7

orders record, while the requirements called for a one-to-many relationship
with these fields.)

The most important lesson from this analysis is that data redundancy and
inconsistencies can only be defined within the context of a particular set of
requirements. So this is not a problem that can be solved by means of a formal
database theory. This is a programming problem, one that can be solved only
by taking into account both the database structures and the other structures
that make up the application. It is the way we plan to use the files that
determines what are the correct relationships. And with correct relationships,
there will be no redundancy or inconsistencies.

A database, then, can be correct only for a specific set of requirements. With
just a small change in requirements, the same database would no longer be
correct. The incorrectness may manifest itself in the form of wrong values or
unnecessarily duplicated values. In the earlier example, storing the description
in the product record is correct if it must be the same in all orders, and wrong
if it must change; conversely, storing it with each order is correct if it must
change, and wrong if it must be the same in all orders. The presence of
redundancy and inconsistencies, therefore, when unintended, is similar to any
other programming error: we neglected the requirements, and consequently
the application malfunctions. The error, in this case, is a discrepancy between
the required file relationships and the actual ones.

It is worth repeating: the concept of file and field relationships applies to
relational databases exactly as it does to traditional ones, because both types
are based on files, records, fields, and keys. Thus, even those programmers who
prefer the relational model can benefit from the traditional design methods.
They too can avoid data redundancy and inconsistencies by creating a correct
database directly from requirements. Even with a relational database system,
therefore, there is no need for a theory of normalization – because, if we create
correct relationships, there is no redundancy or inconsistency to eliminate. As
is the case with the traditional databases, we simply need to understand the
application’s requirements and the four types of relationships.

�

We can appreciate even better the connection between file relationships and
the application’s requirements if we remember that requirements are in effect
rules, or restrictions. Specifically, from all the operations that the application
can perform, and from all possible values that memory variables and database
fields can take, only a few must be permitted if the application is to run
correctly. One type of restrictions concerns the combinations of values that the
database fields will display at run time: how the value of one field depends on

the second delusion 743chapter 7

the value of another. And it is through the four types of file relationships that
we implement these restrictions.

Two fields are related as one-to-one when they can have any combination
of values; that is, when neither field depends on the other. Two fields are related
as one-to-many when one field is restricted to a specific value by a series of
values in the other. (Many-to-one is the same relationship seen in reverse.) And
two fields are related as many-to-many when there are two simultaneous one-
to-many restrictions: one field is restricted by the values of the other, and at the
same time possesses values that restrict the other.

By interpreting the requirements as restrictions, we can explain the problem
of redundancy as follows: we provide for all possible combinations of values in
a situation where only a few can actually occur. If the requirement is for one-
to-many and we place the two fields by mistake in the same file, they will be
related as one-to-one. We provide for any combination of values when, in fact,
the first field will have the same value for a series of values in the second. So
that one value will be repeated unnecessarily every time the second field’s value
is in that series. We only need to specify their relationship once, and yet we do
it several times.

�

There is an obvious correspondence between the various file relationships and
the normal forms of the normalization theory: the relationship that is correct
for a given requirement corresponds to the highest normal form attainable
for that requirement (the one for which the files are deemed to be fully
normalized). The relational theorists avoid the subject of file relationships –
perhaps because this would reveal the shallowness of the normalization theory.
Let us take a moment, though, to study this correspondence.

The first normal form is the highest one attainable when the application’s
requirements place no restriction on the combinations of values that two fields
can take. From the perspective of the normalization theory, this means that
there is no dependency between the two fields; so they can be assigned to the
same file (or to separate files if those files are in a one-to-one relationship).

The second and higher normal forms can be attained when the application’s
requirements place some restrictions on the combinations of values. Because
of these restrictions, the correct relationship is now one-to-many; and if we
create one-to-one instead (by placing the fields in the same file), we will have
a relationship that permits any combinations, while the actual data includes in
fact only some combinations. The normalization theory describes this problem
as a misplaced dependency: the only dependency permitted within a tuple is
that of a non-key field on the field or fields that make up the key. We also note

744 the relational database model chapter 7

the mistake in that the file is only in first normal form, while a higher normal
form is now attainable. The solution is to place its fields in separate files,
thereby creating files that are in second, third, or Boyce/Codd normal form.
(Which form is actually attainable depends on the combination of field types,
key or non-key, that constitutes the misplaced dependency.) In traditional
terms, what we do when using two files instead of one is replace the incorrect
one-to-one relationship with a one-to-many relationship, which is what the
requirements had called for to begin with.

Combinations of these three normal forms correspond to combinations of
one-to-many relationships: two “many” files sharing the same “one” file, or two
“one” files sharing the same “many” file. They also correspond, therefore, to a
many-to-many relationship between two files. The more complicated fourth
and fifth normal forms correspond to various many-to-many relationships
involving three or more files, when some of the two-file relationships are
restricted.

But this correspondence, while perhaps interesting, is irrelevant; for, in
practice we don’t need to know anything about field dependencies, or about
the notion of normal forms. We can create the correct relationships directly
from requirements, as we saw earlier. We don’t have to start with an incorrect,
one-to-one relationship (as the normalization theory says), note the redun-
dancy and inconsistencies, and then try to attain the correct relationship by
discovering misplaced dependencies.

5

5
We are now in a position to explain the fallacies behind the delusion of
normalization. We saw that all we need in order to create correct file rela-
tionships is to understand the application’s requirements. We can avoid
data redundancy and inconsistencies, therefore, simply by implementing
relationships that match the requirements. But, while not especially difficult,
this task demands skills that most programmers lack.

Without exception, the mechanistic software theories attempt to solve the
problem of programming incompetence, not by encouraging programmers to
improve their skills, but by providing substitutes for skills. The relational
theory, in particular, was meant to obviate the need for database programming
skills. Instead of the traditional file operations, which must be used through a
programming language, programmers will only need to understand the high-
level relational operations. Moreover, the mathematical foundation of the
theory will guarantee data correctness: since the relational operations are
as exact as mathematical functions, and since any database requirement

the second delusion 745chapter 7

can be expressed as a combination of these operations, even inexperienced
programmers will create correct database structures.

But, as we saw under the first delusion, the mathematical database model
is a fantasy. To attain such a model, we must restrict it so much that it
loses all practical value. If we divide the use of a mathematical system into
translation (the conversion of the actual phenomenon into its mathematical
representation) and manipulation (the work performed with the mathematical
entities within the system), only the manipulation can be formal and exact. The
translation entails an interpretation of the phenomenon, so it is necessarily
informal. The relational model is senseless because it consists almost entirely
of the translation. The manipulation, while indeed exact, forms a very small
part of the model; and, besides, it is so simple that we can implement the
same operations by relying on common sense alone. The theorists praise the
mathematical benefits of the model, but these benefits can only help us to deal
with a few, simple aspects of database work. Most work, including the most
difficult aspects, lie outside the scope of the formal model. So, in the end, we
need the same programming skills as before.

If the manipulation includes only the little that can be reduced to an exact
representation, every other aspect of database work must become part of the
translation. This includes the design of the database; that is, discovering the
combinations of files and fields that correctly represent the real entities and
the relationships between them. With a traditional database or a relational
one, this is an informal activity: using our knowledge and experience, we
study the application’s requirements and ensure that the database entities and
relationships match the real ones. And if we accomplish this, there will be
no redundancy or inconsistencies. The relational theory never promised
to replace this activity with an exact method; it simply left the issue out of
the formal model (along with such other issues as integrity rules, updating
operations, database language, and database performance).

The relational theory, thus, failed to eliminate the need for programming
skills. Programmers continued to create incorrect database structures, but the
theorists did not recognize this problem – the fact that so much had to be left
out of the formal model – as a falsification of the relational concept. So,
instead of studying the problem, they introduced an additional concept –
the normalization theory. Their attitude, in other words, did not change:
confronted with the evidence that mechanistic theories cannot be a substitute
for expertise, they hoped to contend with the persisting incompetence by
inventing yet another substitute. The second relational delusion (the delusion
of normalization) emerged, therefore, because the theorists refused to face the
first one (the delusion of a formal database model).

The normalization theory differs from the original relational theory in that

746 the relational database model chapter 7

it promises us exact methods for identifying the incorrect file relationships, not
before, but after they are implemented. Rather than invoking the power of
mathematics to prevent a bad design (something that everyone now agrees is
impossible), we are told that the same power can be invoked to correct a bad
design. Clearly, the theorists do not see the absurdity of this idea. For, were it
possible to discover formally the incorrect relationships in an existing database,
we could also discover them formally while designing the database. The
phenomenon is the same in both cases: file relationships that do not match the
application’s requirements.

So the theorists still fail to understand why the original model could not
help us to design correct file relationships. This is not a technical problem that
might be solved with an additional theory, but a fundamental limitation: it is
only through an informal interpretation of the requirements that we can
determine what are the correct relationships. Thus, there is no difference
between determining this while designing the database or after. In both cases,
we must process the database structures together with the other structures that
make up the application; in particular, the business practices reflected in the
application. In both cases, then, we must deal with the complex structure that
is the whole application, and this is something that only minds can do.

�

The normalization theory claims to eliminate the need for expertise by
eliminating the need to design correct databases. Unlike the traditional
design methods, which expect us to create file relationships that match the
requirements, the new method permits us to create relationships that are as
incorrect as we like. To take an extreme case, we can ignore the need for file
relationships altogether: we create a database that consists of just one file, and
assign all the fields to this file, regardless of their actual relationships. We can
do this because the database we create now is only a starting point. By applying
the principles of normalization, we will be able to transform the incorrect
database, step by step, into a correct one.

As we know, files created within the formal model are already in first
normal form. To attain the higher normal forms, we must modify the database
by discovering and eliminating the misplaced field dependencies. And this can
be accomplished, we are told, through the formal methods provided by the
normalization theory. Through one procedure we eliminate one type of
dependency, and thereby convert the files from first to second normal form;
then, through another procedure we eliminate a different type of dependency,
and convert them from second to third normal form; and so on. We continue
this process until we find at a certain level – a level that varies from one

the second delusion 747chapter 7

database to another – that there are no misplaced dependencies left. At
that point, the database is fully normalized. By eliminating all misplaced
dependencies, we eliminated the possibility for any data redundancy or
inconsistencies to emerge later, when the database is used.

The normalization theory, thus, claims to have solved the problem of
programming incompetence by replacing the challenge of designing a correct
database, with an easier challenge: eliminating the errors found in an existing,
incorrect database. This shift, the theorists believe, reduces database design to
a series of simple, mechanical activities. Their naivety is so great that, although
the logic is the same (matching the file relationships to the application’s
requirements), and although the ultimate database is the same, they believe
that the new principles are formal and exact while the old ones are not.

In the end, the problem of design became the problem of dependency: an
elaborate system for defining, analyzing, and classifying the field dependencies
found in a database. Date describes this shift perfectly: “The fact is, the
theory of normalization and related topics – now usually known as dependency
theory – has grown into a very considerable field in its own right, with several
distinct (though of course interrelated) aspects and with a very extensive
literature. Research in the area is continuing, and indeed flourishing.”Ì But
this research is a fraud: the theorists are distorting and complicating the
problem of database design in order to have a reason for seeking an alternative.
The delusion is not so much in the shift from design to dependency, as
in the belief that this shift has turned the problem into a formal theory;
specifically, the belief that we have now exact methods to prevent redundancy
and inconsistencies.

In reality, redundancy, inconsistencies, and misplaced dependencies are
different aspects of the same phenomenon: a discrepancy between the file
relationships and the application’s requirements. Thus, whether we wish to
avoid redundancy and inconsistencies, or to eliminate misplaced dependencies,
the only way to do it is by interpreting the requirements correctly; and this task
cannot be formalized. What the theorists did is add to this task a complicated
system of principles and procedures – the theory of normalization. And it is
only this theory that is formal and exact. Their “research,” then, is merely a
preoccupation with this theory, with the problems they invented themselves.
The real problem – creating a correct database – is as informal as before. So, if
the normalization principles did not replace the original problem, if we
continue to assess dependencies informally, the normalization theory is
fraudulent.

Ì C. J. Date, An Introduction to Database Systems, 6th ed. (Reading, MA: Addison-
Wesley, 1995), p. 337.

748 the relational database model chapter 7

To repeat, dependency is indeed part of the same phenomenon that causes
redundancy and inconsistencies. So the shift from design principles to depend-
ency principles is wrong only because it is unnecessary, because it complicates
the problem without providing any benefits in return. Recalling the earlier
examples, repeating the unchangeable product description in every order
entails redundancy. We can describe this redundancy as the result of an
incorrect relationship: we created a one-to-one relationship between the
description field and fields like order number, when their required relationship
is one-to-many. But we can also describe the redundancy as the result of a
misplaced dependency: the description depends on the part number, which is
not the key in the orders file. Regardless of how we describe the redundancy,
though, it is the incorrect relationship between the product description and the
other fields that is the root of the problem. And in both cases it is this
relationship that must be modified in order to solve the problem.

Generally, with the traditional design concept we create the correct relation-
ships from the start. With the normalization theory, we start by creating one-
to-one relationships – which are usually wrong, because most relationships are
one-to-many or many-to-many; we then search for misplaced dependencies,
which direct us to the incorrect relationships; and finally, we modify the
relationships in order to eliminate those dependencies, and with them the
redundancy and inconsistencies.

But with both the traditional method and the new one, we always reach the
point where we must decide, for a given field, whether it must be in the same
file as some other fields, or in another file. With the traditional method, this
decision is also the design. With the normalization theory, this decision is only
a small part in a long and complicated process. For, now we must also identify
the current normal form, determine the type of dependency between fields
and the higher normal form that would eliminate it, and convert the files to
that normal form.

The decision itself, however, entails the same challenge: interpreting the
application’s requirements correctly. Thus, what is the critical step with both
design methods – discovering the correct relationship between two fields – is
necessarily an informal process. So the formality of the normalization theory
is silly if normalization depends ultimately on an informal process, just like the
traditional method. Before, we made that decision in order to create a correct
file relationship. Now we make it in order to correct an incorrect one. But, if in
the end it is only through our interpretation of the requirements that we can
determine what is the correct relationship, we may as well use the traditional
method, which is so much simpler.

�

the second delusion 749chapter 7

To conclude, there are two stages to the delusion of normalization. The first
stage is the belief that we need a theory of normalization at all; namely,
that preventing redundancy and inconsistencies is a special problem, which
demands a formal theory. This problem, though, is no different from all the
other problems that make up the challenge of programming. Regardless of
which aspect of the application we are dealing with, we must create structures
of software entities that correctly represent the structures of real entities. And
to accomplish this task we must understand the application’s requirements and
the means of implementing them. Moreover, a given requirement usually
affects several aspects of the application, and we cannot deal with them
separately. The database structures, in particular, are always linked to the other
structures that make up the application. Searching for a formal, mechanistic
theory of database design is an absurd and futile quest.

The theorists assume that it is impossible, or very difficult, to design a
correct database directly from requirements; that programmers cannot attain
the necessary expertise, so this task must be replaced with a method which
they can follow mechanically; and that it is possible to discover such a method.
But, quite apart from the fact that no formal method can exist, the traditional
design principles already provide a fairly simple method for creating correct
databases. All we need to do is determine, for each new field, the appropriate
relationship with the existing fields (one-to-one, one-to-many, many-to-one,
or many-to-many). If we do this, we will end up with a correct database – a
database that matches the requirements. And, among the many benefits of a
correct design, there will be no redundancy or inconsistencies.

