
Software and Mind

SOFTWARE AND MIND
Andrei Sorin

extract

Chapter 6: Software as Weapon

This extract includes the book’s front matter
and chapter 6.

Copyright © 2013, 2019 Andrei Sorin

The free digital book and extracts are licensed under the
Creative Commons Attribution-NoDerivatives

International License 4.0.

This chapter explains how the mechanistic fallacies lead to
software delusions, and how the software elites use these delusions
to exploit society.

The entire book, each chapter separately, and also selected sections,
can be viewed and downloaded free at the book’s website.

www.softwareandmind.com

http://www.softwareandmind.com

SOFTWARE
AND

MIND
The Mechanistic Myth
and Its Consequences

Andrei Sorin

ANDSOR BOOKS

Copyright ©2013, 2019 Andrei Sorin
Published by Andsor Books, Toronto, Canada (www.andsorbooks.com)
First edition 2013. Revised 2019.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, without the prior written permission of the publisher.
However, excerpts totaling up to 300 words may be used for quotations or similar functions
without specific permission.

The free digital book is a complete copy of the print book, and is licensed under the
Creative Commons Attribution-NoDerivatives International License 4.0. You may
download it and share it, but you may not distribute modified versions.

For disclaimers see pp. vii, xvi.

Designed and typeset by the author with text management software developed by the author
and with Adobe FrameMaker 6.0. Printed and bound in the United States of America.

Acknowledgements
Excerpts from the works of Karl Popper: reprinted by permission of the University of

Klagenfurt/Karl Popper Library.
Excerpts from The Origins of Totalitarian Democracy by J. L. Talmon: published by

Secker & Warburg, reprinted by permission of The Random House Group Ltd.
Excerpts from Nineteen Eighty-Four by George Orwell: Copyright ©1949 George Orwell,

reprinted by permission of Bill Hamilton as the Literary Executor of the Estate of the Late
Sonia Brownell Orwell and Secker & Warburg Ltd.; Copyright ©1949 Harcourt, Inc. and
renewed 1977 by Sonia Brownell Orwell, reprinted by permission of Houghton Mifflin
Harcourt Publishing Company.

Excerpts from The Collected Essays, Journalism and Letters of George Orwell: Copyright
©1968 Sonia Brownell Orwell, reprinted by permission of Bill Hamilton as the Literary
Executor of the Estate of the Late Sonia Brownell Orwell and Secker & Warburg Ltd.;
Copyright ©1968 Sonia Brownell Orwell and renewed 1996 by Mark Hamilton, reprinted
by permission of Houghton Mifflin Harcourt Publishing Company.

Excerpts from Doublespeak by William Lutz: Copyright ©1989 William Lutz, reprinted
by permission of the author in care of the Jean V. Naggar Literary Agency.

Excerpts from Four Essays on Liberty by Isaiah Berlin: Copyright ©1969 Isaiah Berlin,
reprinted by permission of Curtis Brown Group Ltd., London, on behalf of the Estate of
Isaiah Berlin.

Library and Archives Canada Cataloguing in Publication
Sorin, Andrei

Software and mind : the mechanistic myth and its consequences / Andrei Sorin.
Includes index.
ISBN 978-0-9869389-0-0

1. Computers and civilization. 2. Computer software – Social aspects.
3. Computer software – Philosophy. I. Title.

QA76.9.C66S67 2013 303.48'34 C2012-906666-4

Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?. . . Has it ever occurred to you . . . that
by the year 2050, at the very latest, not a single human being
will be alive who could understand such a conversation as we
are having now?

George Orwell, Nineteen Eighty-Four

Disclaimer

Disclaimer

This book attacks the mechanistic myth, not persons. Myths, however, manifest
themselves through the acts of persons, so it is impossible to discuss the
mechanistic myth without also referring to the persons affected by it. Thus, all
references to individuals, groups of individuals, corporations, institutions, or
other organizations are intended solely as examples of mechanistic beliefs,
ideas, claims, or practices. To repeat, they do not constitute an attack on those
individuals or organizations, but on the mechanistic myth.

Except where supported with citations, the discussions in this book reflect
the author’s personal views, and the author does not claim or suggest that
anyone else holds these views.

The arguments advanced in this book are founded, ultimately, on the
principles of demarcation between science and pseudoscience developed by
philosopher Karl Popper (as explained in “Popper’s Principles of Demarcation”
in chapter 3). In particular, the author maintains that theories which attempt
to explain non-mechanistic phenomena mechanistically are pseudoscientific.
Consequently, terms like “ignorance,” “incompetence,” “dishonesty,” “fraud,”
“corruption,” “charlatanism,” and “irresponsibility,” in reference to individuals,
groups of individuals, corporations, institutions, or other organizations, are
used in a precise, technical sense; namely, to indicate beliefs, ideas, claims, or
practices that are mechanistic though applied to non-mechanistic phenomena,
and hence pseudoscientific according to Popper’s principles of demarcation. In
other words, these derogatory terms are used solely in order to contrast our
world to a hypothetical, ideal world, where the mechanistic myth and the
pseudoscientific notions it engenders would not exist. The meaning of these
terms, therefore, must not be confused with their informal meaning in general
discourse, nor with their formal meaning in various moral, professional, or
legal definitions. Moreover, the use of these terms expresses strictly the
personal opinion of the author – an opinion based, as already stated, on the
principles of demarcation.

This book aims to expose the corruptive effect of the mechanistic myth.
This myth, especially as manifested through our software-related pursuits, is
the greatest danger we are facing today. Thus, no criticism can be too strong.
However, since we are all affected by it, a criticism of the myth may cast a
negative light on many individuals and organizations who are practising it
unwittingly. To them, the author wishes to apologize in advance.

vii

Contents

Contents

Preface xiii

Introduction Belief and Software 1

Modern Myths 2

The Mechanistic Myth 8

The Software Myth 26

Anthropology and Software 42

Software Magic 42

Software Power 57

Chapter 1 Mechanism and Mechanistic Delusions 68

The Mechanistic Philosophy 68

Reductionism and Atomism 73

Simple Structures 90

Complex Structures 96

Abstraction and Reification 111

Scientism 125

Chapter 2 The Mind 140

Mind Mechanism 141

Models of Mind 145

ix

Tacit Knowledge 155

Creativity 170

Replacing Minds with Software 188

Chapter 3 Pseudoscience 200

The Problem of Pseudoscience 201

Popper’s Principles of Demarcation 206

The New Pseudosciences 231

The Mechanistic Roots 231

Behaviourism 233

Structuralism 240

Universal Grammar 249

Consequences 271

Academic Corruption 271

The Traditional Theories 275

The Software Theories 284

Chapter 4 Language and Software 296

The Common Fallacies 297

The Search for the Perfect Language 304

Wittgenstein and Software 326

Software Structures 345

Chapter 5 Language as Weapon 366

Mechanistic Communication 366

The Practice of Deceit 369

The Slogan “Technology” 383

Orwell’s Newspeak 396

Chapter 6 Software as Weapon 406

A New Form of Domination 407

The Risks of Software Dependence 407

The Prevention of Expertise 411

The Lure of Software Expedients 419

Software Charlatanism 434

The Delusion of High Levels 434

The Delusion of Methodologies 456

The Spread of Software Mechanism 469

Chapter 7 Software Engineering 478

Introduction 478

The Fallacy of Software Engineering 480

Software Engineering as Pseudoscience 494

x contents

Structured Programming 501

The Theory 503

The Promise 515

The Contradictions 523

The First Delusion 536

The Second Delusion 538

The Third Delusion 548

The Fourth Delusion 566

The GOTO Delusion 586

The Legacy 611

Object-Oriented Programming 614

The Quest for Higher Levels 614

The Promise 616

The Theory 622

The Contradictions 626

The First Delusion 637

The Second Delusion 639

The Third Delusion 641

The Fourth Delusion 643

The Fifth Delusion 648

The Final Degradation 655

The Relational Database Model 662

The Promise 663

The Basic File Operations 672

The Lost Integration 687

The Theory 693

The Contradictions 707

The First Delusion 714

The Second Delusion 728

The Third Delusion 769

The Verdict 801

Chapter 8 From Mechanism to Totalitarianism 804

The End of Responsibility 804

Software Irresponsibility 804

Determinism versus Responsibility 809

Totalitarian Democracy 829

The Totalitarian Elites 829

Talmon’s Model of Totalitarianism 834

Orwell’s Model of Totalitarianism 844

Software Totalitarianism 852

Index 863

contents xi

Preface

Preface

This revised version (currently available only in digital format) incorporates
many small changes made in the six years since the book was published. It is
also an opportunity to expand on an issue that was mentioned only briefly in
the original preface.

Software and Mind is, in effect, several books in one, and its size reflects this.
Most chapters could form the basis of individual volumes. Their topics,
however, are closely related and cannot be properly explained if separated.
They support each other and contribute together to the book’s main argument.

For example, the use of simple and complex structures to model mechanis-
tic and non-mechanistic phenomena is explained in chapter 1; Popper’s
principles of demarcation between science and pseudoscience are explained in
chapter 3; and these notions are used together throughout the book to show
how the attempts to represent non-mechanistic phenomena mechanistically
end up as worthless, pseudoscientific theories. Similarly, the non-mechanistic
capabilities of the mind are explained in chapter 2; the non-mechanistic
nature of software is explained in chapter 4; and these notions are used in
chapter 7 to show that software engineering is a futile attempt to replace
human programming expertise with mechanistic theories.

A second reason for the book’s size is the detailed analysis of the various
topics. This is necessary because most topics are new: they involve either

xiii

entirely new concepts, or the interpretation of concepts in ways that contradict
the accepted views. Thorough and rigorous arguments are essential if the
reader is to appreciate the significance of these concepts. Moreover, the book
addresses a broad audience, people with different backgrounds and interests;
so a safe assumption is that each reader needs detailed explanations in at least
some areas.

There is some deliberate repetitiveness in the book, which adds only a little
to its size but may be objectionable to some readers. For each important
concept introduced somewhere in the book, there are summaries later, in
various discussions where that concept is applied. This helps to make the
individual chapters, and even the individual sections, reasonably independent:
while the book is intended to be read from the beginning, a reader can select
almost any portion and still follow the discussion. In addition, the summaries
are tailored for each occasion, and this further explains that concept, by
presenting it from different perspectives.

�

The book’s subtitle, The Mechanistic Myth and Its Consequences, captures its
essence. This phrase is deliberately ambiguous: if read in conjunction with the
title, it can be interpreted in two ways. In one interpretation, the mechanistic
myth is the universal mechanistic belief of the last three centuries, and the
consequences are today’s software fallacies. In the second interpretation, the
mechanistic myth is specifically today’s mechanistic software myth, and the
consequences are the fallacies it engenders. Thus, the first interpretation
says that the past delusions have caused the current software delusions; and
the second one says that the current software delusions are causing further
delusions. Taken together, the two interpretations say that the mechanistic
myth, with its current manifestation in the software myth, is fostering a
process of continuous intellectual degradation – despite the great advances it
made possible.

The book’s epigraph, about Newspeak, will become clear when we discuss
the similarity of language and software (see, for example, pp. 409–411).

Throughout the book, the software-related arguments are also supported
with ideas from other disciplines – from the philosophies of science, of mind,
and of language, in particular. These discussions are important, because they
show that our software-related problems are similar, ultimately, to problems
that have been studied for a long time in other domains. And the fact that the
software theorists are ignoring this accumulated knowledge demonstrates
their incompetence.

Chapter 7, on software engineering, is not just for programmers. Many parts

xiv preface

(the first three sections, and some of the subsections in each theory) discuss
the software fallacies in general, and should be read by everyone. But even the
more detailed discussions require no previous programming knowledge. The
whole chapter, in fact, is not so much about programming as about the
delusions that pervade our programming practices, and their long history.
So this chapter can be seen as a special introduction to software and program-
ming; namely, comparing their true nature with the pseudoscientific notions
promoted by the software elite. This study can help both programmers and
laymen to understand why the incompetence that characterizes this profession
is an inevitable consequence of the mechanistic software ideology.

The book is divided into chapters, the chapters into sections, and some
sections into subsections. These parts have titles, so I will refer to them here as
titled parts. Since not all sections have subsections, the lowest-level titled part
in a given place may be either a section or a subsection. This part is, usually,
further divided into numbered parts. The table of contents shows the titled
parts. The running heads show the current titled parts: on the right page the
lowest-level part, on the left page the higher-level one (or the same as the right
page if there is no higher level). Since there are more than two hundred
numbered parts, it was impractical to include them in the table of contents.
Also, contriving a short title for each one would have been more misleading
than informative. Instead, the first sentence or two in a numbered part serve
also as a hint of its subject, and hence as title.

Figures are numbered within chapters, but footnotes are numbered within
the lowest-level titled parts. The reference in a footnote is shown in full only
the first time it is mentioned within such a part. If mentioned more than once,
in the subsequent footnotes it is abbreviated. For these abbreviations, then, the
full reference can be found by searching the previous footnotes no further back
than the beginning of the current titled part.

The statement “italics added” in a footnote indicates that the emphasis is
only in the quotation. Nothing is stated in the footnote when the italics are
present in the original text.

In an Internet reference, only the site’s main page is shown, even when the
quoted text is from a secondary page. When undated, the quotations reflect the
content of these pages in 2010 or later.

When referring to certain individuals (software theorists, for instance), the
term “expert” is often used mockingly. This term, though, is also used in its
normal sense, to denote the possession of true expertise. The context makes it
clear which sense is meant.

The term “elite” is used to describe a body of companies, organizations, and
individuals (for example, the software elite). The plural, “elites,” is used when
referring to several entities within such a body.

preface xv

The issues discussed in this book concern all humanity. Thus, terms like
“we” and “our society” (used when discussing such topics as programming
incompetence, corruption of the elites, and drift toward totalitarianism) do not
refer to a particular nation, but to the whole world.

Some discussions in this book may be interpreted as professional advice on
programming and software use. While the ideas advanced in these discussions
derive from many years of practice and from extensive research, and represent
in the author’s view the best way to program and use computers, readers must
remember that they assume all responsibility if deciding to follow these ideas.
In particular, to apply these ideas they may need the kind of knowledge that,
in our mechanistic culture, few programmers and software users possess.
Therefore, the author and the publisher disclaim any liability for risks or losses,
personal, financial, or other, incurred directly or indirectly in connection with,
or as a consequence of, applying the ideas discussed in this book.

The pronouns “he,” “his,” “him,” and “himself,” when referring to a gender-
neutral word, are used in this book in their universal, gender-neutral sense.
(Example: “If an individual restricts himself to mechanistic knowledge, his
performance cannot advance past the level of a novice.”) This usage, then, aims
solely to simplify the language. Since their antecedent is gender-neutral
(“everyone,” “person,” “programmer,” “scientist,” “manager,” etc.), the neutral
sense of the pronouns is established grammatically, and there is no need for
awkward phrases like “he or she.” Such phrases are used in this book only when
the neutrality or the universality needs to be emphasized.

It is impossible, in a book discussing many new and perhaps difficult
concepts, to anticipate all the problems that readers may face when studying
these concepts. So the issues that require further discussion will be addressed
online, at www.softwareandmind.com. In addition, I plan to publish there
material that could not be included in the book, as well as new ideas that may
emerge in the future. Finally, in order to complement the arguments about
traditional programming found in the book, I have published, in source form,
some of the software I developed over the years. The website, then, must be
seen as an extension to the book: any idea, claim, or explanation that must be
clarified or enhanced will be discussed there.

xvi preface

Ch. 6: Software as Weapon

chapter 6

Software as Weapon

Our discussion in the previous chapter – the use of language to deceive and
exploit – had a dual purpose. First, we benefited by discovering the methods
employed by charlatans to turn language from a means of communication into
a tool of manipulation. From the present-day deceivers to Orwell’s totalitarian
society, we saw that the aim of linguistic manipulation is to distort knowledge.
And this is accomplished by forcing us to commit the mechanistic fallacies of
reification and abstraction. Specifically, the charlatans force us to create
isolated and impoverished knowledge structures in our minds. They prevent
us from using those natural capabilities of the mind that allow us to process
complex structures, and our mental processes are reduced to the level of
machines.

But the main reason for the study of linguistic manipulation was to dem-
onstrate the immense power inherent in language – the power to control
minds. Then, if we understand the similarity of language and software, and of
linguistic manipulation and software manipulation, we can better appreciate
how the same power can be attained through software.

We already know that language and software fulfil a similar function:
mirroring the world and communicating with it. And we also know that they
work in a similar manner: by creating systems of interacting structures from
linguistic and software entities, respectively. Having established that reification

406

and abstraction are the methods whereby language is used to control minds,
what we must do now is study our software delusions, and how the software
elites are using these delusions to exploit us.

What we will find is that the very methods we recognize as means of
deception and manipulation in language – forcing us to separate knowledge
structures and to start from higher levels of abstraction – form in software an
open doctrine. Whereas the language charlatans try to hide the fact that they
are employing these methods, the software charlatans are quite candid about
it: separating software structures and starting from higher levels, they keep
telling us, is the most effective way to develop software.

But software is becoming as important as language, so the conclusion must
be that our elites are attaining through software the same power over human
minds that the elite in Orwell’s hypothetical society attains through language.
Thus, while no elite in a real society can ever attain the power to control
language to the degree that this is done in Orwell’s society, our software elites
already have that power in controlling software. And, if not stopped, they will
eventually control our minds as effectively as the elite controls minds in
Orwell’s society.

A New Form of Domination A New Form of Domination
The Risks of Software Dependence

The Risks of Software Dependence

I have stated that the elites can control knowledge by means of software just as
they can by means of language, but I must clarify this point. I am not referring
here to the direct use of software to control, acquire, or restrict knowledge.
This discussion is not concerned with such well-known software dangers as
allowing an authority to decide what information is to be stored in databases,
or allowing the centralized collection of information about individuals. Nor is
it concerned with the use of deceptive language in software propaganda, as in
calling everything “technology,” or “solution.” Important as these dangers are,
they are insignificant compared to the dangers we face when an elite controls
the way we create and use software.

The other dangers we understand, and if we understand them we can
perhaps deal with them. But we have yet to understand what it means for
a society to depend on software as much as it depends on language; and
consequently, we do not realize that it is just as important to prevent an elite

the risks of software dependence 407chapter 6

from controlling software as it is to prevent one from controlling language.
This ignorance can be seen in the irresponsible attitudes of our political
leaders, of our corporations and educational institutions, and ultimately of
every one of us: we are watching passively as the software elites are increasing
their power and control year after year; and we continue to trust and respect
them, even as they are creating a world where the only thing left for us to do is
to operate their devices.

Thus, while the other forms of software abuse would lead to familiar forms
of exploitation, what concerns us here is a new form of domination. We are
facing a new phenomenon, a new way to control knowledge and thought,
which could not exist before we had computers. The dependence of a society
on software is a new phenomenon because software and programming are new
phenomena. We have been inventing tools for millennia, but the computer is
unique in that it is programmable to a far greater extent than any other tool we
have had. Software, therefore, is what gives the computer its potency; and the
act of programming is what controls this potency. No other human activity –
save the use of language – is as far-reaching as programming, because no other
activity involves something as potent as software.

This is the first time since humans developed languages that we have
invented something comparable in scope or versatility. Software resembles
language more than anything else: both systems permit us to mirror the world
in our minds and to communicate with it. At the same time, software is
sufficiently different from language to mask the similarity (we can easily invent
new programming languages, for example, but not natural ones). As a result,
we fail to appreciate the real impact that software has on society, and the need
for programming expertise and programming freedom. And we have fallen
victim to the fallacies of the software myth: the belief that software is a kind of
product, and that software applications must be built as we build appliances;
the belief that we need elaborate tools for these manufacturing projects, and
hence a software industry to supply these tools; the belief that development
methodologies and environments can be a substitute for programming exper-
tise; the belief that it is better to program and maintain complex business
systems by employing large teams of inexperienced programmers, analysts,
and managers, instead of one professional; and the belief that the highest
programming skills that human minds can attain, and that society needs, are
those possessed by the current practitioners.