The second stage in the delusion of normalization is the belief that the body
of principles that make up this theory constitutes indeed a formal solution to
the problem of database design. In reality, the database structures are still based
on the relationships between fields, and we can only determine the correct
relationships by interpreting the requirements; in other words, informally, just
as before. The theorists think that studying field dependencies rather than field
relationships has resulted in a method that is formal and exact, but what is
formal and exact is only the new principles. These principles did not replace
the informal task of understanding the requirements; so that task – upon which
the correctness of the database ultimately depends – has remained unchanged.

If we divide the design process into two parts, formal and informal, the
traditional method is almost entirely informal, while the new one is almost
entirely formal. But this improvement is an illusion. What confuses the
theorists is that the part which they invented, and which is indeed formal,
keeps growing, while the traditional part (understanding the requirements)
remains the same. Recalling an earlier quotation, research in this area is
flourishing. Thus, the more preoccupied they are with the dependency theory,

750 the relational database model chapter 7

the smaller the informal part appears to be. The informal part, after all, consists
simply in determining, for a given field, its relationship with the other fields.
In the end, though, this decision is the only thing that matters – what will make
the database correct or incorrect – with both the traditional method and the
new one. But, while this decision is practically the whole design process with
the traditional method, with the new method it is such a small part that it
goes unnoticed. So the theorists delude themselves that the new method is
entirely formal.

The formal part, thus, did not eliminate the informal one in the new
method; it is additional to it. The formal part, while impressive, is absurd if the
correctness of the database depends ultimately on the small part that is
informal – on the part that, with the traditional method, is the only thing
we need.

So the conclusion must be that the concept of normalization is worthless. It
is an artificial, unnecessary theory. The critical part is still the informal task of
determining what field relationships match the application’s requirements. But
by spending most of their time with formal and complicated procedures, and
only moments with that informal task, the relational enthusiasts can claim that
database design is now an exact science.

We examined earlier the first stage of the delusion of normalization: the
belief that we need some new, formal principles, when in fact the traditional
concepts provide an excellent and relatively simple design method. In the
following pages we examine the second stage: the belief that the principles of
normalization provide indeed a formal design method, when in fact the critical
part is as informal as before.

6

6
Like predicate calculus, which inspired it, the formal relational model is a true
mathematical system, complete with operations and formulas. Its weakness, we
saw under the first delusion, is only that it is irrelevant to database work: when
we depict the use of a relational system as the translation of database entities
into mathematical ones and their manipulation within the system, we find that
the manipulation – the most important aspect in other mathematical systems,
and the reason for performing the translation – plays an insignificant part.

The normalization theory, on the other hand, is not a mathematical system
at all. The theorists discuss it as seriously as they do the formal relational
model, but on closer analysis we discover that all they do is present it formally.
There are no true operations or formulas in this theory, as there are in the
formal model; all we have is a study of field dependencies, expressed through

the second delusion 751chapter 7

formal notation. The theory of normalization, in other words, consists entirely
of a process of translation: from the real entities into the relational ones. There
is no manipulation at all. The only operations available are those we had under
the formal relational model.

An example of the specious mathematics of the normalization theory is
found in a long paper written by E. F. Codd – a paper generally regarded as the
most rigorous treatment of the second and third normal forms.Í The paper
provides an exhaustive analysis of field dependencies and their elimination,
but despite the formal tone and terminology, this is not a mathematical theory.
The paper describes various combinations of data elements, and represents
their relationships and dependencies by means of a formal system of notation.
The resulting expressions look perhaps like mathematical formulas, but they
serve no purpose beyond this representation. Page after page of expressions
are, in reality, only the translation of files and fields into the new notation. Once
the translation is complete, we have no way to manipulate the expressions. All
the system does, then, is represent field dependencies formally. Were this a true
mathematical system, we would have some new relational operations, to
replace the original ones.

We find the same style in thousands of other writings. What is described as
mathematics is merely a system of definitions and theorems expressing in
formal notation various issues pertaining to the subject of field dependency.
Typically, the papers introduce new terms and define them through references
to other terms, show how to derive certain parts of the system from other parts,
prove that if certain conditions hold then other conditions will also hold, and
so forth. And this is where the mathematics ends.

It is the introduction of new terms that the authors are especially fond of.
The relational theory in general overwhelms us with new terminology, but the
principles of normalization in particular seem to require some new terms at
every step. Thus, along with the formal tone, the rich terminology helps to
make the normalization theory appear important, no matter how shallow it
actually is. But, while the mathematical style of these writings impresses naive
readers, an intelligent person merely finds the writings incomprehensible.
The reason is that, since we know that the whole theory is unnecessary, we
have little motivation to assimilate the countless terms and definitions; and
without understanding the new concepts it is impossible to follow the author’s
discussion.

To convey the flavour of this style, I will quote a few lines from Date’s book
(out of the seventy pages devoted to the subject of normalization). After

Í E. F. Codd, “Further Normalization of the Data Base Relational Model,” in Data Base
Systems, ed. Randall Rustin (Englewood Cliffs, NJ: Prentice Hall, 1972), pp. 33–64.

752 the relational database model chapter 7

presenting several related theorems, Date defines the fourth normal form as
follows: “Relation R is in 4NF if and only if, whenever there exist subsets A and
B of the attributes of R such that the (nontrivial) MVD A→→B is satisfied, then
all attributes of R are also functionally dependent on A.”Î Concepts like
“nontrivial,” “MVD,” and “functionally dependent,” used in this definition, are
explained on previous pages. For example, MVD (multivalued dependency) is
defined as follows: “Let R be a relation, and let A, B, and C be arbitrary subsets
of the set of attributes of R. Then we say that B is multidependent on A – in
symbols, A→→B (read ‘A multidetermines B,’ or simply ‘A double-arrow B’) – if
and only if the set of B-values matching a given (A-value, C-value) pair in R
depends only on the A-value and is independent of the C-value.”Ï

It is also worth mentioning the following warning: “We stress the point that
the discussions that follow are intended to explain a formal theory, albeit in a
fairly informal manner.”Ð In other words, definitions and explanations like
those quoted above, and the endless formulas and diagrams, are not the actual
theory but a simplified version. For the really formal discussion we must
consult the original papers, in academic journals.

�

To summarize, all that the normalization theory does is represent formally the
relationships between fields. A true mathematical system would provide
operations that combine entities to create increasingly high levels, as do
the systems used in engineering. There are no such operations here, so the
normalization theory does not describe a mathematical system. What it
describes is a formal system of representation. This system may have its uses, but
not in the way a mathematical system has. In the end, the only mathematical
manipulation remains the one provided by the original relational model. The
normalization theory is not a true enhancement of that model.

So what the relational theorists invented is akin to a game. The normali-
zation work is additional to the task of studying and implementing the
application’s requirements. That task has remained as important – and as
informal – as before. It is only the game that is formal and exact. This is
a sophisticated and difficult game, demanding a special kind of knowledge.
It is not surprising, therefore, that the academics who invented it, and the
practitioners who learn it, feel that their normalization work is a sign of
expertise. This is expertise in playing a game, though, not in designing
databases.

Î Date, Database Systems, p. 329. Ï Ibid., p. 328. Ð Ibid., p. 327.

the second delusion 753chapter 7

7

7
The reason we cannot have a formal and useful theory of normalization is
that the dependency of one field on another is not a database problem, but part
of the application’s logic. Formal normalization principles can only deal with
the database structures. They cannot take into account the other structures that
make up the application – the business practices, for instance. And it is these
other structures that determine, ultimately, the relationships between database
fields. A formal theory, thus, can deal with such issues as the definition and
classification of dependencies, or the conversion from one normal form
to another; but it cannot tell us whether the relationships are correct. In
particular, no formal theory can tell us to which file to assign a given field.
Only our knowledge of the application can do this.

Recalling the earlier examples, assigning the product description to the
same file as the product number is not right or wrong in an absolute sense,
but only relative to the requirements being implemented: if the description is
fixed, it should be in the same file; if changeable, in the other file. We must
understand the requirements. And when we do, we already know how to
implement them: as a one-to-one or as a one-to-many relationship. Thus, a
formal theory cannot replace the need to study the requirements, and is
unnecessary once we understand them. It is, in other words, useless.

Let us take another example. An employee file usually includes such fields
as department, position, salary, seniority code, and vacation code. Now, these
fields may be related in one company, and unrelated in another. The salary, for
instance, may be independent, or the same for all the employees with a
particular position; the vacation code may be independent, or the same for all
the employees with a particular seniority; the position and salary may be
independent, or the same for all the employees in a particular department.
Some of these fields, therefore, may be dependent on others, in which case they
should be moved into separate files: a salary file where the key is the position,
a vacation code file where the key is the seniority code, and so on. But only we
can know whether a given field is or is not independent; and we would know
this in the same way we know the other requirements that define the payroll
application. The same application, in fact, may be used by two companies while
a certain field is independent in one but not in the other. So, just like the
business practices that make up an application, the normalization requirements
may be different in each case; and as a result, a database that is deemed to be
normalized for one company may not be for the other. Again, since it is only
we that can discover the field relationships, a formal theory is useless.

754 the relational database model chapter 7

Another situation where the need for normalization is determined largely
by our knowledge of the application occurs when files are updated only under
certain conditions. Thus, some files may be used by the application in such a
way that a relationship of dependency between two fields in the same record
would be harmless. For example, records may be added but not modified
or deleted; or those fields alone may never be modified. Also, there are
situations where it may be simpler or more efficient to deal with the problem
of dependency through the application’s logic, rather than through database
restrictions. In all these situations, what we do is simplify the application
or improve its performance by noting that not all conceivable database opera-
tions will actually be performed. Clearly, no formal theory can include such
knowledge.

The only formal theory of normalization possible is one that assumes the
worst case; namely, the case where every field may depend on another field. As
we saw, we eliminate each dependency by separating the two fields: we place
one field in a new file, where the records are linked through their key to the
field left in the first file. Thus, if we want to be absolutely certain that there are
no dependencies, and if we don’t want to rely on an interpretation of the
requirements, we must separate in this manner every field, in every file. In
the end, every file in the database will have only one non-key field. This
is an exact, formal procedure – a procedure that can even be automated.
However, because many of the separated fields must be put back together in
the running application, this overnormalization would make the application
too complicated and too slow; so no one seriously suggests that we follow it.
(In fact, as we will see under the third delusion, even minimal normalization –
separating just a few fields – is often impractical and must be forsaken.)

A database where the smallest necessary number of fields (rather than
an arbitrarily large number) were separated in an attempt to eliminate all
dependencies is said to be in optimal second normal form. This sounds like a
precise definition, but in reality it is only informally, through our knowledge
of the application, that we can determine whether or not the normalization of
a given database is “optimal.” Again, the only way to have a formal theory is by
separating every field in the database, regardless of how it is used in the
application.

�

But even if we succeeded somehow in developing an exact and complete theory
of normalization, it would still be inadequate. This is true because normaliza-
tion deals only with dependencies that can be eliminated by separating fields.
There are many other types of field dependencies in an application, all a natural

the second delusion 755chapter 7

part of the application’s logic. Every application includes operations that relate
fields in the same record, or fields in separate files. Some of these fields,
therefore, depend on others; so they are, strictly speaking, unnecessary. But we
cannot eliminate these dependencies through normalization, by separating
fields.

Let us examine a simple example of the type of dependency that cannot
be eliminated through normalization – the classic case of aged balances.
The customer balance, for instance, is usually stored in several fields in the
customer record: current, thirty-day, sixty-day, and ninety-day balances. And
there is usually an additional field, for the total balance, which is the sum of
the other four. But if the total balance is always the sum of the aged balances,
its field can be eliminated. Instead of having a separate field, we can calculate
the total balance (by adding the other fields) wherever we need it in the
application. The reason we usually retain the total balance field is that this
is simpler than calculating it: in most applications we modify it in only a
couple of places (typically, when invoicing the customer and when receiving
payments), but we show it in dozens of inquiries and reports. So it is simpler
to update the total balance in the few places where an aged balance changes,
and merely to read it in the other places.

It is obvious that the dependency of the total balance on the aged balances
cannot be eliminated through normalization, by moving the total balance into
a new file. What we do for this type of dependency, therefore, is similar to what
we do when we decide not to normalize in situations where normalization is
possible: we anticipate the problems that may be caused by the updating
operations, and we add to the application’s logic the necessary steps to prevent
them. Thus, in the case of balances, we must remember to update the total
balance too, when one of the aged ones is updated. And if we neglect this, we
will face “update anomalies” (the total balance will no longer equal the sum of
the aged ones) not unlike those that occur in unnormalized files when we
ignore the effect of updating operations.

To continue this example, in most applications the aged balances themselves
can be calculated, using a transactions file: we read the records belonging to a
particular customer, and total the invoice and payment amounts under four
different periods. So the aged balance fields too are dependent on other fields,
and hence unnecessary (although the original data is now in another file). Also
like the previous dependency, this dependency cannot be resolved through
normalization. To prevent “update anomalies” (balance fields different from
the sum of the transactions), we must either eliminate the balance fields, or
ensure that they are updated whenever a record is added to the transactions
file. (In this case, though, eliminating the fields is rarely practical, because it is
too inefficient to calculate them by reading the transaction records every time.)

756 the relational database model chapter 7

So what is the point in seeking a formal theory of normalization, if this
theory would eliminate only some dependencies? Clearly, there is no limit to
the types of field dependencies that can exist in an application – types like the
ones we have just examined. In fact, we don’t even think of these dependencies
as a database problem, but as various aspects of the application’s logic. Since
most software requirements involve database fields – fields belonging to one
file or to several files – it is natural to find relationships of dependency between
fields. And it would be absurd to eliminate these relationships solely in order
to avoid redundancy, or to avoid inconsistencies in updating operations.
What we do in each case is seek the most effective design: we eliminate the
dependency when practical, and deal with the updating problems as part of the
application’s logic when this is simpler or makes the application faster.

In the end, all field dependencies cause similar problems, and we can
only deal with these problems by taking into account not just the database
structures but all the structures that make up the application. These are not
database problems but ordinary programming problems, similar to the many
other problems we face when developing an application. And it is just as futile
to search for an exact and complete theory of field dependency as it is to search
for an exact and complete theory of programming. The relational theorists
isolated one type of dependency – the type that can be eliminated by separating
fields; and they naively concluded that, if we eliminate this one type, we will
eliminate all the problems caused by dependency (or, at least, the most
common problems).

This belief is reflected in the relational vocabulary (terms like “normalize”
and “normal form” imply a particular, proper data format) and in the number-
ing system (the fifth normal form is said to be the last and most stringent
one). Hardly ever are the other types of dependencies mentioned at all. Date
discusses them briefly: “5NF is the ultimate normal form with respect to
projection and join. . . . That is, a relation in 5NF is guaranteed to be free of
anomalies that can be eliminated by taking projections [i.e., by separating
fields]. . . . Of course, this remark does not mean that the relation is free of all
possible anomalies. It just means (to repeat) that it is free of anomalies that can
be removed by taking projections.”Ñ Most authors, however, depict the process
of normalization as a final refinement, as a guarantee of database validity.

Thus, by emphasizing the few dependencies that can be eliminated through
normalization while disregarding the many that cannot, the relational experts
make the normalization principles appear more important than they really are.
Then, they use this misrepresentation to rationalize their search for a theory of
normalization.

Ñ Ibid., p. 334 and footnote.

the second delusion 757chapter 7

8

8
If the theory of normalization is unnecessary, if the traditional design method
permits us to avoid redundancy and inconsistencies simply by understanding
the application’s requirements, how do the theorists justify their lengthy
discussions? By distorting the problem of database design. They describe some
contrived database structures that are incorrect but hardly ever occur in
practice, and then they show us how to turn them into correct ones.

The only theory they can offer us is one that studies the so-called normal
forms and gives us methods to convert files from one form to another. But
we need such a theory only if we normally create incorrect databases. The
theorists present the incorrect databases as a common occurrence, and the
concept of normalization appears then important. In reality, we can create
correct databases from the start, by selecting file relationships that match the
application’s requirements. So the classification of normal forms and the
conversion procedures have no practical value.

I will illustrate this distortion now with a few examples taken from database
books. In all these situations, we will see, the correct design can be easily
determined from the requirements. The authors, however, ignore the require-
ments, and start with a deliberately incorrect design: a single file, when several
are needed. They start, that is, with a one-to-one relationship when the
requirements call for one-to-many or many-to-many. They point to the
problems caused by the incorrect design, and then they study the requirements
and show us how to arrive at the correct one: through normalization.

The examples, in other words, are presented so as to make the theory of
normalization, which in reality is totally unnecessary, look like an indispen-
sable concept in database design. Moreover, their method is so lengthy and
complicated that the reader is likely to miss the fact that its preciseness
and formality are specious: the most important decisions – identifying the
misplaced field dependencies – are still being made, not mathematically, but
through an informal interpretation of the requirements.

�

Brathwaite demonstrates the second normal form with this simple problem:ÉÈ
we want to store some information about students and about the classes they

ÉÈ Ken S. Brathwaite, Relational Databases: Concepts, Design, and Administration (New
York: McGraw-Hill, 1991), pp. 76–77.

758 the relational database model chapter 7

attend; students are identified by a student number, and we must record their
name and major; classes are identified by a class number, and we must record
the class location and time; a student may attend several classes, and we must
be able to identify these classes.

Ignoring all we know about normalization, we note that the students and
classes form a many-to-many relationship (a student attends several classes,
and a class is attended by several students). So the student number and class
number must be in separate files: a student file, where the student number is
the key, and a class file, where the class number is the key. The student name
and major are both related as one-to-one to the student number, so they must
be non-key fields in the student file. Similarly, the class location and time are
related as one-to-one to the class number, so they must be non-key fields in the
class file. Lastly, to link the two files, we need a service file where the key is the
combination of student number and class number. In a traditional database,
the service file could then have two indexes: class number within student
number (to select the class records associated with a student), and student
number within class number (to select the student records associated with a
class). But the requirements call only for the link from student to classes, so we
need in fact only the first index. (It is worth noting that in a real application
the link file wouldn’t be just a service file; it would also have some non-key
fields, for data that is related as one-to-one to its key – the student’s grade, for
instance.)

Brathwaite, though, attempts to implement the requirements with one file:
the combination of student number and class number is the key, while the
student name and major, and the class location and time, are non-key fields.
Then, he notes the problems caused by this design: no information can be
stored about a particular student unless the student is enrolled in at least one
class, or about a particular class unless at least one student attends it. Also, a
certain name and major will be repeated for every class attended by that
student, and a certain location and time will be repeated for every student
attending that class; so if these values change, several records would have to be
updated.

What causes these problems, Brathwaite explains, is the dependency of non-
key fields on part of the key: while the key includes both the student and the
class numbers, the student name and major depend only on the student
number, and the class location and time only on the class number. Non-key
fields must depend on the whole key, so the solution is to create a separate file
for the two student-related fields, with the student number alone as the key,
and another file for the two class-related fields, with the class number alone as
the key. What will be left in the original file is just its key, the student and class
numbers. This design eliminates all the aforementioned problems.

the second delusion 759chapter 7

The final database, thus, is identical to the one we created earlier, directly
from the requirements. We knew all along that it was correct, simply because
it reflects accurately the requirements. Now, however, we are told that it is
correct because the files are in second normal form (whereas the original file,
with all fields bundled together, was only in first normal form).

What is the point of this approach? Starting with one file would make sense,
perhaps, if the method used to reach the final design were indeed formal
and exact (in which case we could even automate the design process). But
the misplaced dependencies were discovered informally, by interpreting the
requirements. For instance, when noting that the name and major depend only
on the student number, we used the same information and the same logic as
we used earlier, when noting that they are related as one-to-one to the student
number. With normalization as much as with the traditional method, we
relied on skill and common sense, not on mathematics. Thus, if we know how
to determine the relationship between two fields, we may as well use this
knowledge directly to assign them to the proper files. Why bundle them first
in one file, and then use this knowledge to separate them?

So the part that is formal – the classification of field dependencies – did
not replace the need for, nor the importance of, the part that is informal.
The correctness of the normalization depends, ultimately, on the correct
interpretation of the requirements. The fancy terminology makes the process
of normalization seem more exact than the traditional method, when in reality
it is merely more complicated.

�

Date starts his discussion of the second and third normal forms with the
following problem.ÉÉ Let us imagine that we purchase parts from a number of
suppliers, located in different cities and identified by a supplier number; the
cities are identified by the city name, and each city has a status associated with
it; several suppliers may be located in the same city; a supplier can sell different
parts, which are identified by a part number; and we want to record our
purchase orders by storing for each order the supplier number, part number,
and quantity. (The requirements assume, for the sake of simplicity, that only
one order exists at a given time for each combination of supplier and part
number, so we don’t need order numbers. Also, the requirements call for the
capability to identify directly the city of a given supplier, but not the suppliers
in a given city.)

With our knowledge of file and field relationships, we can translate these

ÉÉ Date, Database Systems, pp. 297–303.

760 the relational database model chapter 7

requirements into the following design. We note first that the city is related as
one-to-many to the supplier, so we need two files: a city file, where the key is
the city name, and a supplier file. In one-to-many relationships, the key of the
“many” file includes usually the “one” file’s key; so here it would be the
combination of city name and supplier number. But the present requirements
do not call for selecting the suppliers in a given city, so the key in the supplier
file can be just the supplier number. We do have to select the city associated
with a supplier, though, so we include the city name as a non-key field. The
status is related as one-to-one to the city, so we add it as a non-key field to the
city file. The supplier number is related as one-to-many to the order-related
fields, part number and quantity; so these fields must be in a third file, orders,
where the key is the combination of supplier number and part number.

Date, however, says nothing about these relationships. He starts by bundling
all five fields (supplier number, status, city name, part number, and quantity)
in one file: the orders file, where the key is the combination of supplier number
and part number. And immediately he notes the consequent redundancy and
anomalies: Since there must be a record in this file for every order, the
information that a certain supplier is located in a certain city will be repeated
for every order from that supplier; so, if the supplier relocates to another city,
we will have to modify several records. Similarly, the information that a certain
city has a certain status will be repeated for every order from every supplier in
that city; so, if the status changes, we will have to modify several records. Lastly,
we cannot store the information that a certain supplier is located in a certain
city unless an order exists for that supplier.

Date then presents the solution. The first step is to separate the fields by
creating a new file: the supplier file, where the key is the supplier number,
and the city name and status are non-key fields. The quantity is left in the
orders file. Since each combination of supplier and city appears now in only
one record, the redundancy associated with the city, along with the update
anomalies, has been eliminated. The solution can be expressed in terms of
misplaced dependencies: while non-key fields must depend on the whole key,
the city and status in the original file were dependent only on the supplier
(they are the same for all the orders from a given supplier). In terms of
normalization, the problem was solved because the new files are in second
normal form, while the original one was only in first normal form.

But this still leaves the other redundancy: the status of a certain city is
repeated in the supplier file for every supplier located in that city. Although not
as bad as in the original file (where the repetition was for every order from
every supplier in that city), this redundancy will nevertheless cause the same
kind of problems. The misplaced dependency that must be eliminated now is
between the status and the city (two non-key fields). So we create a new file:

the second delusion 761chapter 7

the city file, where the key is the city name, and the status is a non-key field.
The supplier file will then be left with only the city as a non-key field. In terms
of normalization, the problem was solved because these two files are in third
normal form. In other words, while the second is the highest normal form
attainable for the orders file, we can attain the third for the supplier file by
creating a separate city file; and a database is fully normalized only when each
file is in its highest attainable normal form. (The difference between the second
and third is in the type of misplaced dependency that is eliminated: on only a
portion of the key, and on a non-key field.)

So by the time he is done, Date ends up with exactly the same database as
the one we created directly from requirements with the traditional design
method. The normalization method is more complicated, and we still depend
on an informal decision: we identify the misplaced field dependencies by
interpreting the requirements, the same way we identified the correct field
relationships before. What is formal is only the analysis of these dependencies
and the conversion from one normal form to another; that is, the work that is
additional to the task of identifying them.

�

Carter uses the example of an employee file to demonstrate the fourth normal
form.ÉÊ Specifically, we have to store for each employee, in addition to his name,
some data about his children and about his salary history. Thus, we need a set
of fields for each child (identified by the child’s name), and a set of fields for
the salary of each past year (identified by the year). We will have an employee
file where the employee number is key, and the name (related as one-to-
one to the number) is a non-key field. And we will have two one-to-many
relationships, with the employee file acting as shared “one” file: between
employee and children, and between employee and salary history. In the
children file, the key will be the combination of employee number and
child name; and in the salary history file, the combination of employee
number and year. We will then be able to select for a given employee the
corresponding child records and history records; and for a given child or year,
the corresponding employee record.

Carter, however, starts by showing us what would happen if we placed the
child and salary history fields in the same file – a file where the key is the
combination of employee number, child name, and year: we would have to
repeat the entire salary history for each child. For instance, for an employee
with 3 children and 10 years of history, there would be 30 records in this file:

ÉÊ John Carter, The Relational Database (London: Chapman and Hall, 1995), pp. 135–150.

762 the relational database model chapter 7

one record for each combination of child and year. This design, therefore,
would cause redundancy and anomalies: to add or modify the data for one
child, we would have to add or modify 10 records (because the same child data
is stored for each year); and to add or modify the history data for one year, we
would have to add or modify 3 records (because the same history data is stored
for each child).

Now, no one would try to combine child data and salary history in one file.
Carter must start with this absurd design in order to demonstrate the benefits
of normalization. It is pointless to describe his actual analysis – fifteen pages of
complicated principles, definitions, and diagrams related to the fourth normal
form, not to mention nearly forty prior pages dealing with the lower normal
forms. Briefly, that file suffers from multivalued dependencies (i.e., several
fields dependent on one another). The solution is to separate it into two files,
one for child data and the other for salary history – which is exactly how we
designed the database to begin with.

The redundancy and anomalies were eliminated, we are told, because these
files are in fourth normal form, while the original file was only in Boyce/Codd
normal form. But we know that the database is correct simply because it
expresses two one-to-many relationships, which is what the requirements
actually called for. Carter needs an enormously complicated procedure to
reach the same design that we reached simply by implementing, directly
from requirements, the appropriate file relationships. Moreover, the critical
observation that the child data and history data must be separated could only
be made informally, by studying the requirements – just as we identified the file
relationships with the traditional design method.

�

Date explains the fourth normal form with a more difficult example.ÉË We are
asked to design a database to express the relationships between the courses,
teachers, and textbooks in a certain school, with the following requirements: a
particular course may be taught by one or more teachers, and a teacher may
teach one or more courses; a particular course may use one or more textbooks,
and a textbook may be used in one or more courses; a particular course always
uses the same textbooks, regardless of the teacher.

Studying the requirements, we note two many-to-many relationships:
between courses and teachers, and between courses and textbooks. We need,
therefore, three main files (courses, teachers, and textbooks) linked through
two service files. To satisfy the requirement that a teacher may teach several

ÉË Date, Database Systems, pp. 325–329.

the second delusion 763chapter 7

courses and at the same time a course may be taught by several teachers, we
create a service file where the key is the combination of course and teacher; and
to satisfy the requirement that a course may use several textbooks and at the
same time a textbook may be used in several courses, we create a service file
where the key is the combination of course and textbook.

As usual, in order to implement the two-way links between files (course to
teacher and teacher to course, course to textbook and textbook to course), the
service files must provide both sorting sequences: teachers within courses and
courses within teachers, textbooks within courses and courses within text-
books. (Thus, if we use a traditional database, there will be two indexes for each
service file.) We will then be able to select for a given course the corresponding
records in the teachers file, and for a given teacher the corresponding records
in the courses file; and we will also be able to select for a given course
the corresponding records in the textbooks file, and for a given textbook the
corresponding records in the courses file.

This, then, is how a sensible database book would present the example – the
problem and the solution. Let us see now how Date presents it. He starts by
attempting to implement all the relationships with one service file – a file where
the key is the combination of course, teacher, and textbook. (So there is one
record in the file for each combination of values in the three fields.) But this
design is absurd; it is deliberately incorrect in order to demonstrate the
transition from one normal form to another. The file, Date explains, is only in
Boyce/Codd normal form, and this gives rise to redundancy and anomalies.
For instance, if a particular course uses two textbooks, we will need two records
for every teacher who teaches that course, although all teachers use the same
textbooks. In addition to this duplication, we would have to add, delete, or
modify several records (one for each teacher) when adding, deleting, or
modifying the information about a textbook. Expressing the problem in terms
of dependencies, the design is incorrect because it permits a multivalued
dependency.

But this is a gross simplification of Date’s actual explanation – four pages of
complicated pseudo-mathematical analysis, which is in fact incomprehensible
without a good understanding of some fifty prior pages on the subject of
normalization.

The solution, Date concludes, is to have two service files rather than
one, and to separate the three key fields into two sets of two fields.ÉÌ More
specifically, it is the teacher and textbook fields that must be separated.

ÉÌ It must be noted that Date does not call these files service files, thus suggesting that
they are the main data files (i.e., tables). A real application, though, would also require some
non-key fields, to store details about courses, teachers, and textbooks; and such fields would
not be added to these files, because that would cause much redundancy.

764 the relational database model chapter 7

The result, needless to say, is the two service files we created previously,
when we implemented the database as two many-to-many relationships. The
redundancy and anomalies were eliminated, we learn now, because these files
are in fourth normal form.

The design method based on file relationships, we saw, leads directly to the
correct database. Date describes a situation that is a good example of a
fundamental database concept, the many-to-many relationship. But instead of
discussing this concept, he presents a silly, deliberately incorrect design. Then,
he uses this design to justify the need for the normalization theory.

And, as in the previous examples, the complexity of the normalization
masks the fact that the critical step (the observation that it is the teachers and
textbooks fields that must be separated) was based on an informal interpreta-
tion of the requirements – exactly the same interpretation that helped us to
determine the correct relationships with the traditional method.

9

9
We saw earlier that the principles of normalization are not, in fact, required by
the original relational model: they are not an extension of the formal model,
but an attempt to formalize the process of database design (see pp. 732–734).
The normalization theory is, in effect, an independent theory – a theory
that can be applied to any system based on records, fields, and keys. Thus,
we can study the normalization theory on its own, ignoring the relational
model altogether. And when doing so, its character as a mechanistic delusion
becomes even clearer. By way of summary, therefore, I want to recapitulate the
normalization fallacies and to show how they arose from the mechanistic way
of thinking that pervades the academic world.

Mechanists attempt to explain a complex phenomenon, which can only be
represented with a complex structure, by breaking it down into simpler
phenomena: they extract smaller and smaller aspects of it, until they reach an
aspect that can be represented with a simple structure. And at that point they
discover an exact theory – a theory based on that aspect alone. But this
discovery is a trivial, predictable achievement; for, if we keep reifying any
phenomenon, we are bound to reach, eventually, aspects simple enough to
allow an exact theory. The discovery, nevertheless, generates a great deal of
excitement, so the mechanists initiate a research program. The more elaborate
their research becomes, the more confident they are about its importance.
Although it is obvious to everyone that the theory explains only that one
isolated aspect, the mechanists promote it as if what it explained were the
original, complex phenomenon.

the second delusion 765chapter 7

The phenomenon of a database comprises many aspects, of which the most
important are the application’s requirements and the file relationships; that is,
the actual entities and relationships, and their representation in software. And
these two aspects consist, in their turn, of many aspects. Among the other
aspects of this phenomenon are the field dependencies, the data redundancy,
and the inconsistencies (the so-called update anomalies).