�

It is not surprising that we are unprepared for the consequences of program-
ming, since we did not take sufficient time to learn what programming really is.

408 a new form of domination chapter 6

Originally, we set out merely trying to develop a particular kind of machine –
a fast, programmable calculator. Instead, we stumbled upon a system that gives
us a whole new way to use our minds, to communicate, to represent the world.
But we continue to regard programming as we did originally, as an extension
to the engineering effort required to build the hardware; that is, as an activity
akin to manufacturing, and which must be performed in the same fashion.
We still fail to see that the skills needed to program computers are more akin
to those needed to use language. Programming projects cannot be neatly
broken down, like manufacturing activities, into simpler and simpler tasks.
Programming skills, therefore, entail a capacity for complex structures. They
can be acquired only through lengthy exposure to the phenomena arising from
developing and maintaining large and complex applications.

There can be little doubt that within a few decades humans will interact
with the world around them by means of software as much as they do now
by means of language. Software lends itself to this task just like language,
and there is no reason why we should not depend on our newly discovered
programming capabilities, just as we depend on our linguistic capabilities. We
must ensure, however, the right conditions: first, programmers must have the
same competence with software as normal humans have now with language;
and second, the activities involving programming and software must be, like
those involving language, free from controls or restrictions. A society that
allows an elite to control its software and programming faces the same danger
as a society that allows its language to be controlled: through language or
through software, the elite will eventually control all knowledge and thought,
and will reduce human minds to the level of machines.

The form of domination that we are studying here can emerge, therefore,
when a society depends on software but lacks the necessary programming
competence. As Orwell points out, an elite could achieve complete control
through language only by forcing us to replace our language with an impover-
ished one, like Newspeak, which demands no intelligence. In our present-day
society, exploitation by way of language is necessarily limited, because we are
all competent language users. Few programmers, however, attain a level of
software competence comparable to our linguistic competence. Accordingly,
the world of programming is already an Orwellian world: it resembles a society
that lacks linguistic competence.

Our dependence on programming aids, and on the organizations behind
them, stems from the incompetence of programmers. Programmers need these
devices because they are not permitted to attain the level of programming
competence of which human minds are naturally capable. But programming
aids are only poor substitutes for programming expertise, because, unlike
minds, they can only deal separately with the various aspects of programming.

the risks of software dependence 409chapter 6

As a result, applications based on these substitutes cannot represent the world
accurately, just as statements in Newspeak cannot.

And, just as people restricted to Newspeak cannot realize how limited their
knowledge is, we cannot realize how limited our programming knowledge is,
because this is the only kind of programming we have. Just as the people in
Orwell’s society are forced to depend on the linguistic tools provided by
their elite, and their knowledge is shaped and restricted by these tools, our
programmers are forced to depend on the devices provided by the software
companies, and their knowledge is similarly shaped and restricted. Only
mechanistic software concepts, only beliefs that reinforce the software myth,
can enter their minds. Programming expertise for them means expertise in the
use of substitutes for programming expertise.

By preventing programming competence, then, an elite can use software to
control and exploit society, just as language could be used if we lacked linguistic
competence. The programming aids, and the resulting applications, form a
complex world that parallels the real world but has little to do with it. Their
chief purpose is to support a large software bureaucracy, and to prevent the
emergence of a body of competent and responsible programmers. And if the
software bureaucrats no longer deal with the real world, we have to reshape
our own views to match theirs. To the extent that our society depends on
software, and hence on this software bureaucracy, we all live in an Orwellian
world: we are all forced to perceive our work, our values, our expectations, our
responsibilities, in ways that serve the interests of the software elites.

It is unlikely that Orwell’s extreme form of mind control through language
can ever happen in the real world, but this is unimportant. Orwell’s world is a
model, not a prophesy. We must appreciate its value as model, therefore, rather
than feel self-complacent because it cannot happen. And when we study it, we
recognize that its importance is growing as our dependence on software
is growing, because this dependence increases the possibility of an elite
controlling our minds through software as the elite in the model does through
language.

In our current software culture, the degree of control that an elite can attain
through software is not limited by an existing condition, as control through
language is limited by our linguistic competence; it rests solely on how much
we depend on software. The reason the software elites do not have complete
control over our minds today is not our software competence, but the fact that
we do not yet depend completely on software. And if our dependence on
software is growing, by the time we depend on software as much as we depend
now on language it will be too late to do anything. At that point, to use
Orwell’s model, we will live in a world where Newspeak finally replaces
English. Our chief means of thinking, of communicating, of representing the

410 a new form of domination chapter 6

world, will be a simple system requiring only mechanistic knowledge – not
because software structures cannot involve complex knowledge, but because
there will be no one to create or use the kind of software that requires the full
capacity of the mind.

Dependence on software, coupled with software ignorance and program-
ming incompetence – this is what the software elites are trying to achieve.
They are persuading us to give up our dependence on knowledge and skills
(means through which we know how to become competent) and to replace it
with a dependence on software (means which they control, and through which
they can prevent us from becoming competent).

The Prevention of Expertise

The Prevention of Expertise
1 1
We probably fail to recognize software domination because the idea of mind
control through software is so incredible. Before we had software, only political
organizations could carry out such a totalitarian project. And we have yet to
accept the fact that an elite can control society through software as effectively
as a political elite could through traditional means of domination.

To understand this danger, we must make the most of what we know today.
We cannot afford merely to wait and see, because the resulting conditions
would likely be irreversible. We must study, for example, the similarity between
the role of software in society and that of language. Since we all agree that
language can be used to control and restrict thought, we must ensure complete
software freedom even if we still cannot see clearly how the software elites can
turn software into a means of domination. We should simply assume that they
will use software as they would language, had they the opportunity to control
language as they do software.

Even more importantly, we must study those aspects of society that are
already controlled by the software elites: those aspects that form the world of
programming itself. Studying the world of programming affords us a glimpse
of the future, of the time when the entire society will be controlled by these
elites. It was easy to degrade the notion of programming expertise because,
this being a new field, there were no established values, as there are in the
traditional professions. As a result, the highest level of expertise we believe
to be needed in programming is one that in other professions would be
considered the level of novices.

�

the prevention of expertise 411chapter 6

We have been involved with software for more than half a century, so by now
we could have had a sufficient number of expert programmers; namely, men
and women whose skills represent the utmost that human minds can attain
in the domain of programming. This is how we define expertise in other
professions, and this is what we should expect of programmers. Instead, what
we find is a software bureaucracy: a social system whose chief doctrine is the
prevention of programming expertise.

We have programmers who are incapable of performing anything but
small and isolated programming tasks, and who are not even expected to do
more. We have managers who read “success stories” in childish computer
publications, and search for ready-made applications and other programming
substitutes instead of allowing their own programmers to gain the necessary
skills. We have professors and gurus who teach the principles of “software
engineering” – which claim that programming is like manufacturing, so what
we need is unskilled labourers who know only how to assemble “prefabricated
software components.” We have software companies that supply practitioners
with an endless series of “software tools” – elaborate development and business
systems that promise to eliminate the need for programming. And, addressing
the incompetence engendered by this corrupt culture, there are thousands
of books, magazines, newspapers, brochures, advertisements, catalogues,
trade shows, newsletters, courses, seminars, and online sources, all offering
“solutions.”

Few people realize that this whole bureaucracy could be replaced with a
relatively small number of real, expert programmers. This is true because only
a fraction of the work performed by the current practitioners is actually useful;
that is, directly related to the creation and maintenance of applications. Most
of their work consists in solving the problems generated by their dependence
on aids and substitutes.

We have no equivalent bureaucracy in other professions. We have surgeons,
pilots, engineers, musicians, military commanders, writers, repairmen, and so
forth. And we understand that, to reach expertise in a difficult profession, an
individual needs many years of education, training, and practice, a sense of
personal responsibility, and perhaps special talents as well. We don’t attempt to
replace a surgeon with a dozen ignorant individuals, and defend the decision
by claiming that the work of a surgeon can be broken down into simpler tasks,
as in manufacturing.

We don’t do this in other professions because we took the time to determine
what is the highest level that human beings can attain in those fields. We made
that level our definition of expertise, and we measure everyone’s performance
against that level. We understand that the more difficult the profession, the
longer it takes to attain expertise, and the fewer the individuals who can

412 a new form of domination chapter 6

succeed; and we give these individuals the time and the opportunity to develop
their capabilities. We never tried to contend with this problem by reducing our
expectations, as we do in programming. We never concluded that, given the
urgent need for surgeons, the answer is to debase the definition of expertise to
match the level of the available, of the inexperienced, individuals.

We treat programming differently from other professions because this
serves the interests of the software elites. In just a few years, an unprecedented
propaganda system has made the software myth the greatest system of belief in
history, and we now take for granted in the domain of programming, notions
that we would dismiss as absurd in other domains. The software practitioners
have become a powerful, self-serving bureaucracy, but we continue to regard
them as saviours. The reason we fail to see that they are exploiting society,
not serving it, is that we have no other form of programming as measure.
Programming controlled by a bureaucracy is the only programming we know,
the only kind we have ever had.

An important element of the software myth is the belief that the typical
work currently performed by programmers represents the highest level of
competence we should expect in this profession. And if they have difficulty
with their applications, it is not greater programming knowledge that they
need, but more programming aids and substitutes. Thus, individuals with just
a year or two of training and experience – which consist largely in the use of
aids and substitutes – have reached the highest knowledge expected of them.
The only knowledge they will acquire from then on is how to use the future aids
and substitutes. This doctrine fits well within the ideology promoted by the
software elites, as it ensures continued incompetence among programmers.
It also ensures the complete dependence of programmers, and of those
using their applications, on the software companies supplying the aids and
substitutes. Lastly, this doctrine serves to weaken the programmers’ sense of
responsibility: what they perceive as their main concern is the problems
generated by the aids and substitutes, rather than the real social or business
problems that software is supposed to solve.

As a result, no matter how many years of practice programmers have behind
them, their real programming experience remains as it was after the first year
or two. This is true because the aids and substitutes limit their work to simple
and isolated bits of programming, whereas successful application development
demands the capacity to deal with many software processes simultaneously.
This incompetence also explains why most applications are inadequate, and
why most programming work consists in replacing existing applications,
which programmers cannot keep up to date.

�

the prevention of expertise 413chapter 6

If we can benefit from studying the similarity of software and language, and
from studying the world of programming and the delusions of the software
myth, then we can benefit even more from studying these topics together;
specifically, from studying the link between the mechanistic ideology and the
incompetence of programmers.

We should regard the world of programming as the result of an unintended
social experiment: an attempt to replace human expertise with software. The
experiment has failed, but we can learn a great deal from this failure. We must
create, to begin with, the social and business environment where a body of
expert programmers can evolve. The software elites are doing everything in
their power to prevent this, of course, since widespread programming incom-
petence is a critical factor in their plan of domination. A true programming
profession will not only stop the flow of trillions of dollars from society to the
software elites and bureaucrats, but will lead to better software and, ultimately,
greater benefits from computers.

Moreover, by abolishing the software bureaucracy we will prevent the
software elites from corrupting other aspects of society. For they are using the
power gained from controlling the world of software, to degrade other profes-
sions and occupations just as they have degraded programming. If allowed to
continue, they will soon force us all to depend on knowledge substitutes
instead of our minds. Like programmers, we will all be reduced to the level of
novices. As programmers do now, we will all live in a world where expertise is
neither possible nor necessary, where the only thing left to do is to operate the
devices supplied by the software elites.

2

2
To understand the concept of software domination, we must start by recalling
what we learned in chapter 2 about the mind. We can acquire the most diverse
kinds of knowledge and skills: using language, recognizing faces, playing
games, programming computers – the kind of knowledge we all share simply
by living in a society, as well as specialized knowledge related to individual
lifestyles and occupations. But all knowledge and skills, ultimately, involve our
mind’s capacity for complex structures. When exposed to a new phenomenon,
and hence to the new knowledge embodied in that phenomenon, we start by
noting the simple structures that make it up, the patterns and regularities. What
we note, in other words, is those aspects that can be represented with facts,
rules, and methods. Being limited to simple structures, our performance at
this point resembles that of a software device. We progress from novice to
expert by being exposed to that phenomenon repeatedly. This permits our

414 a new form of domination chapter 6

mind to discover, not only more structures, but also the interactions between
structures; and this in turn permits it to create a replica of the complex
structures that make up the phenomenon. Thus, when we reach expertise our
performance exceeds that of software devices, which are forever restricted to
simple structures.

We communicate with the world around us through our senses, which
receive information in the form of simple structures (patterns of symbols and
sounds, for instance). Complex structures, therefore, can exist only in the
phenomenon itself and in the mind; we cannot acquire them through our
senses directly from the phenomenon, or from another mind. Consequently,
the only way to attain expertise in a given domain is by giving our mind the
opportunity to create the complex structures which reflect the phenomena of
that domain. And this the mind can do only through repeated exposure to
those phenomena; in other words, through personal experience.

Human acts require the capacity for complex structures because most
phenomena we face consist of interacting structures. They consist of entities
(objects, persons, processes, events) that have many attributes, and belong
therefore to many structures at the same time – one structure for each attribute.
To put this differently, we can always view ourselves and our environment from
different perspectives, while the entities that constitute our existence are the
same. So the entities form many structures; but the structures interact, because
they share these entities. We rarely find a structure – a particular aspect of our
life – whose links to the other structures are so weak that it can be extracted
from the complex whole without distorting it or the others.

This recapitulation was necessary in order to remind ourselves of the
conclusion reached in chapter 2, and its significance. We note that most mental
processes, most knowledge and skills, involve complex structures. And we note
also that software devices are based on simple structures. As substitutes for
human intelligence, therefore, software devices are useful only for the rare
tasks that can be represented with simple structures; specifically, those tasks
that can be separated from others.

On the one hand, then, practically everything we do involves the full
capacity of the mind, and cannot be broken down into simpler mental pro-
cesses. On the other hand, we agree to depend more and more, in almost
every domain, on software devices – which attempt to eliminate the need for
expertise by reducing knowledge to simple structures. How can we explain this
contradiction?

Our software delusions stem from our mechanistic delusions. Our most
popular theories of mind claim that human intelligence can be represented
with mechanistic models – models based on precise diagrams, rules, methods,
and formulas. And, even though these theories keep failing, we also believe

the prevention of expertise 415chapter 6

now that it is possible to represent intelligence with mechanistic software
models. Thus, the promoters of mind mechanism can claim, for the first time,
to have actual devices – software devices – that emulate human intelligence.
Anyone with a computer can now perform any task, including tasks requiring
knowledge that he lacks. All he needs to do is purchase a software device which
contains that knowledge.

We have always used tools to simplify tasks, or to improve our performance;
so the idea that a device can enhance certain types of knowledge and skills, or
help us perform some tasks faster or better, is not new. If we view software as a
device of this kind, the claims are easily justified: the computer, with the
programs that run on it, is the most versatile tool we have ever invented; and
it can enhance our capabilities in many tasks.

The software claims, though, do not stop at the kind of claims traditionally
advanced for devices. The claims are extended to encompass intelligent acts;
that is, acts involving non-mechanistic knowledge, and hence complex knowl-
edge structures. But devices can represent only simple structures. So, to replace
those acts with software, we must first separate the complex knowledge
structure into several simple ones.

Software domination, thus, starts when we are tempted to commit the
fallacy of reification. We believe the claim that knowledge and skills can be
replaced with software devices because we already believe that intelligent acts
can be broken down into simpler intelligent acts. This belief tempts us to reify
the phenomenon of intelligence, and commit therefore, with software, the
fallacy already committed by the mechanistic theories of mind: the separated
knowledge structures are no longer what they were when part of the complex
knowledge; they lose the interactions, so even when we manage to represent
them faithfully with software, the knowledge embodied in them is not the same
as the original, complex knowledge.

But reification is only the first step. Now that we have independent struc-
tures, we are tempted to start from higher levels of abstraction within each
structure as we replace it with software. We can be more productive, the
experts tell us, if we avoid the low levels of software and start with higher-level
elements – with elements that already contain the lower levels. Thus, we also
commit the second fallacy, abstraction: we believe that we can accomplish the
same tasks as when starting with low-level elements. Starting from higher
levels impoverishes the structure by reducing the number of alternatives for the
value of the top element; that is, the top element of a software structure that is
already a reified, and hence inaccurate, representation of the real knowledge.
What this means in practice is that an inexperienced person will accomplish
by means of software devices only a fraction of what an experienced person
will with his mind alone.

416 a new form of domination chapter 6

The two fallacies can be seen clearly in the domain of programming. We are
told that the most effective way to develop applications is by starting from high
levels of abstraction. Specifically, we should avoid programming as much as
possible, and use instead software entities that already include many elements:
ready-made applications (or, at least, ready-made modules and components),
and the built-in operations provided by development tools and environments.
To benefit from these high levels, however, we must view our applications,
mistakenly, as separable software processes. Each business or software practice,
each case of shared data or operations, is a process; and each process represents
one aspect of the application, one structure (see “Software Structures” in
chapter 4). These structures exist at the same time and use the same software
entities, so it is their totality that constitutes the application. If we separate
them, we may indeed manage to program each structure starting from higher-
level elements; but the resulting application will reflect only poorly the original
requirements. We can create applications that mirror reality, but only if we have
the expertise to start from low levels and to deal with all the processes together.

3

3
We are now in a position to understand the concept of software domination.
The software elites are exploiting our mechanistic delusions; specifically, our
belief that software can be a substitute for non-mechanistic knowledge. We see
software successfully replacing human minds in some tasks, and we trust the
elites when they promise us similar success in other tasks. We believe that there
is only a quantitative, not a qualitative, difference between the knowledge
involved in mechanistic and non-mechanistic tasks, and we allow the elites to
exploit this belief.

So the mechanistic delusions act like a trap. If we believe that a given task
can be replaced with software, we do not hesitate to depend on that software
and on the organization behind it. We enthusiastically devote our time to
that software, instead of using it to gain knowledge. But if the task is non-
mechanistic, the time we devote to software will be wasted. By luring us with
the promise of immediate answers to our complex problems, the elites prevent
us from developing our minds. So, not only does software fail to solve those
problems, but it also prevents us from gaining the knowledge whereby we could
solve them. In the end, we have nothing – neither a useful software expedient,
nor the knowledge needed to perform the task on our own. We are caught,
thus, in the software variant of the traditional mechanistic trap: we believe in
the existence of mechanistic solutions for non-mechanistic problems, so we
restrict ourselves to precisely those methods that cannot work.

the prevention of expertise 417chapter 6

We get to depend on software because the promise is so enticing. The
promise is, essentially, that software can solve important problems in a
particular field by acting as a substitute for the knowledge needed in that
field. So, instead of taking the time to acquire that knowledge, we can solve the
problems right away, simply by buying and operating a piece of software. And
the reason we believe this promise is that we see similar promises being
fulfilled in tasks like calculations and data processing, where software does
indeed allow novices to display the same performance as experts. For tasks
involving interacting knowledge structures, however, the promise cannot be
met. Software can be a substitute only for knowledge that can be neatly broken
down into smaller, simpler, and independent pieces of knowledge – pieces
which in their turn can be broken down into even smaller ones, and so on –
because this is the only way to represent knowledge with software.

When we depend on software in situations involving complex knowledge
structures, what we notice is that it does not work as we expected. But,
while software fails to provide an answer, we never question the mechanistic
assumptions. We recognize its inadequacy, but we continue to depend on
it. And this dependence creates a new kind of problems: software-related
problems. We don’t mind these new problems, though, and we gladly tackle
them, because we think that by solving them we will get the software to solve
our original problems. Most software problems involve isolated knowledge
structures, and have therefore fairly simple, mechanistic solutions. Since these
solutions often entail additional software, they generate in their turn software
problems, which have their own solutions, and so on.

The more software problems and solutions we have, the more pleased we
are with our new preoccupations: all the time we seem to be solving problems.
So we spend more and more time with these software problems, when in
fact they are spurious problems generated by spurious preoccupations, in a
process that feeds on itself. We interpret our solutions to software problems as
progress toward a solution to our real problems, failing to see that, no matter
how successful we are in solving software problems, if the original problems
involve complex knowledge we will never solve them with software. In the end,
content with our software preoccupations, we may forget the real problems
altogether.