The aim of the normalization theory is to find a formal, exact method
for designing the file relationships from a knowledge of the requirements
(or, at least, for determining whether a given set of relationships matches
the requirements). Now, it may be possible to represent with one structure the
relationships on their own, or the dependencies, or the redundancy, or the
inconsistencies, or perhaps even a combination of them. But the database
phenomenon as a whole is complex, because these aspects interact with
the requirements, which in turn interact with many other aspects of the
application. Thus, no mechanistic theory can represent the system that consists
of the file relationships plus the requirements. No formal method can exist,
therefore, to determine whether or not a given set of relationships matches the
requirements.

Because they could not discover a theory for the actual database phenome-
non, the software mechanists tried to discover a theory by breaking down the
phenomenon into simpler ones. They noticed that the inconsistencies occur
when the file relationships are incorrect; and they also noticed that the
inconsistencies are related to data redundancy and to field dependencies. It is
the misplaced dependencies, they concluded, that cause redundancy and
inconsistencies. And since this one aspect of the original phenomenon is
simple enough to represent with an exact theory, they made it their subject of
research. The dependency theory is believed to be the answer to the original
problem: if we study, analyze, and classify the various types of field dependen-
cies, the mechanists say, we will discover a formal method for avoiding
misplaced ones; this will then prevent data redundancy and inconsistencies;
and the lack of redundancy and inconsistencies will indicate that the file
relationships match the requirements.

But this logic is fallacious. The dependencies, like the redundancy and the
inconsistencies, are merely one aspect of the database phenomenon. They are
not the cause of correct or incorrect file relationships, but just a different way
of viewing them. So it is absurd to study the dependencies in the hope of
determining from them the correct relationships. The requirements are the real
determinant in this phenomenon. It is only from the requirements, therefore,
that we can determine other aspects of the phenomenon: when there is no
discrepancy between the requirements and the file relationships, there are no
misplaced dependencies, no redundancy, and no inconsistencies; and when

766 the relational database model chapter 7

there is a discrepancy, we note misplaced dependencies, redundancy, and
inconsistencies.

It is indeed possible to explain the relationships, the redundancy, and the
inconsistencies in terms of dependencies; but this is true because they are
closely related aspects of the same phenomenon, not because the dependencies
cause the other aspects. Thus, instead of a dependency theory we could develop
an equally elaborate redundancy theory, to study, analyze, and classify the
various types of data redundancy; or an inconsistency theory, for the various
types of data inconsistency; or a relationship theory, for the various types of file
relationships. And each theory could then be used to “explain” the other three
aspects, just as the dependency theory is said to explain the redundancy, the
inconsistencies, and the relationships.

From the requirements, then, we can determine the other aspects, but not
the other way around. The mechanists base their theory on dependencies
because they mistakenly interpret them as the cause of correct or incorrect file
relationships. The dependencies on their own, though, are meaningless; for, we
cannot decide from a dependency alone whether or not it is misplaced.
Similarly, the redundancy or inconsistencies or relationships on their own, or
all aspects together, are meaningless. The real cause – what can explain all four
aspects – is the requirements. The dependency theory, thus, suffers from the
fallacy of confusing cause and effect. It is fundamentally wrong.

�

Each aspect of the phenomenon of a database has its own representation:
the requirements are represented by means of business practices, the file
relationships by means of diagrams or programming languages, and the
dependencies by means of a system of notation peculiar to the normalization
theory. Similar systems could be invented to represent the redundancy and
the inconsistencies, if we wanted. Each aspect provides a different view of
the database, but neither is complete; only a system embodying all these
aspects, plus those aspects we are not even discussing here, can represent the
phenomenon of a database accurately. Thus, because they form a complex
phenomenon, it is impossible to describe these aspects and their relationships
exactly and completely. We can design correct databases, but this is largely an
informal procedure.

Database design entails the conversion from one system of representation
to another. What we want to attain, of course, is the software representation;
that is, the file relationships. So, if it is the requirements that ultimately
determine what are the correct relationships, the only conversion worth
studying is the traditional one, from requirements to relationships. Because

the second delusion 767chapter 7

they failed to discover a formal and exact procedure for this conversion, the
relational mechanists shifted their attention to the study of field dependencies.
Their theory does offer a formal and exact conversion, but only from depend-
encies to relationships. Its exactness is illusory, therefore, because to benefit
from it we must ensure first that we have correct dependencies. And the only
way to attain the correct dependencies is by performing the conversion from
requirements to dependencies, which is as informal as the traditional one,
from requirements to relationships (see figure 7-17).

The dependency theory may appear impressive to the casual observer, but
in reality an exact theory that explains relationships in terms of dependencies is
a trivial accomplishment. It is not surprising that one aspect of a phenomenon
can be shown to depend on another, if they are closely related. Thus, we
could also discover similar theories to explain relationships in terms of
redundancy, inconsistencies in terms of dependencies, dependencies in terms
of redundancy, and so on. But that first step – from requirements to one of
the other aspects – is always necessary, and is always informal. So we may
as well use the traditional method, which entails only that one step – from
requirements to relationships.

Of the five aspects of this phenomenon, the requirements and the file
relationships are the most intuitive, and the field dependencies are the least
intuitive. This is why, before the relational theory, we had no interest in
dependencies; we only studied the requirements and the relationships, and
sometimes the redundancy and the inconsistencies. We are asked now to
replace what is the simplest method – the intuitive conversion from require-
ments to relationships – with a method that involves two steps, each one more
complicated than our one-step method: the conversion from requirements

Figure 7-17

TRADITIONAL
METHOD

RELATIONAL
METHOD

INFORMAL INFORMAL

FORMAL

requirements requirements

file
relationships

field
dependencies

file
relationships

768 the relational database model chapter 7

to dependencies – which the mechanists must perform but don’t like to
discuss, because it is informal – is less intuitive and already more difficult than
requirements to relationships; and in addition, we have now the intricate
dependency theory, for the conversion from dependencies to relationships. (It
is, perhaps, precisely because the study of field dependencies is so complicated
that the mechanists think it is an important discovery.)

The dependency theory is typical of the mechanistic pseudosciences. The
relational mechanists settled for a dependency theory only because this is one
narrow aspect of the database phenomenon for which they could find an exact
explanation. They never proved that this theory could model the whole
phenomenon. But then they forgot this limitation, and proceeded to treat the
theory as if it did provide a formal method for database design.

In conclusion, the dependency theory – a major, thirty-year-old research
program involving thousands of academics and generating a vast literature – is
a worthless, senseless pursuit. No matter how exact it is, it cannot help us
to determine what are the correct relationships. Thus, recalling an earlier
example, the theory cannot tell us whether to assign the product description
field to the product file or to the orders file. We must decide which alternative
is correct during the conversion from requirements to dependencies, before we
even get to use the theory. The theory may well offer us a formal, faultless
conversion from dependencies to relationships, but we can only apply it after
determining – informally – what are the correct dependencies.

The Third Delusion

The Third Delusion
1 1
The third delusion consists of those modifications to the relational model that
are presented as enhancements, while being in reality reversals of the relational
principles. These modifications were introduced when it was discovered
that the model worked only with small and simple databases, and was totally
impractical for serious applications. Thus, while the need for reversals consti-
tutes an obvious refutation of the relational model, the theorists describe these
reversals as new relational features.

The original theory defined a complete database model, and, although
generally worthless, was a falsifiable concept. So, had it remained an academic
treatise, it could have been regarded perhaps as a serious study. But because its
supporters believed that it could have practical applications, the theory had to
be modified again and again. The modifications, as we will see shortly, serve
largely to restore the low-level capabilities of the traditional file operations –

the third delusion 769chapter 7

capabilities which the relational model had attempted to replace with high-
level features. Clearly, by the time we restore these capabilities we no longer
have a relational model. The third delusion is in the belief that we can continue
to enjoy the benefits promised by the original model even while reversing its
principles.

The relational theory, thus, was turned into a pseudoscience when its
supporters, instead of admitting that it had been refuted, decided to “improve”
it: they suppressed the falsifications, one by one, by incorporating them
into the model in the guise of new features. This practice rendered the
theory unfalsifiable. (We examined earlier the pseudoscientific nature of the
relational theory; see pp. 710–712, 713–714.) The relational model was indeed
rescued, but this was accomplished by annulling the relational principles and
reinstating the traditional ones. And because they were reinstated within the
relational model, the traditional principles are now far more complicated than
they were on their own. Moreover, relational systems still lack the flexibility
and efficiency we enjoy with the traditional file operations.

From its simple origin, and from its mathematical ambitions, the relational
theory was degraded in the end to a complicated and messy concept. What is
perceived today as the relational model has little to do with the original
ideas. And, although we still see the claim that the model is founded upon
mathematical principles, relational systems are promoted now on the strength
of features that were described originally as informal aspects of the model.
Today’s relational systems consist of large, cumbersome, inefficient, and
expensive development environments, which include special programming
languages and an endless list of features, definitions, principles, standards,
rules, and procedures that we must assimilate. And what is the purpose of this
complexity? To provide a substitute for what any programmer should be able
to do by using just the six basic file operations.

2

2
Let us start with the concept of normalization. There are two kinds of normali-
zation: the first normal form (1NF), and the second and higher normal forms
(2NF, 3NF, etc.). 1NF was, from the start, part of the formal relational model;
its purpose is to restrict the data stored in each field to a single item, so that the
records and files match the tuples and relations of predicate calculus. The
second and higher normal forms were added later, and belong to the informal
aspects of the relational model; their purpose is to eliminate data redundancy
and inconsistencies.

As we saw, whether the goal is to avoid multiple items in a field or to

770 the relational database model chapter 7

eliminate redundancy and inconsistencies, we must separate the fields of
the file in question into two sets, and move one set into a new file. Each
normalizing step will generally increase by one the number of files in the
database. Thus, although it is quite easy to normalize files, this process
makes it more difficult to access the data. For, we must read more files and
more records, in order to put back together the fields that were separated
by normalization.

The idea of separating and recombining fields looks neat when presented as
mathematical logic; that is, when we assume that data records can be accessed
instantaneously, just like the tuples of predicate calculus. And the additional
complexity caused by the separations and combinations can be justified by
invoking the ultimate benefits of normalization. In real applications, however,
even if we are willing to accept the additional complexity, normalization is
often impractical, because of the excessive time needed to access the data.

Whether the fields were separated in order to attain the first or the higher
normal forms, the only way to recombine them is with the JOIN relational
operation (see pp. 702–703). JOIN creates one file from two: it combines the
records of the two files, retaining only those records where certain fields relate
the files in a particular way. But, while easy to use as a high-level operation,
JOIN is very inefficient and hard to optimize. This may go unnoticed with small
files, but in most databases its execution takes far too long to be practical. Also,
applications usually need many normalization steps, and hence many JOINs
later. Even a simple query may need two or three JOINs, and perhaps hundreds
of times the number of disk accesses that the traditional file operations
would need.É

So the idea of strict normalization had to be abandoned. But the theorists
refer to this reversal with such euphemisms as database “optimization,” or
“tuning,” or “tailoring.” They discuss now the benefits of denormalization with
the same seriousness, and with the same technical, impressive language, as
they did the benefits of normalization before. This makes the reversal appear
like progress, like an enhancement of the relational model. No one mentions
the fact that the abandonment of strict normalization means simply a return
to the informal design principles we had followed before the relational model:
we compare in each situation the benefits and drawbacks of keeping data
together in one file, with those of using two files, and we choose the more
effective alternative. This is what we routinely do when creating databases with
the traditional file operations.

É As I remarked earlier (see p. 732), we can attain the ideals sought by normalization
more effectively with traditional databases. As a result, what is perceived as a fundamental
relational principle – normalized files – is found more often in applications using the
traditional file operations than in applications using relational databases.

the third delusion 771chapter 7

�

The abandonment of the first normal form comes by way of a feature called –
incredibly – non-first-normal-form. Abbreviated with scientific-looking terms
like non-1NF, NFNF, and NF², this feature is so advanced that only a few
database systems support it. Those that do are known as extended relational
systems.

The name chosen by the experts for the new feature betrays their attitude:
instead of simply stating that the first normal form – one of the fundamental
principles of the relational model – has been abandoned, they present the
abandonment as a new principle; and they call this principle, literally, the
opposite of the original one. 1NF is still important, but now we need to impose
this restriction only when convenient. Thus, the experts suppressed the
falsification of an important principle by introducing a new one. In effect, the
two principles, 1NF and non-1NF, cancel each other; that is, taken together
they cannot possibly be serious principles. So the first normal form is now just
an informal recommendation. But the experts describe this falsification of the
relational model as a new, advanced relational feature.

To appreciate the significance of non-1NF, recall the 1NF restriction and its
implications. For a file to be in first normal form, its fields must contain single,
atomic values. Each field, in other words, must contain only one value at a time
– not a list of items, or an array, or any other structure. This restriction is
usually expressed by saying that the columns of a relational table must not
contain repeating groups. The restriction to a single item per field is critical if
we want to base the relational model on mathematical logic (because the
elements of a tuple in predicate calculus are single items).

In most applications, however, we encounter sets of values that are so closely
related that the most effective way to store and use them is as a list, or array.
For example, in a file of purchased parts, we may want to store for each part a
list of up to three vendor numbers, or three vendors and their selling price, or
three vendors with their last price and purchase date. With the traditional file
operations and a language like COBOL, we define these values, respectively, as
an array of 3×1, or 3×2, or 3×3 elements. In the part record, the whole array
will be treated as one field. It will be read into memory or written to disk along
with the record, and, when in memory, its elements can be conveniently
accessed with the same operations that programming languages provide for
manipulating memory arrays. Thus, we can easily display or update one
element or a subset of the elements, compare the three prices, change the
relative position of the vendors, and so on.

In a relational database, the only way to store these values is as a separate
file. The fields in the new file will be, for instance, the vendor number, price,

772 the relational database model chapter 7

and date; and the key will consist of the part number and a sequence number,
1 to 3. For each record in the part file, there will be up to three records in the
new file. Operations like comparing prices or exchanging the relative position
of vendors, which can be performed with a couple of statements in a traditional
database, will now be small programming projects (since we must combine the
two files with JOINs, access the three sets of elements as separate rows but save
them somehow so that we can use them together, and so on). What is worse,
these operations will now take longer to execute, because of the additional
disk accesses.

For a few fields, it is possible to bypass the 1NF principle; and the simplest
way to do it is by simulating arrays with ordinary fields. In the previous
example, we would add to the part record three, six, or nine fields, each one
with its own name, and access them through whatever means a relational
system provides for accessing individual fields. This method obviates the need
for a second file and separate records, and solves therefore the performance
problem; but it makes programming even more complicated. Simulating
arrays with ordinary fields, thus, is an awkward trick that programmers must
employ if they want to bypass the 1NF principle while pretending to like the
relational model.Ê

The fact that we have to resort to tricks in order to avoid the inefficiency of
a relational principle constitutes a falsification of the relational theory. And the
final abandonment of 1NF, after thirty years of struggling to fit real-world
problems into relational systems, is in effect an acknowledgment of this
falsification. Presenting non-1NF as a new relational feature is how the
relational charlatans suppress the falsification.

�

With non-1NF, a field in one file acts as a pointer to records in a second file.
For example, if the first file contains customer records, one field may be used
for that customer’s invoices. But the field itself contains no information. It only
points to another file: an invoice file, where the records are identified through
the combination of customer and invoice numbers, and the set of invoice
records associated with a particular customer record are those with the same
customer number.

Ê The 1NF principle is impractical, not because it requires a second file, but because it
requires a second file in any situation. In contrast, with the traditional operations we are free
to choose, in each situation, the most effective alternative. Thus, we may decide to use a
second file even to replace a small array, if the application must access those elements in such
a way that the use of indexed data records is simpler. Conversely, if access time is critical, we
may decide to use an array even if this results in a very large record size.

the third delusion 773chapter 7

With this method, a record in the first file can point to any number of
records in the second file. In some database systems, more than one field can
act as a pointer to another file; for example, in addition to the invoice field, we
can have an order field and a history field in the customer record, pointing to
records in an orders file and a sales history file, respectively.

Non-1NF allows us to relate files hierarchically, by logically nesting one file
within another. Thus, databases that utilize this feature are also known as
nested relational databases. Nesting is not limited to one level: fields in the
second file can act as pointers to further files, which become then logically
nested within the second one, and so on. Non-1NF allows us, therefore, to
create hierarchical file structures. And, since the original relational model does
not support these relationships, new relational operations were introduced for
defining and accessing the records of nested files.

The concept of file nesting, however, is not new; it is practically identical, in
fact, to the way we relate files when using the traditional file operations (see
pp. 683–686). The only real difference is the higher level of abstraction of the
non-1NF operations. What this means in practice is that, instead of creating
explicit file scanning loops like those in figures 7-15 and 7-16, we invoke some
built-in functions that generate the loops for us.

But, as we know, a higher level of abstraction also has drawbacks: we are
restricted to fewer alternatives. So in the end, even with non-1NF, the relational
systems are not as flexible or efficient as the basic file operations. For example,
with the basic operations we can nest – in different places in the application,
through different fields – the same files in different ways; we can create,
therefore, several relationships between the same files. Also, with the basic
operations we still have the option of storing arrays directly in a record – a
method that is both simpler and faster than file nesting.

The main objection to non-1NF, however, is that it is presented as a new
feature while being an abandonment of the relational file-relating method and
a reinstatement of the traditional one. Even the term “nesting” is old: with the
traditional operations, the files are nested by nesting their scanning loops; with
relational systems, the files are nested through implicit scanning loops. The
logical relationship between files is the same.

�

The term “non-1NF,” then, is not only silly but also misleading. For, the
intent of the new feature is not to avoid the problems caused by the 1NF
principle, but to replace the impractical JOIN operation. Let us examine this
misrepresentation more closely.

To promote non-1NF, the experts point to the inefficiency of certain file

774 the relational database model chapter 7

combinations in the original relational model. But the combinations they
describe were never thought to be a consequence of the 1NF restriction.
Specifically, non-1NF is recommended for files of any size, not just as a
substitute for the small arrays that we may want to store directly in a record.
Thus, referring to the earlier examples, we can use file nesting not just to
replace an array of three vendors associated with one part, but also for a whole
invoice file, where hundreds of invoices may be associated with one customer.
For this type of data, though, we have always resorted to a second file, even
with the traditional file operations, because this is the only practical way to
store it. The difference between non-1NF and 1NF, then, is simply in the
way we combine files: through nesting instead of JOINs. So what the experts
are recommending in reality is not the replacement of 1NF with non-1NF,
but the replacement of JOIN operations with the traditional concept of file
nesting.

Non-1NF, in other words, is not promoted as a solution to the inefficiency
of 1NF, but as a solution to the inefficiency of JOIN; that is, for any situation
where we have to combine files. Thus, if we adopt non-1NF we can dispose of
the JOIN operation altogether. If we want, we can replace with nested files every
situation that would normally require JOINs: not just files that would be created
when enforcing the first normal form, but also files that would be created when
enforcing the second and higher normal forms, and even files that would be
kept separate in any case. Non-1NF eliminates, therefore, the inefficiency
caused by combining any files in a relational database. So, if it is a general
substitute for the relational way of combining files, what we have now is a
different database model.

Far from being just a new feature, then, non-1NF cancels the whole re-
lational model. To understand this, let us take a moment and recall the
importance of the first normal form. And there is no better way to start than
by citing the experts themselves.

Date says that 1NF is so fundamental that the term “normalized,” when
unqualified, means “first normal form”: “It follows that every normalized
relation is in first normal form . . .; it is this fact that accounts for the term ‘first.’
In other words, ‘normalized’ and ‘1NF’ mean exactly the same thing.”Ë In Codd’s
original papers, too, the term “normalized” means what we call now first
normal form;Ì the higher normal forms are not even mentioned. Recall
also that the first normal form is the only one that is part of the formal
relational model.

Ë C. J. Date, An Introduction to Database Systems, 6th ed. (Reading, MA: Addison-
Wesley, 1995), pp. 289–290.

Ì See, for example, E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM 13, no. 6 (1970): 377–387.

the third delusion 775chapter 7

Here are some additional statements: “At each intersection of a row and
column there is exactly one value. This is the principle of first normal form,
fundamental in the relational model.”Í “This property implies that columns do
not contain repeating groups. Often, such tables are referred to as ‘normalized’
or as being in ‘first normal form (1NF).’ It is important that you understand the
significance and effects of this property because it is a cornerstone of the
relational data structure.”Î “Occasionally there might be good reasons for
flouting the principles of normalization. . . . The only hard requirement is that
relations be in at least first normal form.”Ï “All data in a relational database is
represented in one and only one way, namely by explicit value (this feature is
sometimes referred to as ‘the basic principle of the relational model’ . . .). In
particular, logical connections within and across relations are represented by
such explicit values.”Ð

It is not difficult to see why the first normal form is so important to
the relational model – why it is “fundamental,” a “cornerstone,” a “hard
requirement,” and a “basic principle.” It is not so much the restriction to single
values that is important, as the purpose of this restriction. By preventing us
from creating any data structures within a record, 1NF forces us to keep all data
in the form of tables. And if the data is restricted to tables, the methods used
to access and combine the data can be restricted to operations on tables; that
is, to high-level operations based on mathematical logic.

Accordingly, by annulling 1NF we also annul these restrictions: we can
store, access, and combine data in other ways too. In effect, we have regained
some of the freedom we enjoyed when using files through the traditional
file operations: we can now relate them through the versatile hierarchical
concept, as data within data. And we can use this method, not just with
small arrays or structures, but with files of any size, and on any number
of nesting levels. In the end, annulling 1NF permits us to create database
structures that are more flexible and more efficient than those possible with
the relational model.

In conclusion, the restriction imposed by the first normal form is far more
significant than what it appears to be – merely preventing multiple values in a
field. Its annulment, therefore, means far more than just permitting multiple
values; it means the annulment of the relational model. It also demonstrates
the pseudoscientific nature of this theory, as well as the dishonesty of its
supporters: the impracticality of 1NF, along with the impracticality of JOIN, is

Í Anthony Ralston and Edwin D. Reilly, eds., Encyclopedia of Computer Science, 3rd ed.
(New York: Van Nostrand Reinhold, 1993), p. 1162.

Î Candace C. Fleming and Barbara von Halle, Handbook of Relational Database Design
(Reading, MA: Addison-Wesley, 1989), pp. 32–33.

Ï Date, Database Systems, p. 291. Ð Ibid., p. 99.

776 the relational database model chapter 7

a falsification of the model; but instead of being abandoned, the theory is
expanded – by turning this falsification into a new relational feature, non-1NF.

�

The mathematical foundation of the original model was predicate calculus,
with its relations and tuples. Thus, if our databases no longer consist of this
type of relations and tuples, it is absurd to continue to call them relational.
Terms like “extended relational” and “nested relational” are simply incorrect if
the new model is not “relational.” The term “relational” derives from the
mathematical concept of a relation; namely, a set of tuples, where each tuple is
composed of single elements. And in predicate calculus the only operations
are those performed on such sets through mathematical logic. It is these
relations, tuples, and elements that become the files, records, and fields of
a relational database. So, if we want a different database organization, or
different operations, we need a different model.

As we saw under the first delusion, the mathematical claims of the relational
model were tenuous in any case, since only a small part (those aspects that
constitute the formal model) had indeed a mathematical grounding. And
with the annulments we are discussing in this subsection – non-1NF, in
particular – even that small part has disappeared. What we have now is
neither an enhanced nor an extended relational model. What we have is not a
relational model at all.

Non-1NF systems, then, are indeed as useful as their promoters claim; but
they are useful because they are no longer relational. This is why some experts,
embarrassed perhaps by this fraud, suggest terms like “post-relational,” and
even “object-relational,” for the database systems that include non-1NF or a
similar “enhancement.”

Still, if not predicate calculus, perhaps another mathematical system can
serve as a foundation for the new database model. And indeed, some theorists
have attempted to extend the formal relational model to include non-1NF. But
this is silly. For, if a mathematical system could guarantee the correctness of
nested databases, then the same system would also guarantee the correctness
of the nesting performed through the traditional file operations – which is
identical, logically.

This, of course, is true for the original model too: nothing stops us from
using the traditional data files and operations while limiting ourselves to the
subset of features that parallel the relational model; and our databases would
then be founded on predicate calculus, just like the relational ones.

The conclusion must be that, no matter how rigorous a formal database
model is, it offers no mathematical benefits that we do not also enjoy with the

the third delusion 777chapter 7

informal traditional operations.Ñ The answer to this apparent contradiction is
that the formal part plays such a small role in a database system that it is
practically irrelevant. So, for the application as a whole, the mathematical
benefits are about the same with a formal database model as they are without
one. (This is the essence of the first delusion.)

�

By way of summary, I want to show how the software elites are presenting the
non-1NF feature. A good example is the white paper published by IBM to
promote one of their new database systems.ÉÈ This paper, we are told, “discusses
technical advances represented by nested relational database technology.”ÉÉ

And just in case we were not sufficiently impressed by this statement, a few
sentences later we are reminded that nested relational databases represent an
“advanced technology.”

Now, the advanced technology that is file nesting has been available since
about 1970 to anyone capable of writing a few lines of COBOL. So it is clear
that IBM addresses individuals who, while being perhaps programmers or
managers, have very little programming knowledge. These incompetents try to
develop applications, not through programming, but by buying programming
substitutes. They can be impressed by a feature like non-1NF because they are
always dependent on the elites for solutions to their software problems. They
have problems now because they trusted the elites in the past and adopted a
relational system. But they believe that the solution must also come from the
elites, in the form of a new system.

The paper continues by describing the problems caused by the restriction
to 1NF: “Database conformance with 1NF often increases the amount of
storage used, makes maintenance more difficult, and most importantly greatly
increases the processing required to produce results, while still making the
schema more complex. . . . For some potential users of relational databases, the
joins [i.e., JOIN operations] that would be required to resolve relationship
relations [i.e., cross-references] in 1NF databases would affect performance

Ñ Because they are restricted to higher levels, the relational operations are logically a
subset of the basic, traditional file operations. Thus, we can always simulate a relational
database system using a traditional file system, but not vice versa. Many relational systems,
in fact, are designed simply as a high-level environment based on an underlying file
management system: the relational operations are implemented as subroutines that employ
the basic file operations in conjunction with appropriate loops and conditions.

ÉÈ IBM Corporation, Nested Relational Databases, white paper (2001).
ÉÉ Ibid., p. 3. Note, again, the slogan “technology,” used to make something appear more

important than it really is.

778 the relational database model chapter 7

enough to preclude the use of relational databases. . . . Apart from performance
considerations, 1NF relational databases also have practical limitations for
many applications.”ÉÊ

This is an excellent description of the restrictions imposed by the first
normal form, and by the relational model in general. Reading this, one is liable
to forget that the same institutions that are so harshly attacking this model now
had been promoting it for the previous thirty years as an expression of database
science, and as an important aspect of software engineering. These problems
had been noticed from the start, of course. So how were the millions of
programmers and users who had adopted relational systems coping all these
years? By constantly seeking ways to bypass the restrictions; by spending most
of their time dealing with these spurious problems instead of the actual
business problems; and, ultimately, by being content with inadequate and
inefficient applications.

The nested relational model, the paper tells us, eliminates the 1NF prob-
lems. Non-1NF is such an important feature, in fact, that all relational systems
will soon support it: “Because of the limitations of 1NF relational databases,
especially for storing complex data structures, all commercial relational
databases have begun adopting extended relational technology; however, IBM
has a technological lead of several years over its closest competitor.”ÉË

The shallowness of the non-1NF issue is seen in the pretentious description
of file nesting. For example, one of the reasons why IBM’s “extended relational
technology” is more advanced than the competing ones is that “the IBM nested
relational implementation, unlike others, is not limited to a single nested
table.”ÉÌ With the basic file operations, as we know, it is just as easy to nest
several file scanning loops as it is to nest one, simply because programming
languages allow us to combine file scanning loops in any way we like. But with
nested relational databases, this trivial capability is presented as a major
technological advance, currently available only from IBM. Again, only ignorant
practitioners can be impressed by such claims.

Finally, the paper reminds us (three timesÉÍ) that the relational model has a
rigorous mathematical foundation, which guarantees correct results when
using the relational operations. And, the paper assures us, research has shown
that this guarantee is not compromised by the annulment of the 1NF principle:
“Analysis has proven that the resulting model is equally robust.”ÉÎ Such analysis
and proof are senseless, though, because the relational model is not robust
even with 1NF. As we saw under the first delusion, its mathematical foundation
is irrelevant in practice. It is precisely because the mathematical foundation is

ÉÊ Ibid., p. 7. ÉË Ibid., p. 14. ÉÌ Ibid. ÉÍ Ibid., pp. 3, 7, 14.
ÉÎ Ibid., p. 7. The paper cites several sources, where presumably the proof can be found.

the third delusion 779chapter 7

irrelevant that annulling an important principle like 1NF indeed makes no
difference.

And we are expected to feel even better after reading that nested relational
databases have been “accepted by the academic community as adhering to a
valid relational model.”ÉÏ But we saw that it is wrong even to call the new model
relational. In any case, this statement is hardly reassuring if we remember that
the same academic community also advocated other theories that failed
(structured programming and object-oriented programming, in particular),
and that, just like the relational model, those theories were rescued by being
turned into pseudosciences.

Thus, by promoting pseudoscientific software theories, the universities
help software companies to sell worthless development systems, and help
incompetent programmers and managers to control corporate computing.

3

3
I began the discussion of the third delusion with the non-1NF issue because
this is the most flagrant of the relational reversals – a reversal that marks, in
effect, the end of the relational theory. But 1NF is merely the latest principle
to be annulled. At this point, most relational principles had already been
forsaken, because, like 1NF, they had been found to be impractical. In the
remainder of this subsection, I propose to study the other reversals.

�

The abandonment of the second and higher normal forms (2NF, 3NF, etc.)
came by way of a new relational principle, called denormalization. At first,
database designers and programmers simply ignored the stipulation to fully
normalize their files, when this was too complicated or too inefficient. But the
theorists were condemning this practice. Before long, though, even they
realized that strict normalization is impractical, and that the decision whether
or not to normalize a particular set of files depends ultimately on the situation:
on the type of data stored in these files, on the file relationships, and on the way
we plan to use the files in the application.ÉÐ

But instead of admitting that the idea of strict normalization had failed, the
theorists reacted, as pseudoscientists do, by turning this falsification of the

ÉÏ Ibid., p. 14.
ÉÐ The term “normalization” refers usually to all normal forms; but here, in the discussion

of the second and higher normal forms, I use “normalization” to refer only to them.

780 the relational database model chapter 7

relational model into a new relational principle – denormalization. The new
principle says that we must first normalize all files, as before; then, we must
denormalize (that is, restore to their previous state) those files that should not
have been normalized in the first place.