�

Bear in mind that it is not software dependence in itself that is dangerous, but
the combination of this dependence with software ignorance. There is nothing
wrong in depending on software when we possess software expertise. It is only
when we separate software structures from various knowledge structures, and

418 a new form of domination chapter 6

when we restrict ourselves to high-level elements, that our dependence on
software can be exploited; in other words, when our software knowledge is at
a mechanistic level.

Recall the language analogy. We attain linguistic competence by starting
with low-level linguistic elements – morphemes and words, with all their uses
and meanings – and by creating language structures that interact with various
knowledge structures present in the mind. This is how we form the complex
mental structures recognized as intelligence. No linguistic competence or intel-
ligence would be possible if we had to create our language structures starting
with ready-made sentences and ideas, or if we treated them as independent
structures. Similarly, software expertise can be attained only by starting with
low-level software elements, and by treating the software structures that we
create with our programs, not as independent structures, but as part of the
complex structures that make up our affairs. And this is precisely what the
software elites are preventing us from doing.

We are exploited through software because of the belief that it is possible to
benefit from software without having to develop software expertise. We
understand why we could not benefit from language without having linguistic
competence, but we fail to see this for software. When we trust the elites and
get to create and use software in the manner dictated by them, we end up
with a combination of several weaknesses: programming incompetence;
failure to solve our problems with software, because of the inadequacy of
our applications; a growing preoccupation with spurious, software-related
problems; and a perpetual dependence on the elites for solutions to both
the real and the spurious problems – a dependence that is futile in any case,
because only we, with our minds, can hope to accomplish those tasks that
require complex knowledge. It is not difficult for the elites, then, to exploit us.

The Lure of Software Expedients

The Lure of Software Expedients
1 1
Software domination is based on a simple stratagem: consuming people’s time.
Forcing us to waste our time is the simplest way to keep us ignorant, since, if
we spend this time with worthless activities, we cannot use it to improve our
minds. The software elites strive to keep us ignorant because only if ignorant
can normal people be turned into bureaucrats, into automatons.

Our time, in the end, is all we have, our only asset. Whether we count the
hours available in a day or the years that constitute a life, our time is limited.
What we do with our time, hour by hour, determines what we make of our

the lure of software expedients 419chapter 6

lives. We can squander this time on unimportant pursuits, or use it to expand
as much as we can our knowledge and skills. In the one case we will accomplish
whatever can be done with limited knowledge, and we will probably live a dull
life; in the other case we will make the most of our minds, and we have a good
chance to live a rich life and to make a contribution to society.

It is not too much to say that, as individuals living in a free society, we are,
each one of us, responsible for a human life – our own – and we have an
obligation to make the most of it. Like freedom itself, realizing our human
potential is a right we all have; but, just like freedom, this right is also a duty, in
that we are all responsible for its preservation by defending it against those who
want to destroy it. Specifically, we must strive to expand our minds despite the
attempts made by an elite to keep us ignorant. Only thus, only when each
individual and each mind counts, can the idea of freedom survive.

Conversely, preventing an individual from realizing his or her potential,
from making the most of his or her mind, amounts in effect to an attempt to
destroy a life; so it must be considered a crime nearly as odious as murder. Seen
from this perspective, our software elites could be described as criminal
organizations, since forcing us to squander our time is one of the principles of
their ideology.

The software elites consume our time by creating an environment where our
activities are far below our natural mental capabilities. When we depend on
their concepts and devices, we end up spending most of our time acquiring
isolated bits of knowledge, or solving isolated problems. Being simple and
mechanistic, these activities do not allow us to create complex knowledge
structures in our minds – the kind of knowledge that constitutes skills and
experience. We can recognize this in that our capabilities do not progress on a
scale from novice to expert, as they do in the traditional fields of knowledge.
(Thus, no matter how many of these problems we solve, the next one will
demand about as much time and effort.) In any case, mechanistic concepts
cannot help us to solve our complex problems; so we are wasting our time both
when acquiring the mechanistic knowledge and when using it.

Without exception, the software devices are presented as simple, easy to use,
requiring little knowledge, and demanding an investment of just a few minutes,
or perhaps a few hours. It is a sign of our collective naivety that, in a world
which is becoming more complex by the day, we believe in the existence of
some devices that can provide immediate answers to our problems, and that
this power is ours to enjoy just for the trouble of learning how to operate them.
This childish belief can be understood only by recognizing it as the software
variant of our eternal craving for salvation: the performance of some simple
acts, we think, will invoke the assistance of fabulous powers. This is the same
belief that permitted so many other elites to exploit us in the past.

420 a new form of domination chapter 6

Many of these devices are indeed simple, just as their promoters claim. But
they are simple precisely because they are generally useless, because they
cannot solve our complex problems. As we saw, they are based on the delusion
that complex structures – our problems, and the knowledge required to solve
them – can be broken down into simple structures, and hence replaced with
mechanistic expedients like software devices. The mechanistic knowledge
required to use the software, together with the mechanistic capabilities of the
software itself, is believed to provide a practical substitute for the complex
knowledge required to solve the problems. But no combination of simple
structures can replace a complex knowledge structure, because this kind of
knowledge can develop only in a mind, and only after much learning and
practice.

�

When we trust the software elites, we are exploited more severely and in more
ways than we think. For, the waste of time and the prevention of knowledge
reinforce each other, impoverishing our lives and degrading our minds to the
point where we can no longer understand what is happening to us. This is an
important point, and we must dwell on it.

We saw that the promise of immediate solutions to our problems tempts
us to depend on mechanistic software expedients – ready-made pieces of
software, or software tools and aids. Complex knowledge becomes both
unnecessary and impossible, as all we need to do is select and combine
various operations within the range of alternatives permitted by a device. We
agree to depend on mechanistic expedients because we believe this is the
most effective way to accomplish a given task, when in fact most tasks require
non-mechanistic knowledge.

But it is important to note that there is a second process at work here: if we
spend our time engaged in activities requiring only mechanistic thinking, we
lose the opportunity to develop complex, non-mechanistic knowledge. We have
the capacity for non-mechanistic knowledge, but we will not take the time to
develop it as long as we believe that the simpler, mechanistic knowledge
suffices. So our knowledge remains at mechanistic levels, and we continue to
depend on the mechanistic expedients, even though they are inferior to our
own capabilities.

What distinguishes human minds from devices is the capacity to develop
complex knowledge. But, as we saw in chapter 2, the only way to attain
complex knowledge is through personal experience: by engaging in activities
that require that knowledge, by being exposed repeatedly to the complex
phenomena that embody it. Thus, in some domains we need many years of

the lure of software expedients 421chapter 6

learning and practice to attain the knowledge levels recognized as expertise.
Mechanistic knowledge, on the other hand, can be acquired fairly quickly. (See
pp. 155–157.)

The promise of mechanistic solutions to complex problems is, then, a
trap. When inexperienced, and hence limited to mechanistic knowledge, the
mechanistic expedients do indeed exceed our skills. It is only later, when we
develop non-mechanistic knowledge, that we will outperform them. But we
will never reach that level if we get to depend on mechanistic expedients from
the start, because this very dependence deprives us of the opportunity to
develop non-mechanistic knowledge.

This degradation – restricting us to mechanistic thinking, to a fraction of
our mental capabilities – is the goal of the software elites when tempting us
with mechanistic expedients. The prevention of non-mechanistic knowledge
is a critical element in their plan of domination, because they must ensure that
we remain inferior to their devices, and hence dependent on them.

We can choose only one of the two alternatives: either pursue activities
demanding mechanistic knowledge (because they are easy and immediately
accessible), or take the time to develop non-mechanistic knowledge. Mecha-
nistic knowledge (following rules and methods, operating a software device)
we can quickly acquire at any time, while non-mechanistic knowledge (the
experience to perform complex tasks, the creativity to solve important prob-
lems) requires many years of learning and practice.

The software elites encourage us to choose the first alternative. This choice
brings immediate rewards and is hard to resist, but it restricts us forever to
mechanistic thinking. To prefer the second alternative, we must appreciate the
potential of our minds. This choice amounts, in effect, to an investment in
ourselves: we decide to forgo some easy and immediate benefits, and, instead,
take the time to develop our minds. But we can make this choice only if
we already have an appreciation of non-mechanistic knowledge, only if we
realize how much more we can accomplish later, when we attain this type of
knowledge. And we can develop this appreciation only if, when young or when
novices in a particular field, we note around us both mechanistic and non-
mechanistic knowledge, and learn to respect those who possess the latter –
because their skills exceed ours by far.

The software elites, however, are creating a culture that fosters mechanistic
thinking – a culture where non-mechanistic capabilities offer no benefits, as
we are all expected to stay at about the same skill level. More and more, in
one occupation after another, the only thing we have to know is how to
use a software system. The notions of expertise, creativity, professionalism,
and responsibility are being degraded to mean simply the skill of following
methods and operating devices. As we depend increasingly on mechanistic

422 a new form of domination chapter 6

knowledge alone, non-mechanistic knowledge is becoming redundant: we
have fewer and fewer opportunities to either develop it or use it.

By creating a culture where all we need is mechanistic knowledge, the elites
make it impossible for us to discover the superiority of non-mechanistic
knowledge. We are trapped in a vicious circle: we start by being inexperienced
and hence limited to mechanistic knowledge; at this point our performance is
inferior to their devices, so the elites easily persuade us that the only way
to improve is by using devices; as we get to depend on devices, the only
knowledge we acquire is the mechanistic knowledge required to operate them;
so our skills remain below the level of devices, and we believe that we must
continue to depend on them. The only way to escape from this trap is by
developing non-mechanistic knowledge, and thus becoming superior to the
devices. But this takes time, and time is precisely what we do not have if we
squander it on a preoccupation with devices. As long as we trust the elites,
therefore, we are condemned to using only the mechanistic capabilities of our
minds; we are condemned, in other words, to staying at novice levels forever.

Let me put this differently. To control our life, the software elites must
induce a state of permanent ignorance and dependence. And they achieve this
by persuading us to trust their mechanistic expedients – concepts, theories,
methods, devices – while these expedients can rarely solve our real problems.
Consuming our time by keeping us preoccupied with their expedients is a
critical factor in the process of domination, because the elites must prevent
us from using this time to develop our minds. And promoting worthless
expedients is an integral part of this process: they wouldn’t give us useful ones
even if they could. Only expedients that do not work can be employed to
consume our time; only by not solving our problems can they add to our
spurious, software-related preoccupations. No domination would be possible
if we were asked to depend on the elites only in those few situations where
their expedients are indeed superior to our minds (that is, where a complex
phenomenon can be usefully approximated with simple structures).

Promoting mechanistic expedients, thus, ensures our continued dependence
in two ways at once: by restricting our knowledge and skills to levels even lower
than those attained by the expedients, and by consuming our time with the
endless preoccupations generated by the expedients.

2

2
It may be useful to recall our software preoccupations, although we are already
spending so much time with them that they are well known. Installing new
software, seeking technical support, downloading updates, studying lists of

the lure of software expedients 423chapter 6

“frequently asked questions,” checking the latest notes on a website, reading
computer magazines, discovering “undocumented features,” running virus
protection utilities, printing online manuals, trying to get different pieces of
software to work together – these are some of the activities we must perform
when involved with software. But these are only the incidentals. We must also
include the time required to learn to use the software (the features and options
we have to assimilate, how to specify and combine them, keeping up with
changes from one version to the next), and the time we take to actually use it,
once we get to depend on it.

These activities require almost exclusively mechanistic knowledge: they
consist of isolated and fairly simple tasks, which cannot help us to develop an
important body of knowledge or skills. We note this in that almost everyone,
regardless of age or experience, has to deal with the same kind of problems; and
almost everyone manages to solve them. We also note it in that, no matter how
many of these problems we faced in the past, we will still face similar ones in
the future. In other words, the proportion of time we must devote to software-
related problems does not decrease significantly with experience.

Anyone who encountered software-related problems is familiar with the
feeling of satisfaction experienced when finally uncovering the answer. The
answer is usually a simple fact; for instance, learning that we must select one
option rather than another in a particular situation. But instead of being
outraged that we had to spend time with an activity so simple that we could
have performed it as children, we perceive it as an essential aspect of our work,
so we believe that we have learned something important. Although we don’t
think of this activity as a form of amusement, we experience the satisfaction
of solving a puzzle. And even if it is true that we must now spend a great
part of our time solving puzzles instead of addressing real problems, it is
significant that these are trivial puzzles, demanding only a fraction of our
mental capabilities. Clearly, there is no limit to the number of software-related
puzzles that we can find, and hence the time we must take to deal with them,
if we agree to depend on concepts and products that cannot solve our real
problems to begin with.

�

Any activity, method, or tool entails some incidental preoccupations, so we
cannot expect to benefit from software without investing some time; and we
may even have to spend part of this time dealing with trivial issues. Thus, what
I am trying to show here is not that our collective preoccupation with software
is too great relative to the benefits we derive from it. Such deficiency we could
attribute to the novelty of software and to our inexperience. We could then

424 a new form of domination chapter 6

conclude that this condition is transient, and that we will eventually become as
able in our software pursuits as human beings can be – just as we have become
in other domains.

What I am trying to show, rather, is that this interpretation is wrong, that
our incompetence is getting worse not better, that our software preoccupations
do not reflect a natural process of intellectual evolution. On the contrary:
the incompetence is deliberately fostered by the software elites as part of a
monstrous plan of domination founded on our mechanistic delusions, and
made possible by our growing dependence on computers – a plan whose goal
is to degrade the mind of every human being on earth.

Our continued ignorance in software-related matters – programming,
in particular – is essential in this plan of domination, because software
knowledge, like linguistic knowledge, is related to all other types of knowledge.
Software ignorance and dependence, thus, are only the means to bring about
total ignorance and dependence. It is in order to induce this collective igno-
rance and dependence that the software elites are exploiting our mechanistic
delusions, and the consequent software delusions. For, as long as we believe
that knowledge and skills can be replaced with mechanistic concepts, we will
inevitably conclude that we must depend on organizations that produce
devices based on these concepts – just as we depend on organizations that
produce appliances, detergents, or electricity.

In reality, to succeed in software-related activities – programming, in
particular – we need skills. And, like other skills, these new skills depend on our
own capabilities and experience. Also like other skills, they demand the full
capacity of the mind, and, to attain expertise, many years of learning and
practice.

The software elites are promoting the notion of knowledge substitutes
precisely because these substitutes are worthless. It is precisely because they
cannot replace skills, and hence fail to solve our problems, that we constantly
need new ones and spend so much time with them. By consuming our time
with the petty preoccupations generated by these substitutes, the elites are
preventing us from developing skills, thus ensuring our continued incompe-
tence and dependence.

Were we permitted, as society, to develop software skills as we develop skills
in other domains – were we permitted, in other words, to attain the highest
level that human minds can attain in software-related matters – the issues of
incompetence and waste of time would not even arise. We would then be, quite
simply, as good in these new skills as we can possibly be; and we would take as
much time with our software preoccupations as is justifiable. This is how we
progressed in other domains, and there is no reason to view software and
programming differently. It is unlikely that we have already reached the highest

the lure of software expedients 425chapter 6

level, or that we are advancing in that direction, since we are using now mostly
mechanistic knowledge; in other domains, it is our non-mechanistic capabilities
that we use when we attain expertise. The software elites can persuade us to
prefer their mechanistic substitutes to our own minds only because, as society,
we have no idea how good we can actually be in software-related matters: we
never had the opportunity to find out.

All skills – whether easy or difficult, acquired early in life or later – entail
the same mental processes. Interpreting visual sensations, recognizing social
contexts, diagnosing diseases, playing musical instruments, flying airplanes,
repairing appliances, teaching children, managing warehouses – we can
acquire almost any skill, but the only way to acquire it is by performing the
activities involved in that skill, and by allowing our mind to discover the
complex knowledge structures which constitute that skill. For no other skills
can we find an elite that prevents us from using the full capacity of our mind,
or forces us to use methods and devices instead of expanding our knowledge,
or redefines expertise to mean expertise in the use of substitutes for expertise.
From all the skills we can acquire, only those associated with software and
programming seem to have engendered such notions, and the reason is
simple: these skills are more complex than the others, and hence misunder-
stood. They are so complex, in fact, that they permit us to use our mind and
view the world in entirely new ways. They are comparable in scope only to
our linguistic skills.

So it is the complexity itself that allows charlatans to deceive us. We became
infatuated with software too quickly, without taking the time to appreciate the
true meaning and the implications of software knowledge. We still do not
understand what can happen when a society depends on software while
software is controlled by an authority. This is why we continue to accept the
absurd notions promoted by the software elites; in particular, the notion that
we must depend, in all software-related affairs, on systems produced by
software companies. It is precisely because software knowledge is so difficult
that we are tempted by theories which tell us that we can enjoy the benefits of
software without taking the time to develop software knowledge.

3

3
Our preoccupation with ease of use deserves a brief analysis. Software –
applications, development systems, utilities – is always promoted with the
claim that it is easy to use. I want to show, however, that the belief in easy-to-
use software is a mechanistic delusion. The notion “easy to use” is, strictly
speaking, meaningless.

426 a new form of domination chapter 6

Like any tool or device, a piece of software cannot be any easier to use than
whatever effort is required to accomplish a given task. The only sensible claim,
therefore, is that it is well-designed. A lathe, for example, even if well-designed,
is necessarily more difficult to use than a chisel. And so it is with software: all
we can expect of a particular business application, or a particular development
tool, is that it be well-designed. Once this requirement is fulfilled, the notion
“easy to use” becomes irrelevant: that software will be as easy or as difficult to
use as software can be in a particular situation.

Now, we see the claim “easy to use” for all types of software – for business
and for home, for programmers and for end users. We never see software
described, for example, with the warning that we need much knowledge, or
many months of study and practice, in order to enjoy its features. Thus, as we
are becoming dependent on software in practically everything we do, if all this
software is also easy to use, we reach the absurd conclusion that human beings
will never again have to face a challenging situation.

The delusion of easy-to-use software becomes clearer if we recall the other
quality commonly claimed for software – power. Just as all software devices are
said to be easy to use, they are also said to be powerful. The two qualities are
often claimed together, in fact, as in the famous phrase “powerful yet easy to
use.” By combining the two qualities, the following interpretation presents
itself: we believe that software devices embody a certain power, and we perceive
ease of use as the ease of invoking this power.

The only power that can inhere in a software device is its built-in operations;
that is, higher levels of abstraction for our starting elements. And it is the
higher levels that also make the device easy to use. The power and ease of use
are illusory, however: high starting levels make the device convenient when our
needs match the built-in operations, but awkward or useless otherwise.

We saw this with the language analogy: we have less power when starting
with ready-made sentences; we must start with words if what we want is the
capability to express any conceivable idea. Similarly, if true software power is
the capability of a system to handle any situation, the only way to have this
power is by starting with low-level entities. Like claiming ease of use, therefore,
claiming power for a software device is nonsensical: what is usually described
as power is the exact opposite of software power. Moreover, since ease of use
can be attained only by providing higher starting levels, and hence by reducing
the power of the device, claiming both power and ease of use at the same time
is especially silly.

Putting all this together, it is obvious that the software elites want us to think
of software as an assortment of devices that have the power to solve our
problems, while all we have to do is use them. The only thing left for us to do
from now on is operate software devices; and this we can learn in a matter of

the lure of software expedients 427chapter 6

hours. This notion is absurd, as we just saw, but we enthusiastically accept it.
The elites are plainly telling us that we will no longer have the opportunity to
use the full capacity of our minds, that our sole responsibility will be to
perform tasks so simple that anyone can learn to perform them in a short time.
But instead of being outraged, we welcome this demotion; and, to rationalize
it, we interpret our diminished responsibility as a new kind of expertise.

�

The elites also claim that software devices will enhance our creativity, by taking
over the dull, routine activities. With higher starting levels, the elites tell us, we
can reach the top element of a given structure much sooner. Why waste our
time and talents with the details of the low levels, when the functions built
into these devices already include all the combinations of low-level elements
that we are likely to need? When starting from low levels we squander our
superior mental capabilities on trivial and repetitive tasks; let the computer
perform this tedious work for us, so that we have more time for those tasks
demanding creativity. Just as successful managers and generals deal only with
the important decisions and leave the details to their subordinates, we should
restrict ourselves to high-level software entities and leave the details to the
computer.