Both the principle and the term, “denormalization,” are absurd. All we
needed was a statement acknowledging that normalization was annulled as a
relational principle and is now just an informal concept. The very term
“normalization” should have been abandoned, in fact. After all, normalizing
some files and not others is what we had been doing all along, with the
traditional file operations, and we didn’t need a special term to describe this
activity. With the relational model we have now two principles for this activity,
and two terms. We are told that normalization is as important as before, and
that denormalization is the process of improving the results of normalization.

Clearly, the theorists invented the second principle in order to suppress the
fact that the first one had failed. The two principles, normalization and
denormalization, in effect cancel each other. But the theorists managed to
make this return to what we had before the relational model look like an
enhancement of the model.

�

Here is a typical explanation of the new principle: “Denormalization is the
‘undoing’ of the normalization process. It does not, however, imply omission
of the normalization process. Rather, denormalization is the process whereby,
after defining a stable, fully normalized data structure, you selectively intro-
duce duplicate data to facilitate specific performance requirements.”ÉÑ What
this sophistic verbiage is trying to say is that, while normalization is generally
desirable, strict normalization is impractical; in other words, what we always
knew. Now, however, we can no longer simply allow some data duplication
from the start (when we know from experience that the application would
otherwise be too slow). Instead, we must first normalize the whole database,
and then “selectively introduce duplicate data to facilitate specific performance
requirements.” Actually, in both cases we address the same problem and end
up with the same database. The pompous language serves to mask the fact that
the principle of strict normalization – a fundamental relational requirement –
has been falsified.

Here is how two other experts present this reversal: “The general idea of
normalization is that the database designer should aim for relations in the
‘ultimate’ normal form (5NF). However, this recommendation should not be

ÉÑ Fleming and von Halle, Relational Database Design, p. 440.

the third delusion 781chapter 7

construed as law. Occasionally there might be good reasons for flouting the
principles of normalization.”ÊÈ “There are, however, exceptions to [strict
normalization]. . . . We recommend that data models always be designed in
third normal form, but that the physical data-base designer be permitted to
deviate from it if he has good reasons and if the data administrator agrees that
no serious harm will be done.”ÊÉ

A critical aspect of the idea of denormalization, then, and what the experts
keep stressing, is that denormalization does not constitute the annulment of
normalization. Normalization remains as important as before, and what we
must do is both normalize and denormalize the database.

Here is another example of this doubletalk: “Data denormalization is
constrained so that it does not alter the basic structure of the conceptual
schema. It only makes adjustments to the basic structure for operational
efficiency.”ÊÊ Denormalization, thus, consists in adjusting the database design,
but without altering it. This is silly, of course, since adjusting something will
also alter it. A database either is or is not normalized; so, if we denormalize
a normalized database we necessarily end up with an unnormalized one,
regardless of whether we call this process “adjustment” or “alteration.” Not
so, says Brackett: “A common misconception about data denormalization is
that it results in a return to the unnormalized business schema that began
the data normalization process. . . . However, this is not the situation. Data
denormalization produces denormalized data, not unnormalized data.”ÊË In
reality, there is no difference between the two: both “denormalized” and
“unnormalized” mean simply data that is not fully normalized, violating
therefore this relational principle.

The theorists, thus, are defending their deviation from strict normalization
by claiming that denormalizing the database after fully normalizing it is
different from simply leaving some of the files unnormalized in the first
place. One method, they tell us, constitutes an exact design process, while the
other is merely an informal decision. But this would be true if denormalization
were indeed an exact process. In practice, though, the decision to denormalize
a file can be no more exact than the decision to leave a file unnormalized to
begin with. Recall the previous quotations: “[the designer is] permitted to
deviate from [strict normalization] if he has good reasons and if the data
administrator agrees that no serious harm will be done,” and “occasionally
there might be good reasons for flouting the principles of normalization.”

ÊÈ Date, Database Systems, p. 291.
ÊÉ James Martin, Managing the Data-Base Environment (Englewood Cliffs, NJ: Prentice

Hall, 1983), p. 216.
ÊÊ Michael H. Brackett, Practical Data Design (Englewood Cliffs, NJ: Prentice Hall, 1990),

pp. 155–156. ÊË Ibid., p. 156.

782 the relational database model chapter 7

Informal comments like these can hardly be described as an exact method
of denormalization.

Brackett starts by promising us an exact method: “Conceptual schema are
converted to internal schema through a denormalization process following a
precise set of rules depending on the physical operating environment.”ÊÌ But
the “precise set of rules” never materializes. All we find on the subsequent
pages is a list of cases where denormalization is beneficial, and a reminder to
deal carefully with the consequent problem (redundancy and inconsistencies).
For instance, this is how Brackett describes one of the cases of denormalization:
“This situation creates redundant data and those redundant data must be
consistently updated or the quality of the database will deteriorate rapidly. . . .
Other data entities may be denormalized for operational efficiency based on
these criteria. . . . Each situation must be carefully evaluated to assure that the
logical model is not compromised and that any redundant data are routinely
and consistently updated.”ÊÍ

So what Brackett is describing as denormalization is not “a precise set of
rules” but an informal process – a process no different from what we do
with traditional databases: we study the application’s requirements, allow
redundancy and inconsistencies when it is impractical to eliminate them, and
deal with the consequent problems by adding special checks and operations to
the application’s logic.

�

Thus, to cover up the failure of strict normalization, the theorists were
compelled to invent the absurd principle that we must first normalize the
database and then denormalize it. And they defended the principle with the
absurd claim that this method is exact while the traditional, simpler method –
creating the correct database directly from the requirements – is not. In reality,
both methods entail the same decisions and result in the same design.

We saw under the second delusion that the process of normalization is
presented by the theorists as a formal design method, while being in fact as
informal as the traditional method. It is informal because it must be based,
ultimately, on the same decisions as those we make when designing the
database directly from the requirements. Now we see that the process of
denormalization too is informal, despite the claims that it is exact. Only we, by
studying and interpreting the requirements, can determine whether strict
normalization is practical in a given situation, and, if not, what operations
must be added to maintain data integrity.

ÊÌ Ibid., p. 155. ÊÍ Ibid., pp. 157–158.

the third delusion 783chapter 7

In conclusion, both normalization and denormalization are perceived as
formal design methods, when in fact both are informal. So, to appreciate the
new delusion, denormalization, we must ignore the previous one: we must
believe, with the theorists, that normalization is indeed an exact process.
Judging it from their perspective, therefore, denormalization is a delusion; for
they did not stop promoting normalization when they introduced the concept
of denormalization. They continue their research in what they believe to be
formal and exact concepts – the dependency theory, the classification of
normal forms – even while praising the virtues of denormalization, which is
informal. They are oblivious to the absurdity of promoting these two methods
at the same time: no matter how exact is the process of normalization, when
we modify its result by adding the inexact process of denormalization the final
result is bound to be inexact. So what is the point in seeking a formal and exact
normalization theory while also permitting denormalization?

It is in order to resolve this self-contradiction that the theorists introduced
the principle that we must denormalize the database only after fully normaliz-
ing it. This principle appears to justify the need for both processes, when in
reality it shows that we need neither.

Earlier, to justify the need for normalization, the theorists distorted the
problem of database design. Instead of determining the correct design simply
by studying the application’s requirements, we were asked to do two things:
create a deliberately incorrect database, and then normalize it to make it
correct. And now, to justify both normalization and denormalization, we are
asked to do three things: create an incorrect database, normalize it to make it
correct, and, finally, denormalize it to make it practical.

The traditional design method allows us to create, not only correct data-
bases, but also efficient ones. For, the same skills that help us to create a correct,
fully normalized database also help us to decide when this would be inefficient.
Thus, we can create a correct and efficient database at the same time, directly
from the requirements. We don’t need a denormalization theory any more than
we need a normalization one.

Finally, and quite apart from the delusions already discussed, the need for
denormalization means that we are again preoccupied with the efficiency of
the database operations – contrary to the claim that the relational model
shields us from the physical implementation of the database. We must study
each situation and seek the most effective solution, instead of implementing
the requirements through formal methods and high-level operations, as the
relational theory had promised us. We must accept, rather than avoid, the
“update anomalies”; and we must add special checks and operations to deal
with them. In other words, we have returned to what we had been doing all
along, with the traditional databases. The theorists describe denormalization

784 the relational database model chapter 7

as database “optimization”; but if the optimization consists in a deviation from
fundamental relational principles, this description is merely a way of denying
that the relational model has failed.

4

4
One of the relational model’s promises was that we could restrict ourselves, in
all database work, to the high-level relational operations. And this promise too
had to be annulled. In the end, the relational systems became practical only
after reinstating the low-level capabilities of the traditional file operations;
specifically, the means to manipulate fields and records through traditional
programming methods, and the means to link them to other low-level entities
in the application. Let us examine this reversal.

Recall the original relational model. The database, we are told, must be
perceived as “tables and nothing but tables.” The relational operations can
be assumed to occur instantaneously, and can therefore be treated like the
operations of mathematical logic: all we have to do is reduce the database
requirements to logical expressions where the operands are tables, and the
relational operations (along with standard logical operations) combine in
various ways tables and portions of tables. No matter how large or how small,
a data file can be treated simply as a table with a number of rows and columns.
In particular, if we need just one record of a given file, we must create a new
table with just one row; and if we need one field, we must create a table
with one row and one column. Also, there is no way to modify the tables.
Updating the database was thought to be a relatively simple and infrequent
aspect of database work, so the operations that add, delete, or modify records
were expected to be informal, like the traditional ones. We must be careful
when modifying the database, of course; but we don’t need the formality and
precision of mathematics, as we do for queries.

The original model, thus, permits only database queries. Consequently, the
only database language we need is one that provides the means to formulate
queries through the relational operations. In their naivety, the theorists
believed that a model shown to satisfy some simple queries on small files could
serve as the foundation of practical database systems: for applications with files
of any size and queries of any complexity. Moreover, they later believed that the
same model could be extended to cover all aspects of database work, including
the updating operations and the design process. The fact that simple queries
look neat when expressed as mathematical logic was enough to convince the
theorists that all database programming could be restricted to high-level
operations and to the notion of tables.

the third delusion 785chapter 7

Today, after all the reversals, the relational systems are no longer restricted
to “tables and nothing but tables.” Rather, they provide, in a very complicated
manner, the means to link individual fields and records to the other entities
in the application. In addition, the database language, SQL, has grown from a
set of simple query operations into an elaborate (although quite primitive)
programming language. The relational systems, thus, have restored the means
to manipulate, through programming, the low-level database entities. So they
have restored exactly what the traditional file operations and programming
languages had been doing all along, in a much simpler way – and what the
original relational model had claimed to be unnecessary.

�

We need to access low-level database entities for two reasons: because this is
the only way to implement the details of a database operation, and because this
is the only way to link the database structures to the other structures that make
up the application. It is obvious, therefore, why the traditional file operations
are indispensable: in addition to allowing us to access the low-level database
entities, they can be used from a programming language; and through this
language we can create the critical, low-level links between database entities
and the other types of entities in the application.

These two qualities are both necessary and sufficient for implementing any
database requirement; and it is precisely these two qualities that are lost in the
relational model. Thus, since it is impossible to implement serious applications
without accessing and linking the low-level elements of the application, it is not
surprising that the modifications needed to make the relational systems
practical consisted in restoring both the low-level operations and the means to
use these operations through a programming language.

So, like all systems that offer us high-level starting elements, the relational
systems became in the end a fraud. When promising us higher levels, the
software charlatans tempt us to commit the two mechanistic fallacies, reifica-
tion and abstraction (see “The Delusion of High Levels” in chapter 6). In the
case of relational systems, the claim was that we could separate the database
structures from the other structures that make up the application; this would
allow us to start from higher levels of abstraction within these structures,
greatly simplifying database work.

With the traditional development method, all we need is a programming
language and a few libraries of subroutines (for mathematical functions, display
operations, database management, and the like). The software charlatans have
replaced this simple concept with the concept of development environments:
large and complicated systems that lure ignorant practitioners with the promise

786 the relational database model chapter 7

of high-level, built-in operations. These operations, we are told, function as
prefabricated software subassemblies: they already contain within them many
of the low-level operations that we would otherwise have to program ourselves.
But, in fact, only trivial requirements can be implemented by combining high-
level operations. So the systems must be continually enhanced, with more and
more features. And what are these features? They are means to deal with low-
level entities, precisely what the systems had originally attempted to eliminate.

Thus, instead of admitting that the restriction to high-level operations failed
as a substitute for traditional programming, the software charlatans rescue
these systems by turning their falsifications, one by one, into new features. The
systems keep growing and appear to become more and more “powerful,” but
this power derives from reinstating the low-level, traditional concepts. By the
time enough of these concepts are reinstated to make the systems practical,
there is nothing left of the original promise. For now we must deal with the low
levels again. What is worse, because the low levels were introduced within the
high-level environment, they are much more complicated than they are when
available directly, through a traditional language. So, in the end, programming
is even more difficult than before.

�

Returning to the relational systems, the need for low levels emerged when the
notion of data integrity was introduced. Data integrity became an issue in the
relational model only when the model was expanded to include updating
operations. As long as it permitted only queries, there was no need for integrity
checks, because, within the scope of the model, the data never changed. Since
the operations that add, delete, or modify data records were expected to be
similar to the traditional ones, and to be performed outside the model, the
validity checks accompanying these operations were also expected to be
performed outside the model. Once the relational model was adopted for
serious database work, however, the updating operations, along with the
problem of data integrity, could no longer be ignored.

The normalization principles too, we saw earlier, were needed only when the
relational model was expanded to include updating operations. Tables did not
have to be normalized in the original model, because no data inconsistencies
can arise when we restrict ourselves to queries and to the high-level relational
operations. We also saw how both the attempt to formalize the process of
normalization, and the idea of strict normalization, failed. In the end, the only
way to design a correct database is informally, by studying the application’s
requirements. All that the theory of normalization accomplished was to add
to the traditional design problems the complicated concepts of normal forms

the third delusion 787chapter 7

and field dependencies. The critical part – the need to determine whether
two given fields must be in the same file or in separate files – remained
unchanged. With the traditional design method or with the relational one,
we can decide in which file to place a new field only by discovering the
low-level links between the database entities and the other entities in the
application.

The formality and the neat classification of normal forms can be seen,
therefore, as a failed attempt to raise the level of abstraction in database design:
instead of having to study and understand the application’s requirements, it was
believed that we could attain the same goal by knowing only how to convert
files from one normal form into another – an easier, largely mechanical, task.

But regardless of its failure, the normalization theory was silly because it
addressed only a small number of data inconsistencies; specifically, only those
that can be prevented by placing fields in separate files (see pp. 755–757). Since
most data inconsistencies cannot be eliminated simply by separating fields, we
must deal with them through the application’s logic: to ensure that an updating
operation does not cause inconsistencies, we add various checks, restrictions,
or further updating operations. An example of a situation where the updating
problems cannot be solved through normalization, we saw, is the requirement
for the balance field in the customer record to match at all times the amounts
present in that customer’s transaction records. Although technically redundant,
the balance field is useful because it obviates the need to recalculate the balance
by reading the transaction records every time. Thus, instead of avoiding
the redundancy, we ensure that the field remains correct by adding to the
application’s logic some operations to update it whenever a transaction is
added, deleted, or modified.

The requirement to match the balance field and the transaction records is,
in effect, a database integrity rule. So the notion of integrity was the answer to
the updating problems that could not be solved through normalization; that is,
to practically all the updating problems that can arise in an application.
A whole new class of relational features had to be invented – features totally
unrelated to the original model – in order to move the data validity operations
from the application, where they are normally performed, into the database
system. The sole purpose of these features is to permit us to do through a new
language, in the database system, what we had been doing all along through a
traditional language in the application. Thus, the operations that update the
customer balance field, previously mentioned, would no longer be part of the
main program; they would be written instead in a special language, and made
part of the database environment.