It is easy to show the absurdity of these claims. We are told to give up the
details, and to use instead ready-made entities, so that we have more time for
the important work, more time to be creative. But our work is the development
of high-level entities from low-level ones. In one occupation after another, the
software elites are redefining the concept of work to mean the act of combining
the high-level entities provided by their devices. To be creative, however, we
must be able to arrive at any one of the possible alternatives; and this we can do
only by starting with low-level entities. Moreover, we are offered software
devices in all fields of knowledge, so we cannot even hope that the time we
perhaps save in one type of work will permit us to be more creative in another.

Returning to the language analogy, if a writer used ready-made sentences
instead of creating new ones, starting with words, we would study his work
and recognize that he is not being more but less creative. Clearly, fewer ideas
can be expressed by selecting and combining ready-made sentences than
by creating our own, starting with words. And this is true for all types
of knowledge: the higher the level we start with, the greater the effect of
reification and abstraction, and the fewer the alternatives for the top element.
So it is absurd to claim that we can be more creative by avoiding the low levels,
seeing that it is precisely the low levels that make creativity possible.

Managers and generals who make good decisions only appear to start from

428 a new form of domination chapter 6

high levels. In reality, their decisions involve knowledge structures that interact
at low levels, at the level of details. But this is largely intuitive knowledge, so
all we can observe is the top element of the complex structure; that is, the
final decision. (See “Tacit Knowledge” in chapter 2.) They developed their
knowledge over many years, by dealing with all structures and all levels, low
and high. This is the essence of personal experience. Were their knowledge
limited to the high levels, to those selections and combinations that can be
observed, then anyone could quickly become a successful manager or general
– simply by learning to select and combine some high-level concepts.

This delusion is also the basis of the software devices known as expert
systems – one of the sillier ideas in artificial intelligence. Expert systems claim
that it is possible to capture, in a specially structured database, the knowledge
possessed by a human expert in a given domain. The database consists of
answers that the expert provides to certain questions – questions formulated so
as to simulate various decision-making situations. Then, for a real problem,
simply by interrogating the system, anyone should be able to make the same
decisions that the expert would make. The fact that such devices are being
considered at all demonstrates the degradation in the notions of expertise and
responsibility that we have already suffered. As we saw in “Tacit Knowledge,”
expertise is the level where a person does not have to rely on rules, methods,
and databases of facts (see pp. 157–158). Thus, the device can capture only the
mechanistic aspects of the expert’s knowledge; and consequently, a person
using it will not emulate an expert but a novice.

Another claim we see is that software devices enhance our creativity by
giving us new forms of expression. And this claim, too, is empty. Software does
indeed allow us to express ourselves and to view the world in new ways, as does
language. But, as in the case of language, we can only enjoy this quality if we
develop our structures starting with low-level entities. For, only then can we
discover all possible interactions between the software structures, between
software structures and the other structures that exist in the world, and
between software structures and the knowledge structures present in our
minds. If we get to depend on software devices, and hence on high-level
software entities, we will not only fail to develop all possible alternatives in the
new, software-related matters, but we will lose alternatives in the knowledge
and skills that we had in the past. In the end, we will have fewer alternatives
than before, fewer ways to express ourselves. Thus, far from enhancing our
creativity, software devices are in fact degrading our minds, by forcing us
to spend more and more time with activities requiring largely mechanistic
knowledge.

�

the lure of software expedients 429chapter 6

Power and ease of use, thus, are specious qualities. The elites tell us that
software devices can have these qualities because they want to replace our
traditional conception of expertise with a dependence on these devices. They
want us to believe that all the knowledge that matters inheres now in software
devices, so all we have to know is how to operate them. The implicit promise
is that, thanks to these devices, we don’t need to know anything that we don’t
already know – or, at least, anything that we cannot learn in a short time.

So the elites are downgrading our conception of expertise by reducing to a
minimum the range from novice to expert. If all we have to know is how to
operate software devices, the difference between novice and expert is just the
time taken to acquire this knowledge. Where we thought that one needs many
years of study and practice to attain expertise in a difficult field, we are told that
this type of knowledge is obsolete. The propaganda makes it seem modern,
sophisticated, and glamorous to perform a task by operating a software
device, and unprofessional or old-fashioned to perform it by using our minds.
Consequently, we are according more importance to our methods and tools
than we do to the results of our work. Increasingly, we are judging a person’s
knowledge and skills by his acquaintance with software devices, instead of his
actual capabilities and accomplishments. Increasingly, it doesn’t even matter
what the results are, as the main criterion for assessing a professional activity
is whether the person is using the latest software devices.

4

4
Recall the pseudosciences we studied in chapter 3. I stated there that our
software delusions belong to the same tradition, that they are a consequence of
the same mechanistic culture. With our software theories we are committing
the same fallacies as the scientists who pursue mechanistic theories in psychol-
ogy, sociology, or linguistics. When we waste our time with the spurious
problems generated by our mechanistic software concepts, we are like the
scientists who waste their time studying the mechanistic phenomena created
by reifying human phenomena. Just as those scientists cannot explain the
complex phenomena of mind and society by explaining separately the simple,
mechanistic phenomena, we cannot solve our complex social or business
problems by solving the simple, software-related problems.

These mechanistic delusions I have called the new pseudosciences, and
we saw that they are similar to the traditional pseudosciences – astrology,
alchemy, and the rest. They are similar in that they too are systems of belief
masquerading as scientific theories, and they too are based on hypotheses that
are taken as unquestionable truth. In the case of the new pseudosciences, the

430 a new form of domination chapter 6

hypothesis is that mechanism can provide useful explanations for complex
phenomena – for phenomena involving human minds and societies, in par-
ticular. The mechanists are, in effect, today’s astrologers and alchemists:
respected thinkers who attract many followers, even though their theories do
not work.

Before we had software, it was only in the academic world that one could
spend years and decades pursuing a mechanistic fantasy. One could hardly
afford to fall prey to mechanistic delusions in business, for instance. But
through software, the ignorance and corruption engendered by mechanistic
thinking is increasingly affecting the entire society: corporations, govern-
ments, individuals. Through software, we are all asked now to accept fantastic
mechanistic theories – theories that promise to solve our problems with
practically no effort on our part. Through software, the entire society is
returning to the irrationality of the Dark Ages: we are increasingly guided by
dogmas instead of logic, by beliefs instead of reason.

When we believe that a software device can replace knowledge, skills,
and experience, we are committing the same mistake as the scientists who
believe that mechanistic theories can explain human intelligence and social
phenomena. So if all of us now, not just the academics, are wasting our time
with pseudoscientific theories, we must ask ourselves: Can we afford this
corruption? Can our civilization survive if all of us engage in futile mechanistic
pursuits? When mechanistic theories fail in the academic world, the harm is
limited to a waste of resources, and perhaps a lost opportunity to improve our
knowledge through better theories. But what price will we pay if we create a
society where all theories fail?

As we are modifying our values and expectations to fit the mechanistic
software ideology, we are adopting, in effect, mechanistic theories – theories
on our capabilities as human beings, or on our responsibilities as professionals.
And since these software-based theories suffer from the same fallacies as the
traditional mechanistic theories, they too must fail. But what does it mean for
these theories to fail? Since what they claim is that we can accomplish more by
depending on software devices than by developing our minds, a failure of these
theories means that we are making a wrong decision about ourselves: we
mistakenly assume that our minds can be no better than some mechanistic
expedients. Thus, when we decide to leave our non-mechanistic capabilities
undeveloped and to depend instead on mechanistic expedients, we are causing,
quite literally, a reversal in our intellectual evolution: we are choosing to
degrade our conception of intelligence to a mechanistic level, and to create a
world where there is no need or opportunity to exceed this level.

Let us interpret the new pseudosciences in another way. The equivalent of a
world where we depend on software while being restricted to mechanistic

the lure of software expedients 431chapter 6

software theories is an imaginary world where the traditional mechanistic
theories – those explaining minds and societies – actually work. Since these
theories fail to explain our real intelligence and behaviour, in the imaginary
world we would have to alter minds and societies to fit the theories. To comply
with the linguistic theory of universal grammar, for example, we would restrict
our sentences, and the associated thoughts, to what can be depicted with exact
diagrams and formulas; similarly, to comply with behaviourism or cognitive
science, we would restrict our behaviour and mental acts to patterns that can
be precisely explained and predicted; and to comply with the theories of
structuralism or the social sciences, we would restrict our institutions, customs,
and cultures to activities that can be described mathematically.

These theories reflect the diminished view that mechanists have of human
beings – the view that our acts can be explained with precision, because our
capabilities are like those of complicated machines. The scientists who invent
and promote mechanistic theories wish them to work, of course. But the
theories can work only if we are indeed like machines, so we must conclude
that these scientists want us to be like machines. And if we, the subjects of these
theories, also wanted them to work – if we agreed, as it were, to satisfy the wish
of their authors – we would have to restrict our capabilities to what these
theories can explain and predict. In other words, we would have to mutate into
automatons.

What has saved us from this fate so far is not wisdom – for, if we had that
wisdom we would have abandoned the mechanistic ideology already – but
the fact that none of these scientists had the power to make us conform to
their theories. Through software, however, it has finally become possible for
the mechanists to realize their dream: a world where human beings can be
designed and controlled as successfully as we design and control machines.
The world that we can only imagine through the traditional mechanistic
theories, we are actually creating through our mechanistic software theories.
Whereas we can still think, learn, speak, and behave while ignoring the
mechanistic theories of mind and society, we are forced to create and use
software according to mechanistic theories. But if we are to depend on software
in all aspects of our life – including those aspects studied by the theories of
mind and society – then by following mechanistic software theories we are, in
effect, mutating into the automatons that the mechanists wish us to be.

Remember, though, that it is not software dependence in itself that is
harmful. On the contrary, if we were permitted to use it freely, as we use
language, software would enhance our mental capabilities, as does language.
The danger lies in the dependence on software while software knowledge is
restricted to its mechanistic aspects – a policy intended to prevent us from
using the full capacity of our minds.

432 a new form of domination chapter 6

�

The decision we are making now is more than a choice; it is a commitment. As
individuals and as society, we are making a commitment; namely, to invest in
software expedients rather than our minds.

As individuals, we reaffirm this commitment when we consent to depend
on software devices that are inferior to our own minds; when we spend
time solving a specious, software-related problem, instead of expanding our
knowledge to deal with the real problem; and when we degrade our conception
of professionalism and responsibility, from the utmost that human beings can
do, to merely knowing how to use software devices. As society, we reaffirm this
commitment when our corporations and governments, instead of encouraging
their workers to develop expertise, spend vast amounts of money on projects
that increase their dependence on the software elites.

As individuals, if we are wrong, our knowledge in, say, ten years will not be
much greater than what it is at present. We will waste that time acquiring
worthless bits of knowledge; specifically, knowledge of ways to avoid the need
for real knowledge. If we make this choice, of course, we will be unable to
recognize our own ignorance in ten years; so for the following ten years we will
make the same choice, and so on, and we will remain for the rest of our lives at
the present level. As society, if we are wrong, within a few decades we will be
where we were centuries ago: in a new dark age, ruled by elites that know how
to exploit our ignorance and irrationality.

The decision we are making now is a commitment because we cannot
choose both alternatives. If software mechanism is our decision, we will need
only mechanistic capabilities; so we will leave our superior, non-mechanistic
capabilities undeveloped. If we are wrong, we cannot reverse this decision later:
if we choose the mechanistic alternative, in any domain, we will not practise;
and practising is the only way to develop non-mechanistic knowledge. If we
lose our appreciation of non-mechanistic knowledge, we will forget, in one
occupation after another, that we are capable of more than just following
methods and operating software devices.

This is precisely what has happened in the domain of programming. The
superior alternative – personal knowledge and skills – is always available, in
principle: any programmer, any manager, any company, could choose to ignore
the official software ideology and treat programming as we do the other
professions. Yet, despite the evidence that programming aids and substitutes
are inferior to human expertise, we continue to trust the software elites and
their mechanistic theories. In the domain of programming, we have already
lost our appreciation of non-mechanistic knowledge.

the lure of software expedients 433chapter 6

Software Charlatanism Software Charlatanism
Software exploitation, we saw, plays on our mechanistic delusions; namely, on
the belief that problems requiring complex knowledge can be broken down
into simpler problems, which can then be solved mechanistically. When the
software charlatans tempt us with the promise of easy answers to difficult
problems – answers in the form of software devices – what they do is tempt us
to commit the mechanistic fallacies, reification and abstraction. For, only if we
commit these fallacies will we believe that software devices can be a substitute
for the complex, non-mechanistic knowledge required to solve those problems.

In the present section, we will examine how the mechanistic delusions
manifest themselves in various software-related activities; that is, how the two
mechanistic fallacies lead to software delusions, and how these delusions are
being exploited by the software elites.

The Delusion of High Levels

The Delusion of High Levels
1 1
We are deceived by the mechanistic software theories because we like their
promise. The promise, essentially, is that methods and devices simple enough
to be used by almost anyone can be a substitute for programming expertise.
And we believe this promise because we fail to see that to accept it means to
commit the two mechanistic fallacies, reification and abstraction.

The software theories appear to make programming easier because they
treat applications, or the activities involved in creating applications, as separa-
ble into independent aspects. Each aspect of an application is one of its
processes, one of the structures that make it up. Thus, each subroutine together
with its uses, each database field or memory variable together with the
associated operations, each business rule or programming method, can be seen
as a simple structure. But these structures are not independent. Although in
our imagination we can separate them, in reality they share their elements (the
software entities that make up the application), so they interact. (See “Software
Structures” in chapter 4.)

The software theories invite us to reify programming and applications
because, once we have independent structures, they can tempt us to start from
higher levels of abstraction within each structure. By the time we commit
both fallacies, the concept of programming, and the resulting software, are

434 software charlatanism chapter 6

impoverished: many of the functions we could implement before are no longer
possible.

All software theories, then, make the same claim: the task of programming
can be simplified by starting the development process from higher-level
software elements; and we can accomplish this by allowing various expedients –
methodologies, software tools, built-in operations – to act as substitutes for the
knowledge, experience, and work necessary for creating the lower levels. But
this would be possible only if applications consisted of independent structures.

�

To demonstrate the fallacy of high starting levels, let us analyze a specific
situation. A common requirement, found in most business applications, is to
access individual fields in database files. The application’s user may need to see
the phone number or the outstanding balance of a customer, or the quantity in
stock of a certain part; or he may need to modify the address of a customer, or
the description of a part. These operations may involve several files; for
example, a customer is displayed together with its outstanding invoices, or a
part together with its sales history. Typically, the user specifies some values to
identify the records: customer number, invoice number, range of dates, etc. The
program displays certain fields from those records, and the user may modify
some of them. These can be isolated fields, but most often they are groups of
fields logically associated with specific functions: inventory control, financial
information, shipping activity, etc. If we also include such options as adding
new records and deleting existing ones, we may refer to this category of
operations as file maintenance operations.

Now, file maintenance operations constitute fairly simple programming
tasks. Moreover, much of this programming is very similar in all applications.
So it is tempting to conclude that we can replace the programming of file
maintenance operations with a number of high-level software elements –
some built-in procedures, for example. We should then be able to generate any
file maintenance operation by combining these high-level elements, rather
than starting with the individual statements and operations of a traditional
programming language. I want to show, though, that despite the simplicity and
repetitiveness of file maintenance programming, it is impossible to start from
higher-level elements.

The illusion of high levels arises when we perceive software as a combina-
tion of separable structures, or aspects. There are at least two aspects to the file
maintenance operations: database operations and user interface operations.
So, to keep the discussion simple, let us assume that these two aspects are the
only important ones. If we think of each aspect separately, it is quite easy to

the delusion of high levels 435chapter 6

imagine the higher levels within each structure, and to conclude that we can
start from higher levels. We may decide, for example, that most database
operations can be generated by starting with some built-in procedures that let
us access specific records and fields; and most interface operations, with some
built-in procedures that display individual fields and accept new values. Thus,
by specifying a few parameters (file and field names, index keys, display
coordinates, etc.), we should be able to generate, simply by invoking these
procedures, most combinations of database operations, and most combinations
of interface operations.

We commit the fallacy of abstraction, however, if we believe that the
alternatives possible when starting from higher levels are about the same as
those we had before. The temptation of high levels is so great that we are liable
to perceive our needs as simpler than they actually are, just so that we can
rationalize the reduced flexibility. It takes much experience to anticipate the
consequences of the restriction to high levels. For, it is only later, when the
application proves to be inadequate, when important requirements cannot be
met and even simple details are difficult to implement, that the impoverish-
ment caused by abstraction becomes evident.

But abstraction became possible only through reification – only after
separating the two structures, database and user interface. And reification
causes its own kind of impoverishment. We can indeed view file maintenance
operations from the perspective of either the database or the interface opera-
tions, but only in our imagination. In reality, the file maintenance operations
consist of both the database and the interface operations. Separately, these
operations can indeed be represented as simple structures, because we can
identify most of their elements and relations. But when part of an application,
these operations interact, giving rise to a complex structure. It is this complex
structure that constitutes the real file maintenance operations, not the two
imaginary, reified simple structures.

Reification impoverishes the complex structure by destroying the interac-
tions between its constituent structures. When we lose the interactions, we also
lose many alternatives for the top element of the complex structure. Each
alternative at this level represents a particular file maintenance operation,
which may be required by some application. Certain interactions are still
possible, of course – those that can be generated by combining the high-level,
built-in procedures. The alternatives resulting from these interactions are the
file maintenance operations that can be implemented even after reification
and abstraction. Most interactions, however, take place at low levels, so they
can only be implemented with such means as statements, variables, and
conditions; that is, with programming languages. And these interactions are
no longer possible once we lose the lower levels. The two fallacies, thus,

436 software charlatanism chapter 6

contribute together to the impoverishment of the complex structure that is the
application. They are usually committed together, and it is seldom possible, or
necessary, to analyze them separately.

To appreciate why it is impossible to eliminate the low levels, all we have to
do is think of the details that a programmer faces when implementing a typical
file maintenance operation. Thus, the user may want to see only some of the
fields at first, and then various other fields depending on the values present in
the previous ones; or he may need to scan records, forward or backward, rather
than ask for specific ones; in one application the user may want to see detailed
information, in another only a summary; in one situation some of the fields
may always be modified, in another the fields may be modified only under
certain conditions; in some applications, modifying a field must produce a
change in other fields, and perhaps in other files too; and so on.

Clearly, the number of possible requirements, even for relatively simple
operations like file maintenance, is practically infinite. But the important point
is that this variety, and the details that make up these requirements, entail the
low levels of both the database and the interface operations. To implement
a particular requirement, therefore, we need not only low-level software
elements in both kinds of operations, but elements that can be shared by these
operations; in other words, exactly what abstraction and reification would
prevent us from creating. For example, to display a field depending on the
value of another field, we must formulate conditional statements involving
particular fields and display operations; and to display details from one file
along with the summary of another, we must create a small piece of software
that reads records, accesses fields, performs calculations and comparisons, and
displays values.

Each requirement reflects a particular file maintenance operation; each one
is, therefore, an alternative value for the top element of the complex structure
formed by the interaction of the database and display operations. If we agree
that a programmer must be able to implement any file maintenance operation,
and hence to generate any alternative, it is obvious that he must be able to
create and combine all the low-level elements forming the database operations,
and all the low-level elements forming the display operations (and probably
other low-level elements and operations too). The use of low levels helps us
avoid both fallacies: it lets us generate all the alternatives within each structure,
and the alternatives resulting from the interaction of the two structures.

Since each alternative is unique, no matter how many alternatives we have
already implemented, or are available through built-in procedures, the next
application may still have to be programmed starting with low-level elements.
Only naive and inexperienced practitioners believe that they can have the
versatility of the low levels while being involved only with high levels. In

the delusion of high levels 437chapter 6

reality, the simplicity promised for high-level operations is achieved precisely
by reducing the number of alternatives. It takes the experience of many
applications to recognize, in a given situation, whether we can or cannot give
up the low levels.