�

788 the relational database model chapter 7

The problem of data validity is well known. Whenever a database field is
modified, the application must verify that the new value is correct within the
current context. Similarly, when a record is added, the value of each field in the
record must be correct. But there is more to the validity problem than verifying
the value of individual fields. For example, the application must verify that a
record may be modified at all, or added or deleted, in a given situation. Also,
adding, deleting, or modifying a given record often affects other records and
other files, so the application must perform additional operations if the
database as a whole is to remain correct. Generally, all the specifications and
restrictions known as business rules – which are reflected in the various
processes implemented in the application – can be described, if we want, as
integrity rules.

Data validity, thus, is closely related to the application’s requirements: what
is correct in one situation may be incorrect in another. Just like the “anomalies”
they tried to eliminate through normalization, the problems that the relational
theorists are discussing under “integrity” are problems we always faced. And
we never thought of them as database problems, but as a natural part of
application development. The so-called integrity problems are merely one
aspect of the challenge of programming: if we fail to take into account certain
requirements, some data may become incorrect – inconsistent, redundant,
invalid – when the application is used. The problems that cause incorrect
data are similar to those that cause incorrect operations. In both cases the
application will malfunction, and in both cases the reason is that it does not
reflect the requirements accurately.

We saw earlier that files cannot be said to be normalized in an absolute
sense, but only relative to the application’s requirements. For example, if the
product description does not change from one order to the next, the product
and orders files are normalized when the description field is in the product
file; but when the description may change, they are normalized when the
description field is in the orders file. Similarly, the validity criteria cannot be
defined in an absolute sense, but only relative to the application’s requirements.
Some examples: A certain date may be deemed too old in one part of the
application, but not in another. Deleting a transaction record may be permitted
if certain conditions hold, but deemed invalid otherwise; elsewhere in the
application, though, we may have to prevent the deletion under all conditions.
Creating a new transaction record may generally entail adding a record to the
history file too, and failing to do so would result in an incorrect history file;
sometimes, though, when this is not a requirement, it is adding the history
record that would result in an incorrect file.

Clearly, validity issues like these are part of the application’s logic. It is
absurd to treat them as a special class of operations just because they are

the third delusion 789chapter 7

concerned with the correctness of database entities. We also modify memory
variables in the application, and they too must remain correct; yet no one has
suggested that – in order to safeguard the correctness of memory-based entities
– we extract these operations from the application, restrict them to high levels,
and design special systems and languages to perform them. If we were to do
this for every type of entities and operations, we would no longer need
applications and general-purpose languages. Performing and combining
various types of operations, including those concerned with data validity, is
precisely what applications are for, and what programming languages are
designed to do. In any case, the operations that validate the database, as much
as those that modify it, must necessarily access low-level entities. So the idea of
separating them from the application, incorporating them into a database
system, and restricting them to high levels is senseless, and bound to fail.

In conclusion, the integrity features added to the relational database systems
were totally unnecessary. Their real purpose was to rescue the relational model
from refutation. Here is how: The promise had been a model that satisfies all
our database needs through high-level operations. The existing data validity
functions, however, required low-level operations. Moreover, they required
programming, so they could not be implemented at all in a relational system.
Asking us to depend on traditional programming for a critical aspect of
database management was, thus, a falsification of the relational model. To save
the model, the theorists were compelled to move these functions from the
application, where they belong naturally and logically, into the database system.
The integrity features are a fraud because this move is said to complement the
high-level database operations, when in reality the new functions require low
levels, and programming.

The integrity features, then, were the expedient through which low-level
capabilities could be added to a relational system. Instead of recognizing the
need to deal with low-level entities as a falsification, the theorists solved the
problem by annulling the restriction to high-level operations. Using the issue
of data integrity as pretext, they turned a blatant falsification into an important
new feature. This feature is so important, in fact, that no serious database
requirements can be implemented without it. And all this time, they kept
praising the power of the relational model: annulling the restriction to high
levels, they say, is an enhancement of the model.

�

The first integrity functions were limited to simple validity checks. Here are
some examples: The attribute integrity functions check that the value placed in
a field is correct with respect to the definition of the field (valid numbers in a

790 the relational database model chapter 7

numeric field, valid dates in a date field, etc.). The domain integrity functions
check that the value placed in a field is correct when the field is restricted to a
range of values (a number must not be larger than 1,000, for instance, a date
must not be older than 30 days ago, etc.). The referential integrity functions
check that the relationship between two files remains correct when the files are
modified; typically, they are used to prevent the deletion of a record in one file
while there exist records in the other file related to it through their key.

To use an integrity function, the programmer specifies the event that is to
invoke the function at run time (this event is known as trigger), the conditions
and values that make up the constraint, and the action to take in case of error
(display a message, prevent a change or deletion, etc.). Triggers may be
included in the application when a certain field is modified, after a record is
added to a certain file, before a record is deleted, and so on.

Validity checks like these can be easily implemented in the application,
of course, using the conditional constructs or exception-handling features
available in most languages. So it is not at all clear why a database system must
provide these checks in the form of built-in functions. Still, if we agree that
higher levels of abstraction are sometimes beneficial, these functions do
provide a good alternative for specifying and enforcing certain validity criteria.

Only simple checks, however, can be implemented through standard, built-
in functions. This is true because all we can do in a standard function is specify
a few conditions and values and the action to take, while most integrity checks
entail combinations of conditions, values, and actions. Thus, the checks we
need in a typical application may affect several fields and files, may require a
unique piece of logic, and may need some data that resides in the application,
not in the database.

So, like all high-level operations, the concept of standard integrity functions
can be useful if provided as an option, to be employed only when better than
programming the same checks. The relational theorists, though, hoped to turn
all integrity checks into standard functions. Their naivety is betrayed by
their attempt to classify the integrity functions – referential integrity, domain
integrity, and so forth. They actually believed that they could discover a set of
standard functions that would encompass all conceivable data validation
requirements (or, at least, the most common ones). Note also the pretentious
names they invented to describe what are in reality simple operations. Clearly,
they believed that the concept of built-in integrity functions represents an
important contribution to database science. But preventing the deletion of a
particular record, or ensuring that a field’s value lies within a certain range,
are operations we routinely perform in every application, using ordinary
programming languages; and we don’t need scientific-sounding terms like
“referential integrity” and “domain integrity” to describe them.

the third delusion 791chapter 7

The concept of built-in integrity functions failed, of course. After devising
a few standard functions, the theorists had no choice but to give us the means
to create freely our own functions, which is the only way to satisfy real-world
data validation requirements. And, since it is only through programming that
one can create such functions, new programming languages were invented –
languages whose only purpose was to allow programmers to implement
these functions as part of the database, rather than part of the application.
Then the languages started to grow, as programmers demanded greater
functionality. Means were introduced to perform calculations, to create flow-
control constructs, to call subroutines, to access memory variables, to use
general-purpose function libraries, and so forth. These languages provided, in
other words, more and more of the very same features that were already
available in the traditional languages.

No one noticed the absurdity of this situation. Programming our own
functions is an alternative we always had. The promise had been, not a new
language, but a higher level of abstraction. And if this turned out to be
impossible, the theorists should have admitted that the only way to implement
versatile data validation is through a programming language – the way we
always did – and encouraged us to return to the traditional methods. What is
the point in inventing specialized languages, indicating by means of “triggers”
where in the application we need the integrity functions, and placing the
functions in the database, when we could simply keep them as part of the
application? After all, despite the multiplying features, the new languages
remain inferior to the traditional ones, even in the narrow domain of database
work that is their specialty. So programmers must now assimilate and depend
on some new languages without deriving any real benefits. In the end, not
only do the relational systems fail to provide the promised higher level of
abstraction, but they make the task of data validation more complicated than
before.ÊÎ

The theorists, of course, could not admit that the concept of high-level
integrity functions had failed, and that we must return to the traditional
methods, because this would have been tantamount to admitting that the
relational model had been falsified. So, inventing new languages was the way
to cover up this falsification. Imagine an application written in COBOL, and a
database system that asks us to write the data validation functions also in
COBOL, but to store them in the database. Since we know that we can

ÊÎ We hear sometimes the argument that storing the integrity functions outside the
application facilitates the implementation of corporate standards, as all validity criteria are
specified in one place. But this argument is tenuous. First, we can accomplish the same
thing with ordinary subroutines. Second, even with the functions outside the application,
why do we need new languages?

792 the relational database model chapter 7

accomplish the same thing by making those functions an integral part of the
application, we would reject the database alternative as absurd. If, however, it
is not in COBOL but in a new language that we must write these functions –
and if the language is accompanied by some new and impressive terminology,
and if it is provided through a large and intricate development environment –
the absurd alternative can be made to look like an important programming
concept. And if we add to this the enthusiasm of the experts and the media, and
the urgent needs of the companies that already depend on relational systems,
everyone would perceive this concept as progress. Thus, what is in reality a
falsification of the relational model is made to appear as an enhancement
of the model.

�

Reinstating the programming capabilities, then, is what made the relational
systems practical. All relational principles had to be annulled, as we saw earlier;
but the other annulments would have amounted to nothing had the restriction
to high-level database operations been maintained. The idea of programmable
integrity functions was so well received because it provides the means to bypass
the restriction to relational operations. Although not as useful as the traditional
file operations, the operations available through the new languages do have
similar capabilities. So they allow us to implement many database requirements
that would be impractical through relational operations alone.

Thus, in the guise of integrity functions, programmers could now add to
their applications a great variety of low-level file operations. Whenever a
database requirement was too complicated or too inefficient to express through
the relational operations, they could program it in the form of an integrity
function and define a “trigger” in the application to invoke it. After all, with a
little imagination any database requirement can be associated with some
integrity checks or rules. For example, if we have to modify a record in such a
way that a field’s value is the result of calculations and conditions involving
some other files and some memory variables – a task impossible or impractical
through relational operations – we can program all this in a database language
and call it an integrity function.

Understandably, this stratagem was very popular. Programmers praised the
virtues of the relational model, but resorted to “integrity” functions and
“triggers” whenever the requirements called for low-level file operations, or
low-level links between database entities and other types of entities; in other
words, whenever they needed the capabilities of the traditional file operations.
They appeared to like the relational model, but what they liked in reality was
the new, low-level capabilities – which contradict the relational principles.

the third delusion 793chapter 7

In the end, all pretences of integrity and triggers were discarded, and these
functions were expanded into the broader concept known as stored procedures.
These procedures are general-purpose pieces of software that can be employed
freely in the application. They are stored in the database, but are used like
ordinary subroutines: they can be invoked from the application or from other
stored procedures, can have parameters, and can return values. And, since
there is no limit to the size or number of stored procedures, larger and larger
portions of the application were being developed in this new fashion, in order
to take advantage of the low-level capabilities of the database languages.
Thus, while programmers were convinced that they were using the relational
model, their applications resembled more and more those developed with the
traditional languages and file operations.

So, by allowing programmers to bypass completely the relational principles,
the concept of stored procedures was the final answer to the need for low-level
file operations and low-level links to the other aspects of the application.

5

5
Although there are many relational database languages, it is SQL that became
the official one. And it is through SQL, more than through the others, that the
fraud of reinstating the traditional concepts was committed. Today’s relational
systems would be unusable without SQL. From its modest beginning as a
query language, SQL has achieved its current status, and has grown to its
enormous size, as a result of the enhancements introduced in order to provide
programming and low-level capabilities – precisely those capabilities that
the relational model had claimed to be unnecessary. Thus, today’s official
relational language is in reality the official means, not of implementing, but of
overriding, the relational principles. Let us study this evolution.

The original relational model, we recall, was meant only for queries. And
SQL (which stands for Structured Query Language) was the language through
which programmers and users alike were expected to access the database. The
original SQL, thus, allowed us to select and combine subsets of tables by
specifying various criteria in the form of relational operations.

The SQL statement for queries is SELECT. This one statement, however,
contains many clauses, which permit us to specify various details: the files
involved in the query, the operations required to relate these files, the sorting
sequence, the record selection criteria, which fields to display, and how to
group the selected records for showing subtotals and the like. Thus, while neat
and straightforward for trivial queries, a SELECT statement can become very
long and complicated for intricate queries or queries involving several files.

794 the relational database model chapter 7

The reason is that, no matter how complex, a query must be expressed in its
entirety in one statement. Specifications that in a traditional language would
be implemented naturally by combining some simple constructs must be
expressed now by means of clauses and further SELECTs awkwardly nested
within the various parts of the main SELECT. Moreover, in order to support real-
world queries, some contrived features had to be added to SELECT. The features
are, in reality, substitutes for ordinary programming concepts. But, while the
traditional languages provide these concepts naturally, as diverse statements,
in SQL they must all be crammed, artificially, into the SELECT statement. SQL,
thus, while perceived as a modern, high-level database language, is in fact a
primitive, ugly language.

Another way to include traditional operations in the SELECT statement was
by making them look similar to the relational operations. For example, an
operation that results in one value for a group of selected records (the sum of
the values present in certain fields, or their average, or minimum) can be
included through an option that creates a temporary file of one record where
the fields contain the result; and an operation performed on a certain field in
every record in the group (calculating the square root, multiplying by a
constant, etc.) can be included through an option that creates a temporary file
with the same number of records as the original group, but where the fields
contain the new value. Many operations easily performed in traditional
languages (mathematical and statistical functions, character string manipula-
tion, date and time calculations, etc.) were artificially added to the SELECT

statement in this fashion.
Clearly, if we have to develop real-world applications while being unable to

create our own file scanning loops, and if SELECT is the only statement available,
every operation that we will ever need must be included somehow in this one
statement. Thus, the reason for the growing complexity of SELECT is the
desire to keep SQL “non-procedural”; specifically, the attempt to provide
programming capabilities while restricting these capabilities to a higher level
of abstraction than a traditional language. This is an absurd quest, since, if we
want the ability to implement any conceivable queries, the language must
provide low-level file operations. (We examined in chapter 6 the fallacy of
non-procedural languages; see pp. 442–443.) So, in the end, the entities and
operations that became part of the SELECT statement had to be of the same level
of abstraction as those used in traditional languages: fields, records, keys,
comparisons, calculations, and so on.

What the relational theorists are trying to avoid at any cost, even if the cost
is increased complexity, is code like that shown in figures 7-13 to 7-16 (pp. 680,
683–685); that is, traditional programming, where the file operations are
managed through explicit flow-control constructs. An SQL SELECT statement

the third delusion 795chapter 7

may well be a little shorter than the equivalent COBOL code, but it does not
provide a higher level of abstraction.ÊÏ What is different between SQL and
COBOL – implicit loops and conditions as opposed to explicit ones – is the easy,
mechanical part of programming. The difficult part – the overall logic, the file
relations, the concept of nested loops and conditions, the links between
database entities and the other entities in the application – is necessarily the
same in both. With SQL or with COBOL, since the computer cannot know
what we want, the only way to implement a given query is by specifying all the
details. It is futile to seek a higher level of abstraction.

Thus, even when restricted to queries (and hence still within the relational
model), we already note the need to enhance SQL in order to extend its
usefulness beyond trivial requirements, as well as the effort to cover up the fact
that this is achieved by introducing programming capabilities. A complex SQL
query is in reality a little program, and what we are doing when creating a
complex SELECT statement is programming. We would be better off, therefore,
to implement that requirement as several simpler statements, linked through a
flow-control structure that follows naturally and intuitively the query’s logic,
as we do in most languages. But then we could no longer delude ourselves
that SQL is non-procedural, or that we are using only high-level relational
operations. In the end, as in all mechanistic software delusions, not only did
SQL fail to eliminate the need for programming, but in attempting to do this it
made programming more difficult.