2

2
File maintenance was only an example, of course. A major application com-
prises thousands of aspects, most of them more involved than a database or
display operation. Besides, we seldom encounter situations where only two
aspects interact, as in our simplified file maintenance example. Even there, to
discuss realistic situations we had to consider, in addition to the database and
display operations, various business practices. These practices are themselves
aspects of the application, so they add to the number of structures that must
interact. We saw this, for instance, when I mentioned the small piece of
software that accesses records and fields, performs calculations and compari-
sons, and displays values: a small element comprising just a few statements
must be shared, nevertheless, by several processes – database, display, and one
or more business practices – because this is the only way to implement an
operation that involves these processes.

It is hardly necessary, therefore, to demonstrate the need for low levels in
real applications, in situations involving thousands of aspects, after showing
the need for them even in situations with two aspects. Rather, what I want
to show is how the mechanistic fallacies, and the software delusions they
engender, lead to software charlatanism. All forms of software exploitation are
based, ultimately, on the delusion of high levels that we have just examined.

�

The deception starts when we are offered some software that promises to
enhance our capabilities; namely, software that will allow us to accomplish
tasks requiring knowledge that we, in fact, lack. We are promised, in other
words, that simply by operating a software device we will be in the same
position as those whose skills and experience exceed ours. The promise, it must
be emphasized, is not that we will quickly acquire the missing knowledge. On
the contrary, the promise is specifically that we don’t need to learn anything
new: the power to perform those tasks resides in the device itself, so all we need
to know is how to operate it.

As programmers, we are offered various tools, development environments,
and database systems. We are told that these devices will enable us to create,

438 software charlatanism chapter 6

quickly and easily, applications which otherwise would take us a long time to
program, or which are too difficult for us to program at all. The promise,
therefore, is that these devices will function as substitutes for programming
expertise: through them, we will achieve the same results as programmers who
have been developing and maintaining applications successfully for many
years.

As users, we are offered various productivity systems, or office systems. We
are told that these devices will solve our business problems directly, eliminating
the need for programming. Or, we are offered ready-made applications or
pieces of applications, and we are told that they will enable us to manage our
business just as we would with custom applications created specially for us.

For programmers as for users, the promises are supported with the explana-
tion that the software devices offer higher levels of abstraction: they simplify
development by allowing us to start from higher-level elements, bypassing the
difficult and time-consuming task of creating the lower levels. The higher-
level elements appear in a variety of forms, but, essentially, they are built-in
operations or ready-made pieces of software.

No matter what form the higher levels take, the underlying assumption is
the same: the work involved in creating a software application is similar to a
manufacturing project, so the application can be seen as a neat structure of
things within things – parts, modules, subassemblies. Thus, as in manufactur-
ing, the larger the building blocks, the faster we will complete the project. We
should avoid programming, therefore, and start instead with the largest
modules and subassemblies available: software entities that already contain
the lower-level parts. The use of large building blocks benefits us in two
ways: by speeding up the software manufacturing process, and by demanding
lower skills. Less time, less knowledge, and less experience are needed to
assemble a software structure from modules, than to design and build it
from basic components. In the extreme case of ready-made applications, the
manufacturing process is eliminated altogether: the starting level is then the
top element itself, the complete application.

If software exploitation begins with the lure of high levels, the next stage
is, needless to say, the disappointment. As programmers, we still cannot
create complex and reliable applications; as users, we still cannot manage our
affairs as we hoped. The software devices do provide the promised higher
levels, and we can perhaps accomplish some tasks that we could not have
accomplished without them. What we find, rather, is that the higher levels are
rarely beneficial. If we want to start from higher levels, we must give up
the flexibility afforded by the low levels. If we want the benefits of built-in
operations and ready-made modules, of less work and easier challenges,
we must be content with a fraction of the alternatives otherwise possible.

the delusion of high levels 439chapter 6

Unfortunately, only rarely is this practical: only rarely can we restrict our affairs
to the few alternatives provided by the software devices. The greater the
promised benefits, the higher must be the starting levels, and the more severe
the reduction in alternatives. The deception, thus, consists in promoting the
benefits of higher starting levels while masking their concomitant drawbacks.

We adopt these devices and become dependent on them because we are
seduced by slogans like “powerful” and “easy to use.” We fail to see that these
two qualities are contradictory: easy-to-use devices can be powerful only if we
redefine power to mean, not the ability to implement any operations, but the
ability to implement some operations easily. If ease of use is claimed, then,
clearly, we are expected to do little; so all the power must inhere in the
devices themselves, in their built-in capabilities. This means that they may
perform well those operations that are built in, but they cannot perform other
operations at all; and no device can have all conceivable operations built in.

The only way to implement any operations that may be required is by
starting with low-level elements. So the software charlatans must provide the
low levels if we are to use their devices at all. Their challenge, therefore, is how
to reinstate the low levels, and how to make us start from these low levels, while
we continue to believe that we are working at high levels. And they do it by
implementing the low-level features within the high-level environment, as
extensions to the high-level operations.

The low levels were always available to us – in the form of traditional
programming languages, for example. So, if low levels are what we need, there
is nothing the elites can give us that we did not have all along. The theories and
methodologies, the programming tools and fourth-generation languages, the
database and reporting systems, serve in reality the same purpose: they provide
some of the low-level elements we need, and the means to link software
structures, while pretending to be high-level environments.

The third stage in the process of exploitation, then, is the reinstatement of
the low levels. To make their devices useful, the elites must restore the very
concept that the devices were meant to supersede. Any device that does not
provide this functionality is eventually abandoned and forgotten, even by the
naive people who believed the original claims, simply because it is useless. (The
full-fledged CASE environments, which actually tried to materialize the
fantasy of creating entire applications “without writing a single line of code,”
are an example.)

We will waste no time, thus, examining the devices that do not restore the
low levels. Let us treat them simply as fraudulent products, no different from
the other forms of deception employed by charlatans to exploit gullible people
– weight-loss contraptions, back-pain remedies, money-making schemes, and
the like. As explained earlier, it is not the traditional means of exploitation, but

440 software charlatanism chapter 6

the new form of domination, that concerns us: the use of software to consume
our time and prevent us from gaining knowledge and experience. Eliminating
the low levels and then restoring them in a different and more complicated
form is an important factor in this domination, as it permits the elites to
destroy software freedom and to establish the dependence on their devices.
And we are fooled by these charlatans because the devices are based on
software theories invented in universities, and described as “scientific.”

Recall the principles of demarcation between science and pseudoscience,
which we studied in chapter 3. Mechanistic software theories claim that we can
create applications by starting with high-level elements. So, when this idea
proves to be worthless and the charlatans “enhance” their devices by restoring
the low-level capabilities, what they do in reality is turn the falsifications of
those theories into new features. And this, we saw, is the stratagem through
which fallacious theories are rescued from refutation. Thus, mechanistic
software theories are intrinsically pseudoscientific.

Here are examples of software devices that were enhanced by restoring the
low levels: The so-called fourth-generation languages started by promising us
a higher level than the traditional, third-generation languages; but the only way
to make them practical was by restoring the features found in the traditional
languages (loops, conditions, individual variables, etc.). The relational data-
base systems started by claiming that the database can be treated as separate
structures, interacting only at high levels with the other structures of the
application; but they became practical only after adding countless new features,
and whole programming languages, in order to restore the low-level links
between these structures (for instance, the capability to access individual
records directly, through file scanning loops). Systems like report writers and
spreadsheets started by claiming that their high-level features are adequate for
our requirements; but they ended up incorporating many traditional features,
and even programming languages, in order to provide the low-level operations
needed in real-world situations.

To summarize, high-level environments that restore the low levels exploit us
in two ways. First, we get to depend on some new and complicated pro-
gramming methods, arising from the idea of using low-level elements as an
extension to high-level ones. The traditional method – creating high-level
elements from low-level ones – is simple and natural; it follows a concept we
all understand intuitively, and confers complete programming freedom. The
new methods, on the other hand, are contrived – absurd and unnecessary; their
purpose is to maintain the illusion of high levels, and to induce dependence on
proprietary development systems. Second, these systems provide only a few
of the low-level features available through the traditional methods, only
the minimum necessary to fool us. So they remain, essentially, high-level

the delusion of high levels 441chapter 6

environments, lacking the versatility of a general-purpose language. Each low-
level feature is presented as a powerful enhancement, and this obscures the fact
that these features are merely a more complicated version of features we always
had – in the traditional programming languages.

3

3
The charlatans promise us power, but all they can give us is higher levels of
abstraction. So, once they persuade us to adopt their devices, they must restore
the essential low levels, while continuing to promote the devices as high-level
environments. It is precisely because they are designed to deceive us – to
prevent us from noticing that we are working at low levels – that the devices
end up so complicated and inefficient.

The so-called non-procedural languages, for instance, are promoted with
the claim that we only need to tell the computer now what to do, not how to do
it. This sounds like a novel programming concept, as if we could almost talk to
the computer and tell it what we need done. In reality, these languages merely
incorporate a number of high-level elements in the form of built-in operations.
And this concept is available in any programming language in the form of
libraries of subroutines: ready-made functions providing levels of abstraction
that are as high as we want.

But, whether we use subroutines or non-procedural languages, some of
our starting elements must still be at low levels, because it is impossible to
implement all conceivable requirements by relying entirely on ready-made,
high-level elements. The non-procedural languages look impressive when all
we need is one of their built-in operations (these are the examples we see in
textbooks and in advertisements, of course), but are more awkward than a
traditional language in any other situation. This is true because, in order to
make them appear as novel concepts, their authors must make them different
from the traditional programming languages; and this also makes them more
complicated.

It is common in these languages, for example, when what we need is
not just one of the built-in operations, to find long and tangled statements.
A procedure that in a traditional language involves conditions, loops, and the
use of variables, may turn up in a non-procedural language, in an extreme case,
as one statement. But, while being perhaps shorter than the procedure, the
statement is not, in fact, a higher-level entity: since its clauses must be specified
with precision and in detail, they do not constitute a higher level of abstraction.

Thus, in SQL (the most popular database language), we often see statements
containing more than a dozen lines, when a number of related database

442 software charlatanism chapter 6

operations must be specified together. These long statements can become
extremely complicated, as the programmer is forced to cram into one expres-
sion a whole series of related operations. Instead of the familiar structure of
loops and conditions found in traditional languages, and which an experienced
programmer understands intuitively, we have now an artificial and unwieldy
set of specifications. But because the definitions, loops, and conditions are no
longer manifest, this complicated piece of software is unlike a traditional
language, so we can delude ourselves that what we are doing is no longer
programming: “we are only telling the computer what to do, not how to do it.”

What we are telling the computer is, however, the same as before. First, the
level of abstraction is about the same as in a traditional language (this, after all,
is why we needed SQL, why we could not simply use the high-level relational
operations). Second, the resulting statements are still the reflection of many
structures, which interact and must be kept in the mind simultaneously. In
other words, all the difficulties we had before are still there; and because we
wanted to avoid programming, we must now cope with these difficulties
through programming means that are more complicated and less efficient than
the traditional ones. (We will examine the SQL fraud in “The Relational
Database Model” in chapter 7; see pp. 794–801.)

�

Let us look at another concept that promises higher levels and, instead, makes
programming more complicated. This concept is based on the belief that
specifying an operation by selecting it from a list of options, rather than by
typing a command or a statement, represents a higher level of abstraction.
Most development environments have features based on this delusion. Like the
non-procedural languages, creating applications by selecting things from lists
is seen as a novel, high-level concept: all we do now, it seems, is tell the
computer what we need, and it automatically generates pieces of software for
us, even the entire application.

In reality, whether we select options or write statements, our starting
elements must be a combination of high-level operations and low-level ones.
Thus, even when we communicate with the system by selecting built-in
operations, we must create the application’s structures – its unique processes,
or aspects – and the links between structures. For, if this were not the case, if
our contribution were limited to making selections, the only applications we
could create would be random and useless combinations of built-in operations.

With a traditional language, we tell the computer what to do by formulating
statements, definitions, and expressions. With the new concept, we are shown
lists of options, and options within options, and we tell the computer what to

the delusion of high levels 443chapter 6

do by selecting entries from these lists. This creates the illusion that we are not
programming, that all we must know is how to select things. What we must
know, though, is the same as before; only the way we apply this knowledge is
different.

In principle, one can specify anything by selecting options, but only with
trivial requirements is this method more expedient than typing statements.
The devices are promoted, however, for all applications. Clearly, no one
would adopt them if told that they are meant only for novices, or only for
solving simple and isolated problems. Thus, the devices must maintain the
illusion that, no matter how complex the requirements, all we ever do is make
selections; and this is why they end up making programming more difficult.
But if we believe that one can accomplish more with these devices than without
them, we will agree to perform any acts, no matter how illogical, just so that we
can use them.

We encounter this delusion, for instance, in the development environments
called visual, and in those called by example. Thus, the concept query by
example claims to give users the means to perform certain database operations
without programming. The concept sounds as if, instead of formulating
queries, all we had to do now is show the system some examples of what we
need. In reality, since there is no way for a database system to know what we
need without being given precise information, we must provide the same
specifications as before; and, because we wanted to avoid the traditional
method of formulating queries, we end up with a more complicated one.

Thus, to tell the system which records to read, instead of expressing through
a traditional language a condition like “products with price less than 100 and
quantity in stock greater than 10,” we must perform a number of selections: we
select from a list of files “product,” then from a list of fields “price,” then from a
list of relational operators “less,” then the value 100, then three more selections
for “quantity,” “greater,” and 10, and finally, from a list of logical operators,
“and.” Even such trivial acts as the entry of a numeric value like 100 can be
reduced to a process of selections: we have all seen systems where a number is
displayed for us, and we are expected to increment or decrement it with the
mouse until it reaches the desired value. This method takes longer than simply
typing the value, but it is an important part in the delusion of high levels: we
are now only selecting a value, not specifying it.

It ought to be obvious that in order to select the right field, operation, or
value we must know what these notions are, must appreciate the consequences
of each selection and of our particular combination of selections, must
understand the significance of operations like “less” or “and” when applied to
database fields and records, and so on. Also, the query is meaningless as an
isolated function; it is part of an application, so we must be aware at the same

444 software charlatanism chapter 6

time of the application’s other aspects, and of the other uses of those files,
records, and fields. In other words, to select the right things we must deal with
details and with interacting structures, so the new method does not represent
a higher level of abstraction: we must have almost the same programming skills
as when specifying those things with statements.

The knowledge that is no longer required – remembering what operations
are available, for instance, or the correct format of a statement – is the easy part
of programming, the mechanistic knowledge. These devices impress ignorant
practitioners, who lack even this basic knowledge (and are unaware of the
required complex knowledge lying beyond it), and who, therefore, believe that
a substitute for it is all they will ever need in order to create applications.
Experienced programmers refuse to use these devices, not because they cling
to the old methods, as the propaganda tells us, but because they recognize how
insignificant their benefits are.

The devices, thus, introduce elaborate procedures as a substitute for the
simple knowledge involved in programming, but they cannot replace the
difficult, complex knowledge, which can only develop through personal
experience. The immensity of the environment, and the endless novelties that
must be assimilated in order to use it, mask the fact that it is still our own skills,
not the device, that solve the difficult programming problems. In the end, all
the device does is sit between us and our applications, forcing us to express our
requirements in more complicated ways than we would through traditional
programming. Moreover, despite its low-level features, the device still prevents
us from implementing all conceivable alternatives.

4

4
The most flagrant manifestation of software mechanism is the obsession
with ways to avoid programming. Serious programming is indeed a difficult
pursuit, but so are other professions. And it is only in programming that
the main preoccupation of practitioners has become the avoidance of the
knowledge, skills, and activities that define their profession. The ignorance
pervading the world of programming is so great that the obsession with ways to
avoid programming forms its very ideology. The irrationality of this obsession
can be observed in this strange phenomenon: as programmers and managers
are taught that programming must be avoided at all costs, they end up accept-
ing with enthusiasm any theory or system that claims to eliminate the need for
programming, even when this makes application development more difficult.

Were they not blinded by their mechanistic delusions, software practitioners
would easily recognize that the programming aids are only replacing their

the delusion of high levels 445chapter 6

simple, mechanistic activities, and that successful application development
entails non-mechanistic knowledge. One can attain non-mechanistic knowl-
edge only through personal experience. Thus, as long as they are guided by
mechanistic beliefs and seek progress through programming substitutes, the
software practitioners deprive themselves of the opportunity to gain this
experience. They are trapped, therefore, in a vicious circle: the only knowledge
they believe to be required is the mechanistic knowledge they are trying to
replace with devices; consequently, they interpret each disappointment, not as
evidence of the need for additional, non-mechanistic knowledge, but as a
shortcoming of the particular device they are using; so, instead of gaining the
additional knowledge through programming, they merely look for another
device, and repeat the whole process in a slightly different way.

It is worth repeating these facts, because they are perhaps not as obvious as
they appear here. How else can we explain the failure of society to notice the
incompetence of our programmers? Endless justifications are being suggested
to explain why we must disregard, in the case of programmers, notions that we
accept implicitly in any other profession; particularly, the need for personal
experience in the tasks defining the profession. For programmers, we have
redefined the idea of experience to mean experience in using substitutes for
experience.

And so it is how the delusion of software mechanism has given rise to that
famous phrase, “without writing a single line of code.” When referring to a
programming substitute, this phrase is a promise; namely, that the device
will permit us to create applications, or pieces of applications, without any
programming. This promise is seen as the most desirable quality of a software
device, and software companies will do almost anything in order to realize it –
even invent, as we saw previously, devices that make application development
more difficult. What matters is only the claim that we no longer have to “write
code” (write, that is, statements or instructions).

It is not surprising, of course, to see this phrase employed for devices
addressing software users – office workers, managers, amateur developers, and
the like. Since no device can allow someone without programming knowledge
to perform tasks requiring programming, the claim is a fraud. But we can
understand the wish of naive people to have such a device, and consequently
their exploitation by charlatans. What is surprising is to see the same phrase
employed for devices addressing programmers – those individuals whom one
would expect to possess programming expertise (and hence to have no use for
such devices), to be proud of their programming capabilities, and even to enjoy
programming.

The fact that the software charlatans employ the same means of deception
in both cases ought to draw attention to the absurdity of our software culture:

446 software charlatanism chapter 6

individuals whom we all consider professional programmers have in reality
about the same knowledge, ambitions, and expectations as average computer
users; like mere users, their chief preoccupation is to improve, not their
programming skills, but their skills in avoiding programming.

And it is not just the software companies that foster these delusions.
Researchers in universities participate by inventing mechanistic software
theories, the business media by promoting worthless software concepts,
corporations by employing programmers who rely on aids and substitutes,
governments by permitting the software bureaucracy to exploit society, and in
the end, each one of us by accepting this corruption. For, simply by doing
nothing, by continuing to worship the software elites and to depend on
the software bureaucrats, we are in effect supporting them. The cost of the
mechanistic software delusions (probably exceeding one trillion dollars a year
globally) is passed in the end to society, to all of us. So, just by doing nothing,
we are in effect paying them, each one of us, thousands of dollars every year,
and helping them in this way to increase their domination.

5

5
In chapter 4 we discussed Jonathan Swift’s criticism of the mechanistic ideology
that was sweeping the scientific world at the end of the seventeenth century; in
particular, his attack on the mechanistic language theories (see pp. 315–316).
The idea that there is a one-to-one correspondence between language and
knowledge, and the idea that languages can be studied, designed, and improved
as we do machines, were seen in Swift’s time as a foregone conclusion, and
were defended by pointing to the successes of mechanism in the natural
sciences. Thus, even though the mechanistic theories of language were mere
speculations, most scientists were taking them seriously. To ridicule these
beliefs, Swift has his hero, Gulliver, describe to us the language machine
invented by a professor at the Grand Academy of Lagado.É

The machine is a mechanical device that contains all the words of the
English language, and their inflections. By manipulating a number of cranks,
the operator can instruct the machine to generate random combinations of
words. And by selecting those combinations that constitute valid phrases and
sentences, the professor explains, any person intelligent enough to operate the
machine – intelligent enough, that is, to turn the cranks – can produce any text
in a particular field of knowledge. Thus, a person with no knowledge of

É Jonathan Swift, Gulliver’s Travels and Other Writings (New York: Bantam Books, 1981),
pp. 180–183.

the delusion of high levels 447chapter 6

philosophy, or history, or law, or mathematics, can now write entire books on
these subjects simply by operating the machine.

The professor emphasizes that his invention is not meant to help a person
acquire new knowledge, but on the contrary, to enable “the most ignorant
person” to write in any field “without the least assistance from genius or
study.”Ê The machine, thus, will allow an ignorant person to generate any
text without having to know anything he does not already know. And this
is possible because the person will generate the text (as we say today in
programming) “without writing a single line.”

Now, one could certainly build such a machine, even with the mechanical
means available in the seventeenth century. Swift is not mocking the technical
aspects of the project, but the belief that the difficulty of developing ideas is the
mechanical difficulty of combining words. If we hold this belief, we will
inevitably conclude that a machine that helps us to manipulate words will
permit us to perform the same tasks as individuals who possess knowledge,
talent, and experience.

It is obvious that the quality of the discourse generated by a language
machine depends entirely on the knowledge of the operator. The machine can
indeed produce any text and any ideas, but only by randomly generating all
possible combinations of words. So, in the end, it is still the human operator
that must decide which combinations constitute intelligent sentences and
ideas. Although it appears that the machine is doing all the work and the
person is merely operating it, in reality the machine is replacing only the
mechanical aspects of language and creativity.

Thus, a person using the machine will not accomplish anything that he
could not accomplish on his own, simply by writing. Now, however, since he is
only selecting things, it can be said that he is generating ideas “without writing
a single line.” Whatever the level of intelligence of a person, it is in fact more
difficult to generate a piece of text by operating this machine than by directly
writing the text. But if we believe that it is the mechanical acts involved
in writing that make writing difficult, or if we have to employ as writers
individuals known to be incapable of writing, we might just decide that
language machines make sense.

Returning to our software delusions, we indeed believe that the difficulty of
programming lies in its mechanical aspects, in combining pieces of software;
and, what is worse, we indeed have to employ as programmers individuals
known to be incapable of programming. So we have decided that programming
machines make sense.

The similarity between Swift’s hypothetical language aid and our real

Ê Ibid., p. 181.

448 software charlatanism chapter 6

programming aids is striking. We note, in both cases, devices that address
ignorant people; assure them that they don’t need to know anything they don’t
already know; promise them the power to perform tasks that require, in fact,
much knowledge; and reduce their involvement to a series of selections.

The similarity is not accidental, of course. We already know that our
software delusions and our language delusions stem from the same belief;
namely, the belief that the elements of software structures and language
structures correspond on a one-to-one basis to the elements that make up
reality. So we must not be surprised that devices based on software delusions
end up just like the device invented by a satirist to mock the language delusions.

Swift was trying to demonstrate the absurdity of the mechanistic language
theories by exposing their connection to the belief that a mechanical device
can replace human knowledge. But today, through the mechanistic software
theories, we are actually attempting to realize this fantasy: we are building
software devices to replace human knowledge – programming knowledge, in
particular. Concepts that were only academic speculations in Swift’s time, easily
ridiculed, have become a reality in our time in the world of software. The kind
of device that three centuries ago was only a fantasy – a satirical exaggeration
of a delusion – is actually being built today by software companies, and is being
used by millions of people.

�

There is no better way to illustrate the essence of software charlatanism than by
imagining how the professor from Lagado would design his language machine
today. He would make it a software device, of course, rather than a mechanical
one. And, as a matter of fact, it is quite easy to design a software system
that allows anyone – including persons who are normally unable to express
themselves – to produce books in any domain “without writing a single line.”
To imagine this device, all we have to do is combine the concepts implemented
in Swift’s language machine with those implemented in our software systems.

The promise, thus, would be the familiar claim that the only thing we need
to know is how to operate the device, and that this knowledge can be acquired
in a short time. To operate the mechanical language machine, all they did was
turn cranks; to operate a modern language machine, all we would do is “point
and click” with a mouse. We are assured, in both cases, that the power of the
device is ours to enjoy “at a reasonable charge, and with a little bodily labour,”Ë

and only by making selections: we would never have to write a single sentence.
The phrase we would use today is “powerful yet easy to use.”

Ë Ibid.

the delusion of high levels 449chapter 6

Let us examine some of the possibilities. Instead of typing words, we
can have the system display them for us in the form of selections within
selections. If, for example, we need the sentence “the dog runs,” we first select
the grammatical function by clicking on noun; this displays a list of noun
categories, and we select animal; within this category we select domestic, and
finally dog; what is left is to click on singular and definite article. Then, for
“runs” we select the grammatical function verb, which displays a list of verb
categories; we select action, within this category we select motion, and finally
run; we then click on present tense, third person, and singular, and the complete
sentence is displayed for us.

The popular expedient of icons could be profitably employed to help even
illiterate persons to use this system: if tiny pictures were used to depict words,
categories, and grammatical functions (a picture of a dog for “dog,” an animal
together with a man for “domestic,” a running figure for “run,” one and two
objects for “singular” and “plural,” etc.), even those of us who never learned to
read and write could benefit from the power of language machines.

It is obvious that, with such a system, anyone could generate text on any
subject without writing a single line. And future versions could introduce even
more powerful features – built-in sentences, for instance. Instead of words, we
would be able to select entire sentences, and even entire paragraphs, from lists
of alternatives representing classes and categories of topics. With only a little
practice, anyone would then be able to generate page after page of exquisite text
just by pointing and clicking.

The more elaborate this imaginary language system becomes, the easier it is
to recognize its similarity to our software systems – our programming aids, in
particular. But, while few people would be deceived by a language machine,
the whole world is being deceived by the software charlatans and their applica-
tion development machines. Not even illiterates could be persuaded to try
a device that promises to replace writing skills. But the most important
individuals in society – decision makers working in universities, corporations,
and governments – keep trying one software theory after another, and one
programming substitute after another, convinced that a device can replace
programming skills.

6

6
Whether addressing programmers or software users, an honest development
system simply provides low-level elements and the means to combine them so
as to create the higher levels. The low levels come (for programmers, at least)
in the form of general-purpose programming languages; and, when practical,

450 software charlatanism chapter 6

higher levels are available through existing subroutines. Systems that provide
only high levels, and claim that it is possible to create any application in this
manner, are dishonest: they invariably end up reinstating the low levels in a
different, and more complicated, form. These systems are for programming
what language machines are for writing: not useful tools, but means of
deception and exploitation. Their purpose, we saw, is to induce ignorance
and dependence, by consuming our time and preventing us from improving
our skills.

Honest systems allow us to create the higher levels on our own, and to select
any subroutines we like. With honest systems, therefore, we can choose any
combination of low-level elements and built-in operations. Dishonest systems
provide an environment with high starting levels, and add the low levels as a
special feature. The software charlatans have reversed, in effect, the principles
of programming: instead of a simple system based on low levels, where we can
create the high levels independently, they give us a complicated environment
based on high levels, where the low levels are provided as “enhancements.”
What we had all along in any programming language – the low levels – is
presented now as a new and powerful feature of their high-level environment.
Instead of programming being the standard development method, and the
high levels a natural outcome, they make the high levels the standard method,
and turn programming into a complicated extension.

Clearly, if we use a general-purpose development system, if we want to
create original applications, and if these applications require a particular level
of detail and functionality, our lowest-level elements must be the same mixture
of variables, conditions, loops, and statements no matter what development
method we use.

The software charlatans prefer environments based on high levels because
this is how they can induce dependence. A system based on low levels and
subroutines leaves us free to develop and maintain our applications in any
way we like. The dishonest systems lure us with the promise of high starting
levels, but must include the low levels anyway. They lose, therefore, the only
benefit they could offer us. But, because we trusted them and based our
applications on their high levels, we will now depend forever on them and on
the software companies behind them. While no dependence is possible when
using traditional development methods, it is quite easy to control our work,
our time, our knowledge, and our expectations through systems based on high
levels. For, instead of simply developing applications and expanding our
programming skills, we are now forced to spend most of our time with the
problems generated by the systems themselves, with complicated concepts,
with special languages, and with their endless changes.

The only time a high-level system is justified is when its functions cannot

the delusion of high levels 451chapter 6

be effectively implemented as subroutines. This is the case, typically, in
systems meant for highly specialized applications. Thus, operations involving
indexed data files can be added as subroutines to any language. They are more
convenient when implemented in the form of statements (as in COBOL), but it
would be silly to adopt a new language, or a whole development environment,
just for this reason. On the other hand, the features found in an advanced
file editing system cannot be simply added to a language as subroutines,
because, by its very nature, the editing system must have its own environment
(windows, commands, special use of the keyboard, etc.). And what an honest
system does, in this case, is make it as easy as possible to transfer the files to
and from other systems.

�

It is worth repeating here that “subroutine” refers to a broad range of high-level
software elements, including functions, procedures, subprograms, and the like,
which may be explicit or implicit. This term refers, thus, to any elements that
can be implemented as a natural extension of a general-purpose programming
language. The subroutines that perform file operations, for example, may be
implemented by way of functions (in a language like C) or as ordinary
statements (in a language like COBOL). The important point is that the
foundation of the application be a general-purpose language, not the high-level
entities of a development environment.

And I refer to individual statements, conditions, iterations, etc., as “low-
level” software elements only because they are lower than subroutines, or
built-in operations, or the high-level functions provided by development
environments. But these “low-level” elements are what we find, in fact,
in general-purpose languages (like COBOL and C) called “high-level” (to
distinguish them from assembly languages, which use true low-level elements).

This confusion in terminology is due to the software mechanists, who have
distorted the meaning of low and high levels by claiming that it is possible
to raise forever the level of the starting elements. Thus, the term “fourth
generation” (4GL) was coined for the languages provided by development
environments, and “third generation” for the traditional high-level languages,
in order to make environments look like an inevitable evolution. Assembly
languages were declared at the same time to be “second generation,” and
machine languages, which use even lower-level elements, “first generation.”

The level of these languages, however, has little to do with an advance in
programming concepts. Thus, the first three generations are still in use today,
and will continue to be, because their respective levels are the only way to
implement certain types of operations. It is true that, historically, we started

452 software charlatanism chapter 6

with first generation and only later invented the second and third; but this
doesn’t prove that there can exist general-purpose languages of even higher
levels. And it is true that, in most programming tasks, we were able to replace
the first two generations with the third without reducing the functionality of
the resulting applications; but it doesn’t follow that we can repeat this success,
that we can develop the same applications starting from even higher levels.

Everyone agrees that it is more efficient to start from higher levels, and that
we should use the highest-level entities that are practical in a given situation.
But, as we saw earlier, for typical business applications this level cannot be
higher than what has been called third generation. While we may agree that
the first three generations represent a certain progression in programming
concepts, the fourth one is a fraud. Not coincidentally, it was only when the
fourth one was introduced that the term “generation” was coined; formerly we
simply had “low-level” and “high-level” languages.

The fourth generation is a fraud because it is not, relative to the third,
what the third is relative to the second. In the transition from second to
third generation, practically all language features became simpler: the use of
memory variables, conditions, iterations, subroutine calls, etc., are indeed
at a higher level than in assembly languages. In the transition from third
to fourth generation, on the other hand, practically all features remained
unchanged. What the software charlatans did was merely add a few high-level
features (built-in operations for simple reports, user interface, etc.) and
bundle the resulting languages with proprietary development environments.
A programmer can enjoy the same blend of low and high levels by starting with
traditional languages (COBOL, C, etc.) and adding subroutines and similar
features, created by himself or by others.

To function as a higher level, a language must provide more than just a few
higher-level functions; it must provide a higher level for variables and arrays,
for flow-control constructs, for subroutines and their parameters, and so on. It
is precisely because no such features can exist (in the case of general-purpose
languages and general business applications), that the third-generation features
had to be retained. The idea of a fourth generation was merely a way to
get ignorant practitioners to abandon the straightforward programming
languages, and to depend instead on complicated and expensive development
environments.Ì

Ì In more than forty years of programming – from simple utilities and applications to
large data management systems and business systems – I have never encountered a situation
where I could benefit from a commercial development environment. Even when the project
calls for a higher-level programming method, I find it more expedient to implement my
own, simple, customized environment (using “third-generation” and “second-generation”
languages) than to depend on those monstrous systems sold by software companies.

the delusion of high levels 453chapter 6

7

7
As an example of development environments, let us examine the communica-
tions systems. If what we need in our business applications is high-level
operations in the domain of communications (say, transferring data under
various protocols between computers, or converting files from one format to
another), nothing could be simpler than providing these operations in the form
of subroutines. We could then develop the applications in any programming
language we like, and invoke these operations simply by specifying a number
of parameters.

Needless to say, this is not how the popular communications systems
make their operations available. What programmers are offered is a whole
environment, where the operations are invoked interactively. Then, because
the interactive method is impractical when the operations must be part of an
application, these systems also provide a “powerful feature”: a programming
language. (To further distract us, euphemisms like “scripts,” “macros,” or
“command files” are employed to describe the resulting programs.) In short,
we are taken back to the lower levels of traditional programming. But we
already had programming languages; all we wanted was a few high-level
communications operations. Instead, we must get involved with, assimilate,
and then become dependent on, yet another system, another language, another
software company, and the related documentation, newsletters, seminars,
websites, version changes, bug reports, and so on.

Most of these activities are spurious, in that they are caused, not by the
communications operations we needed, but by the environment we were
forced to adopt in order to have these operations. What is worse, the languages
that come with these environments are more primitive and less efficient than
the general-purpose languages we already had. Only ignorant programmers
can be deceived by this fraud, of course; true professionals recognize that these
systems are unnecessary, that their sole purpose is to prevent programming
freedom. The popularity of development environments, and the ease with
which practitioners can be persuaded to depend on them, demonstrates
therefore the incompetence that pervades the world of programming. It is in
the interest of the software companies to maintain this incompetence. Thus,
by providing environments instead of honest development systems, they
ensure that programmers waste their time with spurious activities. For, with
proprietary environments we only acquire some narrow skills; with general-
purpose systems and languages, on the other hand, we gain true expertise –
knowledge and experience that will benefit us in all future programming work.

454 software charlatanism chapter 6

Communications systems are only one kind of environment, of course.
If we are to depend on development environments for our high-level opera-
tions, we will also need systems for display, for user interface, for database
operations, for graphics, for reporting, for system management, etc. – each
one with its own language, documentation, newsletters, seminars, changes,
bugs, and so on.Í

Development environments must include programming languages because
their high-level operations, no matter how impressive they may be on their
own, are only useful when combined with other operations. An application is
not simply a series of high-level operations. The operations provided by one
system are related to those provided by another, and also to the operations
developed specifically for that application. The relations between these opera-
tions occur mainly at low levels, so they must be implemented through
conditions, loops, statements, and variables; in other words, through the same
low-level elements as those found in the traditional programming languages.
Like the language machine we examined previously, the environments promise
us high levels, but provide in reality the same mixture of levels we had all along.
To develop a given application we need the same knowledge as before, but
applying that knowledge is now much more difficult.

The complications created by this charlatanism are so great that a new kind
of system had to be invented, whose only purpose is to help programmers and
users connect the operations of the other systems, or transfer data from one
system to another; its only purpose, thus, is to solve the problems created by
the idea of software environments. These new systems come, of course, with
their own environments, languages, procedures, documentation, newsletters,
seminars, bugs, changes, and so on. Another kind of system engendered by
software charlatanism is the one meant to standardize the operations provided
by other systems – to sit above them, as it were, and make their diverse
operations available in a common format. Every software company tries to
establish its system as the standard one, but this struggle merely results in
even more facts, languages, procedures, documentation, reviews, etc., that
programmers must assimilate.

These complications, to repeat, are a result of the reversal of programming
principles: instead of starting with low-level elements and creating the higher
levels freely, programmers are forced to develop applications starting with

Í Thus, software reseller Programmer’s Paradise boasts on its catalogue cover, “20,000+
software development tools” (for example, the issue Nov–Dec 2008). Perhaps 1 percent of
them are genuine programming tools. The rest are environments and the endless aids
needed to deal with the problems created by environments. Individuals who need such tools
are not true programmers, but a kind of users: just as there are users of accounting systems
and inventory management systems, they are users of development systems.

the delusion of high levels 455chapter 6

high-level elements. The low levels are then provided only through the devel-
opment environments, and through the high levels, thus establishing the
dependence.

A system based on low levels and subroutines also offers the benefits of
high-level elements, and without inducing any dependence. After all, we
already have many programming languages; and through these languages, we
can create software levels that are as low or as high as we want. Software
companies do not promote environments because our general-purpose
languages are inadequate, but because traditional concepts like subroutines do
not allow them to control our work and our applications as do these
environments.

The Delusion of Methodologies

The Delusion of Methodologies
1 1
So far we have discussed the development of applications mainly from the
perspective of programmers. Let us see now how the mechanistic delusions
affect the expectations of the users of applications – those individuals whose
needs are to be embodied in the new software.

When developing a new application, managers familiar with the relevant
business practices cooperate with analysts and programmers. The resulting
software, thus, will reflect not only programming skills, but also the knowledge
and experience of users. And the mechanistic theories and methodologies
expect these individuals to express their knowledge and their requirements
precisely, completely, and unambiguously; that is, to reduce knowledge and
requirements to a form that can be used by analysts and programmers to
develop the application. We will examine this absurdity in a moment, but first
let us briefly discuss the alternative.

Instead of developing custom software, users can procure ready-made (or
what is known as packaged, or canned) applications. With this alternative, the
application is available immediately, thus bypassing the lengthy and difficult
stages of design and programming. From what we have already discussed,
though, it should be obvious that packaged applications are part of the same
delusion as all ready-made, or built-in, pieces of software: the delusion of high
levels, the belief that one can accomplish the same tasks by starting from high-
level software elements as when starting from low-level ones. This delusion
finds its ultimate expression in the idea of ready-made applications: the
starting level is then the top element itself, the complete application, and the
impoverishment is total. From the infinity of alternatives possible for the top

456 software charlatanism chapter 6

element when programming the application, we are now left with only one
alternative: the particular combination of operations built into the package by
its designers. Most packages include options, of course, for some of their built-
in operations. But combinations of options still provide only a fraction of the
combinations of operations that may be required by an organization. So, in the
end, packages remain a poor substitute for custom applications.

Organizations are tempted by the promise of packaged applications because
they underestimate the limitations they will face later, when they get to depend
on this kind of software. And even when the users realize that the package
permits them to implement only some operations, and addresses only some of
their needs, they still fail to appreciate the real consequences of inflexible
software. What they tend to forget is that their needs and practices evolve
continually, so their software applications must evolve too. It is difficult
enough to judge whether a certain application can answer our current needs
(the only way to be absolutely sure is by running it live, by depending on it); but
it is impossible to assess its usefulness for the next ten years, simply because we
cannot know what our needs will be. No one can predict the changes that an
organization will face in the future. How, then, can anyone expect a piece of
software that is based on a particular combination of built-in processes and
operations to cope with such changes?

Note that it is not the quality of the application that is at issue here: no
matter how good and useful it is today, and even if the company supporting it
will bring it up to date regularly in the future, it will always be a generic piece
of software, designed to answer only that subset of needs common to many
organizations; it cannot possibly adapt to the specific needs of every one
of them.

It is quite incredible, thus, to see so many organizations depend on packaged
software; and they do, not just for minor applications, but also for their
important business needs. Most packages fail, of course, so we must not be
surprised at the frequency with which these organizations try new ones. The
failure of a package rarely manifests itself as major deficiencies, or as software
defects. What we see typically is a failure to answer the needs of its users,
something that may only become evident months or years after its adoption.
Since this type of failure is so common, the reason why organizations continue
to depend on packages is, clearly, not their usefulness, but the incompetence of
the software practitioners: if programmers lack the skills necessary to create
and maintain applications, ready-made software, however unsatisfactory,
becomes an acceptable expedient.