�

When the relational systems were expanded to include updating operations,
SQL was enhanced with the capability to add, modify, and delete records. The
respective statements are INSERT, UPDATE, and DELETE. And these statements are
very similar to SELECT, in that they create an implicit file scanning loop and
include clauses for various details (record selection criteria, for instance).
Updating operations, we recall, are not part of the formal relational model.
Thus, regardless of how we feel about SQL as a query relational language, the
new statements cannot be judged at all by relational principles. So the fact that
they are in the same contrived style as SELECT, or the fact that INSERT also
permits us to bypass the relational principles altogether and process individual
records, can easily be overlooked.

Recall the traditional file operations (pp. 676–679): WRITE, REWRITE, DELETE,

ÊÏ SQL code corresponding to the COBOL code of figure 7-13 might be: SELECT P-NUM

FROM PART WHERE P-NUM>=P1 AND P-NUM<=P2 AND P-QTY>=Q1 ORDER BY P-NUM. For the
operations in figures 7-14 to 7-16, however, the SQL code would be far more involved,
especially if we have to access individual fields from two or three files at the same time.

796 the relational database model chapter 7

READ, START, and READ NEXT. We concluded that this is the minimal practical set
of file operations – the operations that are both necessary and sufficient for
using indexed data files in serious applications. In conjunction with the flow-
control constructs provided by the traditional languages, these operations
permit us to implement any conceivable database requirement. Putting it in
reverse, to permit us to implement any database requirement, a database
system must provide these operations, or their equivalent.

After the various enhancements, SQL provided four of these operations:
INSERT, UPDATE, DELETE, and SELECT correspond, respectively, to the traditional
WRITE, REWRITE, DELETE, and READ. Only START and READ NEXT had no SQL
counterpart. READ NEXT instructs the file system to retrieve the current record
in the indexing sequence and advance the pointer to the next record. It is
normally used, therefore, in a file scanning loop (and START is used once, before
the loop, to indicate the first record). READ NEXT was thought to be unnecessary
in SQL because the four other statements create their own, implicit file
scanning loops.

So, with the traditional operations we use READ to access individual records,
and READ NEXT to access in a loop a series of consecutive records; and to
modify or delete records we use REWRITE or DELETE, either for individual
records or in a READ NEXT loop. With the SQL statements, on the other hand,
we access records only in a loop – the implicit loop generated by each one of
the four statements. (Consequently, if we need to access a single record in SQL,
we must specify selection criteria that will result in a trivial loop of one
iteration.)

The most striking difference between SQL statements and the traditional
operations, then, is the implicit file scanning loop as opposed to the loop that
we create ourselves. So SQL statements are a little simpler, but to benefit from
this simplicity we must give up all flexibility. When we create our own scanning
loop, in a traditional language, we can include in the loop additional operations
(to perform various tasks related to the file operation). In SQL, the only
operations we can have in the loop are those provided by the statement itself,
through its clauses. For example, in SQL we can specify with UPDATE the record
selection criteria and how to modify the fields in these records. But with a
traditional language, a loop based on READ NEXT and REWRITE can also include
display operations, subroutine calls, and calculations involving both database
fields and memory variables. Thus, when we create our own file scanning loop
we can easily link the file entities to the other entities in the application. This is
the seamless integration of the database and the application that we discussed
earlier (see “The Lost Integration”).

�

the third delusion 797chapter 7

We saw how the relational theorists crammed into SELECT various features in
an attempt to restore some of the flexibility that was lost in the implicit SQL
loops. But there is a limit to the number of operations that can be specified in
this fashion, and in the end they had to admit that the capability to create
explicit file scanning loops, and to control the operations in the loop, is an
indispensable database feature. So they added this feature to SQL too, by way
of a new enhancement: the FETCH statement.

FETCH is the true counterpart of the traditional READ NEXT: it lets us create
explicit loops, and retrieve one record at a time, just as we do in a traditional
language. (There is no equivalent of the traditional START: in SQL we always
start from the beginning of the file, and the system will deliver only those
records that passed the selection criteria previously specified with a SELECT.)
FETCH, of course, is not independent. To use it we also need the capability
to create explicit loops, and this capability was added to SQL by means of
further enhancements: actual loop-control constructs, and a way to perform
SQL statements from within a traditional language. (We will examine these
enhancements in a moment.)

The mechanism through which we read one record at a time in a loop is
known in SQL as cursor, and is identical to the mechanism known as pointer
in the traditional file operations (see pp. 677, 678). The cursor is the indicator
that keeps track of records in the current indexing sequence: each time we
perform a FETCH, the system retrieves the record identified by the cursor and
advances the cursor to the next record – just as it does in the case of the
traditional READ NEXT. And if we do this at the beginning of each iteration, all
the operations in the loop will be able to access the fields in that record. Thus,
in SQL too we can now include in a file scanning loop any operations we
want, and thereby link the database fields to other types of entities (memory
variables, display fields, etc.). Also, when used in conjunction with FETCH,
UPDATE and DELETE can now modify or delete individual records in a scanning
loop – just as REWRITE and DELETE can in conjunction with READ NEXT in a
traditional loop.

�

To appreciate the importance of the cursor, we must recall the original
relational principles. For, without the means to create explicit file scanning
loops, SQL would have been almost useless. The relational model specifically
restricts us to high-level operations: all we can do is extract and combine
logical portions of tables. The permitted operations are PROJECTION, SELECTION,
UNION, JOIN, and the like (see p. 702). The original SQL SELECT statement, with
its implicit file scanning loop, follows this principle: we specify the operations

798 the relational database model chapter 7

through the various clauses of a SELECT, and combine them by nesting SELECTs
within one another. At every step we manipulate only tables – tables that
contain, usually, just some of the records and fields of an actual data file.

So the original SELECT statement (plus INSERT, UPDATE, and DELETE if we allow
updating operations) is all we need in order to implement the relational model
in SQL. This is true because in high-level queries, as the model was originally
intended, we only need the means to specify which fields to list, and such
details as their order and format. But if we want to employ the model for
any conceivable query, in any application, we need the means to perform
additional operations with these fields, not just list them. Also, we need the
means to use the fields together with other data types – display and data entry
fields, and memory variables. The theorists hoped at first to satisfy these two
demands by adding more and more options to the SELECT statement; that is, by
inventing a high-level feature for every conceivable situation. This is an absurd
idea, however, and they realized in the end that the only practical solution is to
permit low-level operations.

Thus, only trivial requirements can be implemented if restricted to the
implicit file scanning loops of SELECT. It was by adding to SQL the concept of a
cursor, and the means to create explicit file scanning loops, that we gained the
two critical qualities: the capability to perform additional operations in the
loop, and the capability to link low-level database entities (individual fields and
records) to other entities in the application.

With the concept of a cursor, then, all the capabilities of the traditional file
operations were finally available in relational systems. But this was accom-
plished by abolishing the relational principles: the way we use data files in SQL
is now practically identical to the way we use them in a traditional language.

�

As SQL was used for more and more demanding tasks, it had to be enhanced
with the kind of features found in general-purpose programming languages.
And software vendors increasingly used these features – which have nothing to
do with the relational principles, or with database operations – as a way to
promote their database systems and attract buyers. For example, some vendors
enhanced their version of SQL with the means to create conditional, iterative,
and other flow-control constructs (officially abandoning, therefore, the idea of
a non-procedural language). And, in addition to those functions similar
to the traditional operations and subroutine libraries, already mentioned,
countless expedients were provided to assist programmers in developing
applications: functions for creating reports, for data entry and display, for
system management, and so forth.

the third delusion 799chapter 7

What is the point of these enhancements? We already had these features, in
a hundred languages. The relational promise had been mathematical logic and
a higher level of abstraction, not a new programming language. And if this idea
turned out to be impractical, it should have been abandoned. Instead, like all
pseudoscientists, the relational experts rescued their theory by reinstating
precisely those concepts that the theory had attempted to replace. As a result,
software vendors are competing today, not by stressing the relational capabili-
ties of their systems, but by adding more and more low-level, programming
features; that is, features meant to help us bypass the rigours imposed by the
relational model. In other words, the value of a relational system is measured
today by how good it is at overriding the relational principles.

But despite the enhancements, SQL remained inferior to the traditional
languages. It was still too awkward and too inefficient for serious applications,
so one more feature had to be invented: the capability to use SQL from within
a traditional language. This feature, called embedded SQL, is the ultimate
relational degradation: the most effective way for a programmer to enjoy the
benefits of the traditional database concepts while pretending to use the
relational model.

With embedded SQL, we implement in a traditional language the entire
application, including all database requirements; then, we invoke isolated SQL
statements here and there in the form of subroutines. The relational system,
thus, is relegated to the role of subroutine library, and works similarly to a
traditional file system. A typical use of this concept is with the FETCH statement,
as explained earlier: we create a file scanning loop in COBOL or any other
language, and use FETCH within the loop to read one record at a time – exactly
the way we use the traditional READ NEXT. Every other operation in the loop is
implemented in the traditional language. The resulting code is identical, for all
practical purposes, although we employ in one case a relational system and in
the other a traditional file system. We have come a long way from the idea of
“tables and nothing but tables,” accessed through high-level operations.

�

An important promise of the relational model had been that the result of a
query is mathematically guaranteed to be correct: if we restrict ourselves to the
relational operations – to extracting and combining portions of tables – the
data in the final table will always reflect accurately the data in the tables we
started with. So, if we bypass the restriction to relational operations, this
promise no longer holds. Whether the new operations are added in the form
of SELECT options or in the form of explicit file scanning loops, the benefits
promised by the relational model are now lost. Without the restriction to

800 the relational database model chapter 7

relational operations, what we have is no longer a relational model, so the
resulting tables may or may not reflect accurately the starting ones.

The SQL fallacy, thus, is the belief that the relational model can be enhanced
with features that contradict its most fundamental principles, and still retain
its original qualities. The mathematical benefits were shown to emerge only if
we restrict ourselves to the relational operations. The theorists keep adding
features designed specifically to bypass this restriction, but they continue to
promote the model with the original claims.

We already know that the updating operations lie outside the scope of the
formal model, so the model’s mathematical grounding is irrelevant when a
relational system is used for general database work. And now we see that the
model’s mathematical grounding has become irrelevant even for queries. As
was the case with the other modifications, the SQL features do not enhance the
relational model but annul it.

The Verdict

The Verdict

In the end, what has the relational model accomplished? After thirty years of
“enhancements,” relational database programming is more or less the same as
traditional database programming: we manipulate fields, keys, records, and
files in order to create database structures. The only real difference is that the
database operations have been separated from the rest of the application,
and are now possible only through complicated, inefficient, and expensive
database environments.

If we disregard that extreme degradation, embedded SQL, applications are
now divided into two parts: the part written in an ordinary language, where the
application’s main logic resides, and the part written in SQL (in the form of
integrity functions, stored procedures, and the like), where the database-
related operations reside. More and more pieces of the application have been
moved into the SQL part; this is not because they are easier to implement in
SQL, though, but because they are closely related to the database operations,
and keeping them together is the only practical way to link them. And this
artificial separation obscures the fact that the part dealing with the database-
related operations is now very similar to what it was when integrated with the
application’s main logic.

The relational charlatans, thus, claimed at first that we must separate the
database operations from the application, and restrict the links between the
two to a high level of abstraction, because this is the only way to benefit from
the relational model. Then, when the separation proved to be impractical, they

the verdict 801chapter 7

restored the low-level links. They did it, though, not by moving the database
operations back into the application, but by bringing into the SQL procedures
further pieces of the application. They restored the links, thus, by reinstating
in the SQL procedures the same low-level programming concepts that we had
used in the application before the separation. So the benefits believed to
emerge from the relational model are now lost even if we forget that they had
already been lost, in the other annulments of the relational principles. The
separation of the application into two parts is absurd because what we are
doing in the SQL procedures is about the same as what we were doing before,
in a much simpler way, in the application.

So, after all the “enhancements,” there remains very little that is relational in
the relational database systems. Programmers use SQL in about the same way
that the traditional file operations are used. Only now and then, when not
too inconvenient or too inefficient, do they employ the relational operations
as they were defined in the original theory. But by calling files “tables,”
records “rows,” and fields “columns,” they can delude themselves that they are
programming under the relational model.

It must be noted that some features are indeed found only in relational
systems. But these features could easily be added also to the traditional file
systems, simply because they have nothing to do with the relational model.
These are the kind of features made possible by hardware and software
advances – larger files, new types of fields, enhanced caching and buffering,
better security or backup facilities, and the like. So, if these features are missing
in a file system, it is deliberate: in their effort to make everyone dependent on
complicated and expensive development environments, the software elites are
doing everything in their power to discredit the straightforward, traditional
languages and file systems; and refusing to keep them up to date is part of this
manipulation.

It is all the more remarkable, thus, that the traditional languages and file
systems, while remaining practically unchanged for the last thirty years, have
been the chief source of inspiration for the features added to the relational
systems. This shows, again, just how little the relational model itself had
to offer.

The relational model is still described as an application of mathematical
logic. And those monstrous database systems are promoted with the claim
that the relational model is the only way to have rigorous databases, even as
everyone can see that these systems have little to do with the relational model,
and that their only practical features are those taken from the traditional
languages and file operations. So, like the theories of structured program-
ming and object-oriented programming, and like all other pseudosciences,
the relational theory continues to be promoted on the basis of its original

802 the relational database model chapter 7

principles even after these principles were abandoned, and hence their benefits
were lost.

If we have to bypass the relational restrictions and revert to operations that
are practically identical to the traditional ones, in what sense is the relational
model beneficial? The theorists are committing a fraud when promoting the
relational systems if, at the same time, they enhance these systems with means
to override the relational principles.

The multibillion-dollar relational database industry thrives on the incompe-
tence of the software practitioners, whose skills are limited to knowing how to
use programming aids and substitutes. To repeat, the six basic file operations
and an ordinary language are all we need in order to implement database
requirements. Thus, only a programmer incapable of designing some simple
loops and conditions can be impressed by the relational features. Every one of
these features has been available – in a much simpler form, through file
management systems and languages like COBOL – since about 1970.

the verdict 803chapter 7

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 7: Software Engineering
	Introduction
	The Fallacy of Software Engineering
	1
	2
	3

	Software Engineering as Pseudoscience
	1
	2
	3

	Structured Programming
	The Theory
	1
	2
	3

	The Promise
	The Contradictions
	1
	2
	3

	The First Delusion
	The Second Delusion
	1
	2
	3

	The Third Delusion
	1
	2
	3
	4
	5

	The Fourth Delusion
	1
	2
	3
	4
	5
	6

	The GO TO Delusion
	1
	2
	3
	4
	5
	6

	The Legacy

	Object-Oriented Programming
	The Quest for Higher Levels
	The Promise
	The Theory
	1
	2

	The Contradictions
	1
	2
	3

	The First Delusion
	The Second Delusion
	The Third Delusion
	The Fourth Delusion
	1
	2

	The Fifth Delusion
	1
	2
	3

	The Final Degradation
	1
	2
	3

	The Relational Database Model
	The Promise
	1
	2
	3

	The Basic File Operations
	1
	2
	3
	4

	The Lost Integration
	The Theory
	1
	2
	3

	The Contradictions
	1
	2

	The First Delusion
	1
	2
	3
	4
	5

	The Second Delusion
	1
	2
	3
	4
	5
	6
	7
	8
	9

	The Third Delusion
	1
	2
	3
	4
	5

	The Verdict