More subtle and more harmful than the inadequacy of an application is the
tendency of users to lower their expectations in order to match its limitations.
In other words, instead of rejecting an inadequate application, they modify the

the delusion of methodologies 457chapter 6

way they conduct their affairs so as to be able to use it. To help them rationalize
this decision, the software elites stress the importance of adopting the latest
“technologies” – relational databases, object-oriented environments, graphic
user interface, client-server systems, and so forth. Ignorant users are impressed
and intimidated by these concepts, so they end up interpreting the application’s
shortcomings as modern and sophisticated features which they don’t yet
appreciate. Thus, instead of objectively assessing the application’s usefulness,
they merely judge it by how closely it adheres to the software innovations
promoted by the elites, even if these innovations are worthless. So, in the end,
the application appears indeed to satisfy their requirements; but this is because
they agreed to replace their true requirements with spurious ones.

2

2
Having established that packages are rarely a practical alternative for serious
applications, let us return to the subject of software development. Developing
their own applications is what many organizations must do, even if lacking the
necessary skills, because this is the only way to have adequate software.

An application, we recall, consists of many structures, all sharing the same
software entities (see “Software Structures” in chapter 4). These structures are
the various aspects of the application – the processes implemented in it. Each
structure, thus, is one way of viewing the application; and it is this system of
interacting structures that constitutes the actual application. Although in our
imagination we can treat each aspect as a separate structure, the only way to
create the application is by dealing with several structures at the same time.
This is true because most entities in a piece of software – most statements and
modules – are affected by several aspects of the application, not just one. When
writing a statement, for example, it is seldom sufficient to think of only one
logical structure; we may well perceive a particular structure as the most
important, but the same statement is usually an element in other structures
too. It is this capability of software entities to be part of several structures
simultaneously, and hence link them, that allows software applications to
mirror our affairs. This capability is important because our affairs consist of
processes and events that already form interacting structures.

If this is what software applications actually are, let us review what the
software theories assume them to be. Applications, the theories tell us, must be
developed following a methodology. Although many methodologies have been
proposed, all are ultimately founded on the same fallacy; namely, the belief that
it is possible to reduce a software application to a definition. The definition of
an application is a set of specifications (formal descriptions, flowcharts, block

458 software charlatanism chapter 6

diagrams, and the like) believed to represent, precisely and completely, the
actual software. Methodologies, thus, are a manifestation of the mechanistic
belief – the belief that a complex structure (the software application, in this
case) can be reduced to simple ones.

To define an application, users and analysts spend many hours discussing
the requirements – the business practices that are to be embodied in the
application. This activity is known as analysis and design, and the methodolo-
gies prescribe various steps, which, if rigorously followed, are said to result in
a complete definition; namely, a definition that represents the application
as precisely as drawings and specifications represent a house or a car. It
is believed, thus, that a set of mechanistic expedients can capture all the
knowledge inhering in a complex phenomenon: the structures that make up
the application, their interactions, and their effects when the application is
running.

The reason we start with a definition, of course, is that we prefer to work
with specifications rather than the statements of a programming language.
Deficiencies, for example, are easier to correct by modifying the definition
than by rewriting software. Thus, we are told, if we follow the methodology, we
should be able to create the entire application in the form of a definition, and
then simply translate the definition into a programming language. To put
this differently, the methodologies claim that it is possible to represent an
application with expedients other than the software itself – expedients that
are simpler than software, and accessible to users and programmers alike.
Although simpler than the actual application, these expedients represent it
precisely and completely. The definition is, in effect, the application.

The fallacy of this claim ought to be obvious: if it were possible to express
by means of diagrams, flowcharts, etc., all the details of the application, we
wouldn’t need programming languages. For, a compiler could then translate
the definition itself into the machine language, and we wouldn’t need to write
the programs. In reality, definitions are simpler than programs precisely
because they do not include all the details that the programs ultimately will.

So definitions are inaccurate representations of the application. They are
useful only because people can interpret them, because people can add some
of their own knowledge when converting them into software. One reason
why definitions are simpler than programs, thus, is that they need not be
perfect. An error in the program can render the application useless, but in the
definition it is harmless, and may even go unnoticed. The impossibility of
translating automatically definitions into software proves that definitions are
incomplete, faulty, and ambiguous, and require human minds to interpret and
correct them.

But an even more important reason why definitions are simpler than

the delusion of methodologies 459chapter 6

programs is that they represent separately the software structures that make up
the application. The difficulty in programming, we saw, is dealing with several
structures simultaneously. Our programming languages permit us to create
software entities that can be shared by diverse structures, and this is why it is
possible to develop useful applications. In a definition, on the other hand, we
usually specify each structure separately: the business practices, the database
relations and operations, the display and report layouts – we strive to represent
each one of these processes clearly, so we separate them. Even if we wanted to
relate them in the definition it would be difficult, because the diagrams,
flowcharts, and descriptions we use in definitions are not as versatile as
programming languages. Definitions are simpler than programs, thus, because
most specifications do not share their elements, as software structures do.
What this means is that a definition cannot represent the application precisely
and completely. So the methodologies are wrong when claiming that defini-
tions are important.

The fallacy of definitions is easy to understand if we recall the concept of
simple and complex structures. A definition is, in effect, the reification of
a complex structure (the application) into its constituent simple structures.
It is, thus, an attempt to reduce a complex phenomenon to a mechanistic
representation. This can be done, as we know, only when the separated
structures can usefully approximate the actual phenomenon. In the case of
software phenomena, this can be done for trivial requirements. For typical
business applications, however, mechanistic approximations are rarely accurate
enough to be useful. In the end, we like software definitions for the same
reason we like all other mechanistic concepts: because of their promise to
reduce complex problems to simple ones. Definitions are indeed simpler than
the applications they represent, but they are simpler because they are only
approximations.

Thus, since applications cannot be represented accurately by any means
other than the programs themselves, the conclusion must be that definitions
are generally irrelevant to application development. They may have their uses,
but their importance is overrated. No definition can be complete and accurate,
and an application created strictly from a definition is useless. Application
development cannot be reduced to a formal activity, as the software theorists
say. Since no one can specify or even envisage all the details, and since most
details will change anyway (both before and after the application is completed),
it is futile to seek a perfect set of specifications. Some brief and informal
discussions with the users are all that an experienced programmer needs in
order to develop and maintain an application.

�

460 software charlatanism chapter 6

The failure of the mechanistic concepts in the early days were so blatant that
the software gurus had to modify their methodologies again and again. The
invention of new methodologies, thus, became a regular spectacle in the world
of programming, and there were eventually nearly as many methodologies as
there were gurus. (Most methodologies are known by the name of their
creators, a practice borrowed apparently from the world of fashion design.)

Some methodologies tried to eliminate the rigidity of the traditional
development phases, and introduced notions like prototyping and stepwise
refinements; others attempted to modify the traditional roles played by users,
analysts, and programmers. But, in the end, no matter how different they may
appear to the casual observer, all methodologies are alike. And they are alike
because they all suffer from the same fallacy: the belief that indeterministic
phenomena – the applications, and their development and use – can be treated
as mechanistic processes. The idea of methodologies, thus, is just another
manifestation of the belief that programming expertise can be replaced with
some easy skills – the skills needed to follow rules and methods.

The similarity between the various methodologies is betrayed by the trivial
innovations their creators introduce in an effort to differentiate themselves.
For example, they use pretentious terms to describe what are in fact ordinary
features, in order to make these features look like major advances. But most
ludicrous is their preoccupation with the graphic symbols employed in dia-
grams, as if the depiction of processes, operations, and conditions with
one symbol rather than another could significantly alter the outcome of a
development project. For example, the traditional rectangular boxes are
replaced with ovals, or with a shape resembling a cloud, or a bubble, or one
known as a bubtangle (a rectangle with rounded corners). And we must
remember that these idiocies are discussed with great seriousness in books and
periodicals, and are taught in expensive courses attended by managers and
analysts from the world’s most prestigious corporations.

Programming methodologies, thus, are like the development environments
we discussed previously: they provide elaborate systems to replace the easy
aspects of programming, those parts demanding mechanistic knowledge; but
they cannot replace what are the most important and the most difficult aspects,
those parts demanding complex knowledge. Since the same knowledge is
required of people to create a serious application whether or not they use a
methodology, the methodologies, like the development environments, are in
the end a fraud. They are another form of software exploitation, another way
for the software elites to prevent expertise and to induce dependence on
systems and devices which they control.

When a methodology appears successful, its contribution was in fact
insignificant. For, why should some techniques that work for one organization

the delusion of methodologies 461chapter 6

fail to work for others? It is the people, obviously, that made the difference.
When people have the necessary knowledge, they will develop applications
with or without a methodology; and when they lack this knowledge, no
methodology can help them. Development environments, we saw, promise
programmers and users higher levels of abstraction, and then trick them into
working at low levels, as before. Similarly, methodologies promise them
simpler, high-level concepts, and then demand the same skills as before.
In both cases, this charlatanism complicates the development process, so
inexperienced practitioners are even less likely to succeed. Besides, they waste
their time now assimilating worthless concepts, instead of using it to improve
their skills by creating and maintaining applications.

3

3
The delusion of methodologies and definitions is reflected in the distorted
attitude that everyone has toward the subject of maintenance. Software mainte-
nance is the ongoing programming work needed to keep an application up to
date. And all studies agree that, for most business applications, this work over
the years exceeds by far the work that went into the initial development.
We should expect the theorists, therefore, to propose more solutions to the
problems arising in maintenance than to those arising during development.
What we find, though, is the exact opposite: all theories and methodologies
deal with the creation of new applications, and barely mention the subject of
maintenance. Moreover, we find the same distorted attitude among corporate
managers: maintenance is treated as incidental work, is avoided whenever
possible, and is relegated to the least experienced programmers.

In reality, the obsession with new applications is a reaction to the problem
of programming incompetence: because programmers cannot keep the existing
applications up to date, new ones must be developed. But without proper
maintenance the new ones quickly fall behind, so the users find themselves in
the same situation as before. At any given time, then, companies are either
installing new applications, or struggling with the current ones and looking
forward to replacing them. The software elites encourage this attitude, of
course, as it enhances their domination. They present the latest fads – fourth-
generation or object-oriented systems, CASE tools or relational databases,
graphic interface or distributed computing – as revolutionary advances, and as
solutions to the current problems. Their applications are inadequate, the
companies are told, because based on old-fashioned software concepts. They
must replace them with new ones, based on these advances.

So the preoccupation with new applications helps everyone to rationalize

462 software charlatanism chapter 6

the failure of maintenance. It takes great skills to modify a live application
quickly and reliably. In contrast, creating a new application from a definition,
as the methodologies recommend, is relatively easy. It is easy because the neat
definition is only a simplified version of the actual application. As we saw,
definitions can only approximate the true, complex needs. But the belief that
the next application will be perfect inspires everyone with confidence. So a new
development project, using the latest development fads, always looks like a
wise decision.

To put this differently, practitioners prefer a new application to maintenance
because new projects make self-deception possible. A methodology permits
them to create, instead of the required application, an imaginary, simpler one:
the application matching a neat definition and their limited skills. And when
that application proves to be inadequate, the practitioners still do not suspect
their practices. They blame the changing requirements, or the imperfection of
the original specifications. They refuse to see these facts as a reality they must
cope with, as the very essence of business software. So, instead of accepting
the facts, they continue to claim that their practices are sound, and that
precise definitions are possible. In other words, if reality does not match the
mechanistic software principles, something is wrong with reality.

In new development projects, then, self-deception helps practitioners to
deny their failures and to cling to the easy, mechanistic concepts. And they
dislike maintenance because, in this type of work, self-deception cannot help
them. Each maintenance project is relatively small and well-defined, so it is
harder to replace it with an imaginary, simpler one. Ultimately, in maintenance
work it is harder to find excuses for failures.

�

We note a marked discrepancy between the perception and the reality of
applications. On the one hand, everyone strives to create a perfect application
– by following a strict methodology, and by using the latest development
systems. It is far more expensive to modify the software itself later, we are told,
so we must eliminate the imperfections in the design stage. This is why
definitions are important. On the other hand, all studies show that less than
5 percent of new applications are adequate. The others must be modified if they
are to be used at all, and many are so different from the actual requirements
that they must be abandoned. Moreover, even those that are adequate must
immediately start a process of ongoing modifications, simply because business
requirements change constantly.

Thus, whether it is the original differences (due largely to the fact that no
definition can reflect the actual requirements) or the future ones (due to the

the delusion of methodologies 463chapter 6

normal, unpredictable changes in requirements), it is obvious that modifying
business applications is an essential programming activity. Yet, for more than
forty years, all theories and methodologies have been attempting to create
“perfect” applications; that is, applications matching some fixed specifications,
and requiring as few changes as possible. In reality, all software changes are
alike – whether due to faulty specifications, or varying user preferences, or the
need for additional features, or the adoption of new business rules, or some
external factors. So, if we must be able to deal with endless changes in any case,
the idea of a perfect application is meaningless, and there is no point in trying
to design one initially.

It is wrong, in fact, even to think of maintenance as modifying the applica-
tion. The role of business software is to satisfy, at any given time, the current
needs. An application, therefore, must be seen as that particular software
system which accomplishes this. Business needs change constantly, so the
application must change too. Thus, rather than first developing an application
and then maintaining it, it is better to think of this work as a continuous, never-
ending development.

�

We find further evidence of the distorted attitude toward maintenance in the
notion of application life cycles. All experts agree that applications cannot
last more than a few years. So, even while encouraging us to create a new one,
they warn us to prepare for its demise. Borrowed from biology, the idea of
life cycles holds that software resembles live things, so the existence of an
application can be divided into stages: birth (definition of requirements),
growth (development and testing), maturity (normal operation), and death
(obsolescence). Each application represents a cycle, and is followed by another
one, and then another one, forever.

But this is an absurd idea, contrived specifically in order to justify the need
for new applications. Software, by its very nature, is modifiable. In principle,
then, an application never needs to be replaced; it only needs to be kept up
to date. Everyone acknowledges the need for changes, and acknowledges
also the inability of programmers to implement them. So the idea of life
cycles was introduced as a compromise: every few years, a new application is
created in order to implement together all the changes that should have been
implemented one at a time in the past. The theorists and the practitioners
can now defend the lack of proper maintenance, and hence the need for
a new application, by invoking the idea of software life cycles. This logic,
however, is circular; for, the idea of life cycles was itself an invention, a
response to the incompetence that prevents proper, ongoing maintenance.

464 software charlatanism chapter 6

Instead of trying to eradicate the incompetence, everyone looks for ways to
rationalize it.

Business software can fulfil its promise only if it is as changeable as the
business issues themselves: inflexible business software can be as bad as
inflexible business practices. Thus, replacing the whole application from time
to time is a poor substitute for the ability to satisfy new needs as soon as they
arise. So the ultimate price we pay for distorting the subject of maintenance is
having to depend on perpetually inadequate applications. This is true because,
even though an inadequate application is eventually replaced, it reaches that
condition gradually, one unsatisfied requirement at a time. This means that it
was always inadequate, even in its period of normal use. The difference
between that period and the time when it is actually replaced is only in the
degree of inadequacy; namely, how far it is from the users’ actual needs, how
many unsatisfied requirements have accumulated to date.É

4

4
The delusion of methodologies and definitions is also demonstrated by the
failure of CASE (Computer-Aided Software Engineering, see pp. 521–522).
The elimination of programming from the process of application development
was seen by most theorists as the undisputed next step in development tools,
as the ultimate benefit of software engineering. Ambitious CASE systems
were promoted for a number of years with the claim that managers and
analysts could now create directly, without programming, applications of any
complexity – simply by manipulating block diagrams, flowcharts, and the like,
on a computer display. The system would guide them in creating the definition,
and would then translate the definition automatically into software.

The belief that an application can be generated automatically is a logical
consequence of the belief that a definition can represent all the knowledge
embodied in an application. (Could definitions do that, automatic program-
ming would indeed be possible.) The CASE fantasy, thus, was born from the

É A properly maintained application never needs to be replaced, because it always has
what the users need. The longest I maintained one of my applications is thirty-one years
(until the manufacturing company using it ceased production). This was a complex,
integrated business system, which combined all the computing needs of that company.
At any given time there was a list of requirements, some of them urgent; but I always
implemented them, so no one ever saw the need for new applications. The system kept
growing, and was eventually a hundred times larger than it had been in the first years, due to
countless new functions; but no one perceived these developments as new applications. Most
work, though, was in modifying existing parts (replacing or adding features and details).

the delusion of methodologies 465chapter 6

concepts of methodologies and definitions that we have just discussed –
concepts which continue to dominate the programming theories, despite the
failure of CASE. No one seems to realize that, if CASE evolved from these
concepts, its failure proves the fallaciousness of these concepts too. Let us
analyze this connection.

Even when following a methodology, people do more than implement rules
and standards. The software created by programmers contains more than
what the analysts specified in their definition, and the definition created
by analysts contains more than what the users specified in their requirements.
Each individual involved in the development of the application has the
opportunity to add some personal knowledge to the project, but this is
largely an unconscious act. Simply to understand a set of requirements or
specifications, the person must interpret them; that is, he must combine the
knowledge found in the document with some previous knowledge, present in
his own mind. For, if this were not the case, if the only thing that analysts and
programmers did were follow rules and methods, then a person who knows
nothing about software or about a particular company, but who can follow
rules and methods, could also develop applications.

The knowledge missing from the formal requirements and specifications,
and hence contributed by individuals, varies from general facts on computers
and software to details specific to their organization, and from common
business practices to the knowledge shared by people living in a particular
society. It is precisely because most people already possess this kind of knowl-
edge that we take it for granted and do not include it in instructions and
documents. Recall also that the most important part contributed by human
minds constitutes non-mechanistic knowledge: not isolated knowledge struc-
tures, but the complex structure that is their totality. The capacity for non-
mechanistic knowledge must be provided by human minds because it cannot
exist in simple structures like instructions or diagrams.

Thus, all the people involved in the development of an application may be
convinced that they are following the rules prescribed by the methodology,
while depending on personal knowledge and experience to fill in the missing
pieces, or to resolve the ambiguities and inconsistencies found in specifi-
cations. If the application is successful, they will praise the methodology,
convinced that it was the principles of software engineering that led to their
success. Most likely, they will not realize that it was in fact their own minds that
provided the most important part (the non-mechanistic knowledge), and that
the principles, theories, and methods addressed only the simple part (the
mechanistic aspects of the project).

Clearly, if the methodology provides only mechanistic principles while our
activities are mostly non-mechanistic, the only way to use a methodology is by

466 software charlatanism chapter 6

taking its practical parts and ignoring or overriding the rest. People may be
convinced that they are following the methodology, when they are using it
selectively. So it is not too much to say that, to develop an application success-
fully, people must work against the methodology: if they rigorously followed
the mechanistic principles, they would never complete the application. Thus,
when a software project is successful, this is not due to the methodology but
despite it.

And it is during programming that people make the greatest contribution.
For it is in programming, more than in any other activity, that people have the
need and the opportunity to override the rules imposed by a mechanistic
methodology. So it is the programmers – more than the managers with their
specifications, or the analysts with their definitions – that must use the non-
mechanistic capabilities of their minds. We can perhaps delude ourselves in
the early stages of development that specifications and definitions represent
the application completely and precisely. But if we want to have a useful
application, we must permit human minds to deal at some point with the
missing pieces, with the ambiguities, and with the inconsistencies. It is during
programming, therefore – when the application is created and tested, when it
must mirror reality if it is to be used at all – that the delusions of formal
methodologies and precise definitions, of neat diagrams and flowcharts, must
come to an end.

�

It should be obvious, then, why CASE failed. The CASE systems were based on
methodologies: they literally incorporated some of the popular methodologies,
thus allowing managers and analysts who wished to follow a particular
methodology to do so through a software system rather than on their own.
The system could now force people to follow the methodology, eliminating the
temptation to omit or modify some of the steps – what was believed to be the
chief cause of development failures. Since the methodology was now part of
the development environment, the experts claimed, anyone could enjoy its
benefits; and since the resulting specifications and definitions were stored
in the computer, the system could use them to generate the application
automatically, eliminating the programming phase altogether.

CASE failed because it eliminated the opportunities that people had to
override the methodologies and definitions. By automating the development
process, CASE made it impossible for people to contribute any knowledge that
conflicted with the mechanistic software theories. They could only use now
trivial, mechanistic knowledge, which is insufficient for developing serious
applications. What CASE eliminated – what the software mechanists thought

the delusion of methodologies 467chapter 6

was the cause of development failures – was in fact the very reason why
methodologies and definitions appeared occasionally to work: the contribution
made by people when, out of frustration, and perhaps unconsciously, they
were using their non-mechanistic capabilities to override the methods, rules,
and specifications. Thus, the failure of CASE proves that people normally
contribute to the development process a kind of knowledge – non-mechanistic
knowledge – that cannot be replaced with formal methodologies and theories.

There is another way to look at this. A CASE environment is logically
equivalent to a traditional development environment where the users, the
analysts, and the programmers follow a methodology rigorously; where analysis
and design, specifications and definitions, theories of programming and
testing, are all implemented exactly as dictated by the principles of software
engineering; where everyone refrains from interpreting the specifications or
the definitions; where no one uses personal knowledge to add details to the
formal documents, or to resolve ambiguities and inconsistencies. A CASE
environment is equivalent to all this because, when the methodologies and
programming theories are part of the development system, people are forced to
follow them rigorously.

Logically, then, the only difference between a CASE environment and a
traditional environment is the non-mechanistic knowledge contributed by
people – the knowledge that cannot be incorporated in a CASE system. So, if
CASE failed, we must conclude that this knowledge plays a critical part in a
development project. With traditional development methods, when people
possess this knowledge the project is successful, and when they do not the
project fails. In a CASE environment, people had no opportunity to use
this knowledge, whether they possessed it or not; so the result was the
same as when people used traditional development methods and lacked
this knowledge. The promoters of CASE did not recognize the need for this
knowledge. They believed that mechanistic knowledge suffices for developing
applications; and, since mechanistic knowledge can be embodied in software
devices, they believed that the contribution made by people can be reduced to
the knowledge required to operate these devices.

The main purpose of this argument, you will recall, is not to show the
absurdity of CASE, but to show how the failure of CASE demonstrates the
fallaciousness of all methodologies and definitions – which, in turn, demon-
strates the fallaciousness of all mechanistic software theories. For, it is software
mechanism – the belief that applications consist of independent structures,
which can be fully and precisely specified – that is the fundamental delusion.
This delusion leads to the delusion that programming expertise can be replaced
with rules and methods, which then leads to the notion of methodologies and
definitions, and eventually to CASE. The CASE systems merely implemented

468 software charlatanism chapter 6

formally what the theories had been claiming all along, what practitioners had
been trying before to do manually. So the only logical explanation for the
failure of CASE is that these theories are invalid.

The Spread of Software Mechanism The Spread of
Software Mechanism

1 1
The study of software mechanism reveals some disturbing trends. We note a
marked shift in our preoccupations: from solving real problems, to dealing
with the problems created by the tools we invent to solve these problems. We
have to address more and more issues, and these issues are becoming more and
more complicated, while moving further and further away from our real
concerns. Each issue begets new kinds of problems, which did not exist before
but which are now urgent, because they must be solved before we can return
to the original problem.

Simple programming problems – which require only a human mind and
experience – gave rise to theories of programming, which evolved into com-
plicated methodologies and programming tools, and finally became the
monstrous development environments we see today. What started simply
as programming became a preoccupation with programming theories and
languages, with tools and environments. We also note a tendency to spread this
inefficiency into broader domains: from the world of programming itself to the
organizations that use software, and then to the rest of society. Issues that ought
to concern only programmers end up affecting the users of their applications,
who must now deal with some new, software-related problems in addition to
their own problems; and these new problems affect then those people with
whom the software users are involved. In the end, the entire society is spending
more and more of its resources solving spurious, software-related problems,
instead of addressing real concerns.

These three trends – making activities more complicated than necessary,
shifting the preoccupation from real to spurious issues, and spreading the
inefficiency into broader domains – are related, of course. They are different
aspects of the same phenomenon, different manifestations of the delusion of
software mechanism. Let us briefly examine this phenomenon.

Since the mechanistic software theories are invalid, the software practition-
ers who follow them keep failing. Their belief in software mechanism acts then
as defence, as a way to deny reality. The reality, we saw, is that their failures are

the spread of software mechanism 469chapter 6

due to incompetence – an incompetence fostered by the very theories they
follow. For, in addition to leaving unsolved the programming problems they
promise to solve, the mechanistic theories prevent practitioners from gaining
the expertise that could solve them.

There is no limit to the number of trivial issues that we can contrive if we
believe that any problem can be solved by breaking it down into simpler ones.
By replacing the original, complex problem with a multitude of isolated and
relatively simple issues, ignorant practitioners can delude themselves that they
are working toward the solution of the complex problem. They have redefined,
in effect, the challenge of programming: from developing software to solve real
problems, and at the same time improving their skills, to searching for ways to
reduce these problems to simple ones that match their limited capabilities.

The mechanistic doctrine, thus, helps the software practitioners to rational-
ize their failures. Instead of the difficult task of creating and maintaining
applications, they can now perform activities so simple that they cannot
possibly fail. The problems that the applications were supposed to address
may remain unsolved, but the new problems always have solutions, so the
practitioners are pleased with their accomplishments. In the end, the belief in
software mechanism permits them to shift the definition of their profession,
from solving real problems to solving their own, simpler problems.

What is left is to persuade those who trust them – their employers, and the
rest of society – that what they are doing is the utmost that can be accomplished
in the domain of programming. But this is easy in a society dominated
by mechanistic beliefs. The concepts of software engineering are deemed
“scientific” – because based on mechanistic principles – and are therefore
readily accepted by everyone. Given our mechanistic culture, it is the truth
that is hard to accept. We have enough evidence that the most important part
of programming is knowledge, talent, skills, and personal experience; in
other words, the traditional form of expertise. And yet, it is the fallacious
theories and the programming substitutes based on them that are promoted in
computer publications, taught by professors and gurus, and endorsed by
institutes and associations.

Permitting the software practitioners to fool us with their mechanistic
theories is no different from permitting researchers to fool us with mechanis-
tic theories in the human sciences. We saw in previous chapters how the
mechanistic doctrine has corrupted academic research in fields like sociology,
psychology, and linguistics, turning in effect these disciplines into pseudo-
sciences. Invalid mechanistic theories are being pursued for years and decades,
and are then abandoned only to be replaced with other mechanistic theories.
The “research” performed by these scientists is merely a preoccupation with
the spurious, mechanistic problems they themselves keep creating when

470 the spread of software mechanism chapter 6

breaking down the complex phenomena of mind and society into simpler
phenomena. They never explain the actual phenomena; but, despite their
delusions and their failures, we continue to trust them, and the universities,
and the mechanistic philosophy. It is not surprising, therefore, that we have
come to trust in the same way the software practitioners, even as we see them
preoccupied largely with the spurious, mechanistic problems they themselves
keep creating, and despite their failures.

So those who depend on software learned to deny the reality of software
failures just like the practitioners themselves. Software users can see the
failure of their applications as clearly as the software practitioners can see
the failure of their theories. But, just as the belief in software mechanism
helps the practitioners to rationalize their programming failures, this belief
helps now those who depend on software to rationalize the failure of their
applications.

The software practitioners, we saw, rationalize their failures by expanding
the original problem into a vast and complicated array of trivial activities. The
real problem – creating and maintaining software applications to address
business or social issues – is a well-defined one. It is a difficult problem,
however, requiring much expertise, so the software practitioners hide their
incompetence by replacing it with a great number of isolated, simple problems.
They can then concentrate on these problems, and delude themselves that they
are making progress toward the solution of the original one. This technique has
been so successful in the domain of programming that the users of software
have now adopted it, in order to rationalize their own failures. Instead of
addressing real issues, they are modifying their activities and lowering their
expectations to match the inferior applications they depend on.

The software propaganda has succeeded in convincing us to accept a
state of affairs that no one would tolerate in other domains. Failures that
would be preposterous in manufacturing, or construction, or utilities are
considered normal for software applications. The users of applications notice
that programmers are using complicated methodologies and development
tools, and are calling themselves “software engineers,” and conclude that they
are like other professionals. Instead of being outraged by the inefficiency and
incompetence they note in software development, the users of applications
allowed the creators of those applications to persuade them that software-
related problems must form an important part of their own preoccupations.
Thus, assured that the programming they see is the only kind of programming
possible, software users started to expand their own problems into a vast array
of trivial, software-related activities. Solving software-related problems, they
are now convinced, is the only way to make progress toward the solution of
their real problems.

the spread of software mechanism 471chapter 6

2

2
When studying the spread of software mechanism, and the resulting incompe-
tence and corruption, it is useful to distinguish three stages. The first stage,
now complete, involves the world of programming itself: the programming
profession has been almost totally destroyed by the mechanistic dogma, and
the inefficiency in those activities directly related to programming exceeds
90 percent (and is sometimes as high as 99 percent). To put this differently, if
we had true professionals instead of the present programmers, society would
pay less than one tenth of the current cost to derive the same benefits from
software as it does now. (In fact, with true professionals we would derive
greater benefits at one tenth the cost, because the present programmers are far
from delivering the best possible applications.)

Programming expertise has been redefined, as I have already remarked,
from knowledge of programming to knowledge of ways to avoid programming.
Solving a problem simply through programming is considered old-fashioned,
while attempting to solve it by means of development environments, ready-
made pieces of software, and other high-level concepts is seen as modern and
professional, no matter how inefficient and expensive is the result. Program-
ming expertise, in other words, means expertise in the use of substitutes for
expertise. The responsibility of programmers is limited to operating software
devices, or following methodologies, or being aware of the latest theories.
They are not accountable for their work: what matters is not whether their
applications are useful or not, but whether their activities conform to the
current software ideology.

When an application fails, no one is blamed. People cannot be blamed when
their responsibility is limited to operating devices, or to following rules and
methods. The conclusion is typically that they did not use the latest “solutions”
or the latest “technologies.” So the project is simply abandoned, and another
one is started – perhaps with a different development environment and
different hardware – while all the people involved continue to be trusted and
respected. (We will return to this subject in “Software Irresponsibility” in
chapter 8.)

A nice demonstration of the first stage is provided by the evolution of
Microsoft Corporation – the most aggressive of the software elites. Microsoft
started with simple and useful programming tools, but the more successful it
became, the larger and more complicated became its systems. Eventually, every
tool grew into a huge environment, where the actual programming issues are
hidden in a maze of unnecessary features, options, rules, and standards –

472 the spread of software mechanism chapter 6

all a result of raising the level of abstraction in software development. The
effort involved in using Microsoft development environments (and any other
environment that depends on the Microsoft operating systems) is due largely
to the environments themselves, not our real programming needs. Microsoft
has attained, thus, the goal of the first stage: to destroy the possibility of
intelligent and responsible programming by forcing programmers to waste
their time with spurious problems; to prevent programmers from improving
their skills by making their work dependent, not on personal knowledge, but
on development environments; and, ultimately, to reduce all programmers,
regardless of experience or potential, to mere operators of software devices.

�

The second stage, now well under way, involves the world of business: corpora-
tions, governments, financial institutions, and the like – those organizations
that have been heavy users of computers for many years, as well as those that
started more recently. Workers in these organizations are undergoing now, in
their own fields, the same indoctrination as the one that led to the destruction
of the programming profession. And as a result, the same incompetence,
inefficiency, and irresponsibility that characterize the world of programming
are increasingly affecting all business. Although we are observing now office
workers rather than programmers, and the use of software rather than its
development, the similarity of this stage to the earlier one is striking.

The second stage started when the users of software realized that program-
mers did not, in fact, provide an acceptable level of service: new applications
took too long to create, or were never finished, or were inadequate; simple
modifications that should have been implemented in a day or two took
months, or were never done, or did not work. Frustrated by this state of affairs,
and convinced that this was the only kind of programming possible, the users
fell into the same trap as the programmers themselves: they accepted the
solutions proposed by the software elites – the same solutions that had led to
programming incompetence, and hence to their current problems, in the first
place. As before, the solutions consisted, not in improving anyone’s skills, but
in means to avoid the need for programming. Incredibly, the elites turned now
to the users themselves, offering them software devices that would eliminate
their dependence on programmers: ready-made applications and, when these
proved to be inadequate, user-oriented software development tools.

Asking users to depend on generic applications, or to develop their own,
was tantamount to acknowledging the incompetence of programmers, and
hence the failure of the mechanistic programming theories. No one recog-
nized this obvious fact, however. So the same elites that were preventing

the spread of software mechanism 473chapter 6

programming expertise were seen now by their victims – by the users of
software – as saviours. The incompetence of programmers, we saw, is due to
the mechanistic theories, which force them to depend on aids and substitutes
instead of improving their programming skills. They are restricted to mecha-
nistic knowledge, which is the same as staying forever at the level of novices.
By invoking the same theories, the elites could now deceive and exploit the
users of software, and prevent expertise also in other occupations.

The first end-user aids were simple software tools for database query,
reporting, spreadsheets, and the like. These tools, needless to say, could not
fulfil the promises made for them: they could not be a substitute for serious
applications. So the users found themselves dependent on these aids, and on
the software companies behind them, even as their needs remained unsatisfied.
But, again, no one questioned the software concepts leading to these aids, nor
the honesty of the elites. It was the aids that were suspected, so the same
process of expansion that had occurred earlier for the programming aids
started for the end-user aids. The simple tools grew into large office systems,
complete with programming languages, heavy instruction manuals, and
proficiency courses. Each new version made them more complicated, until
they finally became the monstrous software environments we see today.

These systems, clearly, are the counterpart of the development environ-
ments employed by programmers. Also like the development environments,
they are fraudulent, in that they do not eliminate the need for programming
expertise: to create serious applications, their users need almost the same
knowledge as they would if relying on programming languages. They are
called productivity systems, but this is a spurious term, as its true meaning is
the opposite of its literal one. The purpose of these systems is to reduce
productivity, by consuming everyone’s time with software-related activities.
And they accomplish this by replacing the dependence on personal knowledge
with a dependence on software devices. Like programmers before them,
workers in various fields are now prevented from practising their profession
and from improving their skills. Increasingly, the only thing they learn is how
to operate software devices: how to select and combine functions from a range
of alternatives.

Just as the programming environments can replace only the easy parts
of software development, the office systems can replace only the easy parts of
software use – the parts requiring mechanistic knowledge. No matter how
elaborate they are, these systems cannot replace the parts demanding non-
mechanistic knowledge, and hence human minds. The real problems, thus,
remain unsolved, but everyone believes that the only answer is to acquire even
more software devices. Like programmers, office workers now remain at
novice levels, because, instead of practising, they waste their time with the

474 the spread of software mechanism chapter 6

problems generated by their software tools. Just like programming expertise,
the expertise of office workers has been redefined to mean the skill of using
substitutes for expertise.

In one occupation after another, the responsibility of people is being
lowered, from the traditional one – solving a real problem, making a valuable
contribution – to merely knowing how to deal with software-related issues. In
some occupations, the simple skills needed to operate a particular software
device – skills that can be acquired by almost anyone in a few days – are already
considered more important than a lifetime of experience.

A demonstration of the second stage is provided, again, by the evolution of
Microsoft Corporation. Having destroyed the concept of expert and responsi-
ble programming, Microsoft turned to the world of business. The purpose of
its office systems is to raise the level of abstraction in office work; to enforce
the perception that any task can be reduced to a combination of some built-in
functions, thus making everyone dependent on software devices; to waste
workers’ time with the problems generated by this dependence, thereby
preventing them from gaining knowledge and experience; and, ultimately, to
reduce all workers, regardless of position or skills, to mere operators of
software devices.

�

The third stage involves the spread of software mechanism into the rest of
society – into our homes and personal affairs, in particular. This stage has just
begun, and it is hard to predict how software mechanism will affect our life;
that is, to predict what will be the equivalent, in our personal affairs, of
the incompetence, the inefficiency, and the corruption that we see now in
programming and in business. Judging by the previous stages, however, we can
expect an ever-growing dependence on software environments and on the
companies behind them; specifically, a dependence on systems that promise to
solve our important problems while addressing in reality only the simple ones.
In the guise of information, or education, or entertainment, more and more
types of software devices will be invented, desktop and mobile, and we will
spend more and more of our time with the trivial preoccupations engendered
by their use.

Thus, we will have fewer and fewer opportunities to use or to develop non-
mechanistic knowledge. Our definition of expertise, creativity, and responsi-
bility will be degraded, in everything we do, to mean simply the skill of
selecting and combining the functions provided by software devices. The goal
of the elites now is to make all human activities as insignificant and inefficient
as they have made programming and office work; to make us all as ignorant as

the spread of software mechanism 475chapter 6

they have made programmers and office workers, by forcing us to depend on
their systems instead of improving our minds; and, ultimately, to reduce all
human beings on earth to mere operators of software devices.

�

The three stages overlap, of course, and this analysis may not be entirely
accurate. The distinction is still useful, however, because it helps us to observe
the progression of software mechanism: its expansion, outward, from the
narrow domain of programming into all aspects of human existence. By
studying the first stage, which is now complete, we can perhaps foresee the
evolution of the other two stages. (This study is the subject of the next chapter,
“Software Engineering.”)

We should try to imagine a society where all people are as inefficient and
irresponsible in their pursuits as the software practitioners are in theirs today.
And, by studying the past and current rate of expansion, we should try to
estimate how long it will take the software elites to bring about this condition.
The frightening conclusion would be that, within a few decades, the second
and third stages will also be complete. So we should ask ourselves whether a
modern society can function at all when everyone’s knowledge is at the low
levels we see today in programming. Programmers can be as incompetent
as they are only because the rest of us are willing to pay the cost of their
inefficiency; that is, willing to support a software bureaucracy. But if we, too,
were to be like that, who would support us all?

It is significant that the software elites are not content with merely exploiting
society – something they have already accomplished, in the first stage. Their
objective is not just to extract, through the software bureaucracy, vast amounts
of money from society. In their plan of domination, the second and third stages
are as important as the first, and they will not stop until every person is turned
into an active member of the software movement.

Like all totalitarian ideologies, the software revolution is a mass movement.
It is not founded on authoritarianism, but on mind control: people are not
threatened, but indoctrinated; they must become devoted followers, and
participate, on their own accord. Physical force is needed only against those
who, despite the indoctrination, still fail to appreciate the benefits of the new
social order.

Viewed in this light, the three stages of the software movement parallel the
evolution of political totalitarian movements like Nazism and Communism.
The revolution starts with a core of believers – who eventually become the elite,
or the Party – and spreads outward, bringing increasingly broad segments of
the population into its ranks. The revolution cannot end until every person and

476 the spread of software mechanism chapter 6

every event in society conforms to its ideology. But because the ideology is
based on pseudoscientific, fallacious notions, it cannot actually work. The
initial phase, when only a small portion of society is involved, usually appears
successful, and this gives the believers confidence in their utopian visions. (The
software movement is currently in this stage.) The initial phase appears
successful, not because the ideology is valid, but because the few who embrace
it deceive and exploit the rest of society. As the movement spreads, however,
more and more people are turned into bureaucrats who merely serve the
ideology, and fewer and fewer are left who do real work and can be exploited.
Society becomes increasingly corrupt and inefficient, and eventually destroys
itself. (See also the related discussion in the introductory chapter, pp. 30–31.)

the spread of software mechanism 477chapter 6

	Software and Mind
	Disclaimer
	Contents
	Preface
	Ch. 6: Software as Weapon
	A New Form of Domination
	The Risks of Software Dependence
	The Prevention of Expertise
	1
	2
	3

	The Lure of Software Expedients
	1
	2
	3
	4

	Software Charlatanism
	The Delusion of High Levels
	1
	2
	3
	4
	5
	6
	7

	The Delusion of Methodologies
	1
	2
	3
	4

	The Spread of Software Mechanism
	1
	2

